考研数学知识点总结
- 格式:docx
- 大小:37.55 KB
- 文档页数:3
考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。
考研数学必考的知识点总结一、高等数学在考研数学中,高等数学是必考的一个重点,主要包括以下几个部分:1.极限和连续极限和连续是高等数学中的基础知识,也是考研数学中的重点。
在考研数学中,常常涉及到函数的极限和连续性的问题,因此考生需要熟练掌握极限和连续的相关概念和定理,包括函数极限的定义、性质、计算技巧和判定方法,以及函数的连续性的概念、性质和相关定理。
2.导数和微分导数和微分是高等数学中的重要内容,也是考研数学中的必考知识点。
在考研数学中,常常涉及到函数的导数和微分的相关问题,因此考生需要掌握导数和微分的相关概念和定理,包括导数的概念、性质、计算方法和应用,以及微分的概念、性质和计算方法。
3.积分积分是高等数学中的重要内容,也是考研数学中的必考知识点。
在考研数学中,常常涉及到定积分和不定积分的相关问题,因此考生需要掌握积分的相关概念和定理,包括定积分和不定积分的定义、性质、计算方法和应用。
4.级数级数是高等数学中的重要内容,也是考研数学中的必考知识点。
在考研数学中,常常涉及到级数的收敛性和性质的相关问题,因此考生需要掌握级数的相关概念和定理,包括级数的收敛性判定方法、级数的性质和级数的运算法则。
5.常微分方程常微分方程是高等数学中的重要内容,也是考研数学中的必考知识点。
在考研数学中,常常涉及到常微分方程的解的存在唯一性和解的性质的相关问题,因此考生需要掌握常微分方程的相关概念和定理,包括常微分方程的基本概念、常微分方程的解的存在唯一性定理和解的性质定理。
总之,高等数学是考研数学中的重要内容,考生需要充分掌握高等数学的相关知识,扎实掌握高等数学的基本概念和定理,熟练掌握高等数学的计算方法和应用技巧,提高解题能力和应试能力。
二、线性代数在考研数学中,线性代数是必考的一个重点,主要包括以下几个部分:1.矩阵矩阵是线性代数中的重要内容,也是考研数学中的必考知识点。
在考研数学中,常常涉及到矩阵的相关问题,因此考生需要掌握矩阵的相关概念和定理,包括矩阵的基本概念、矩阵的运算法则、矩阵的秩和行列式的性质。
考研数学所有知识点总结考研数学是众多考生在研究生入学考试中面临的重要科目之一,涵盖了高等数学、线性代数和概率论与数理统计等多个领域。
以下将为大家详细梳理考研数学的所有重要知识点。
一、高等数学1、函数、极限与连续函数的概念,包括定义域、值域、单调性、奇偶性等。
极限的定义、性质和计算方法,如四则运算、洛必达法则等。
函数连续的定义、间断点的分类及判断。
2、一元函数微分学导数的定义、几何意义和物理意义。
基本初等函数的导数公式,导数的四则运算和复合函数求导法则。
微分的定义和计算。
利用导数研究函数的单调性、极值、最值和凹凸性。
3、一元函数积分学不定积分的概念、性质和基本积分公式。
换元积分法和分部积分法。
定积分的定义、性质和几何意义。
牛顿莱布尼茨公式。
利用定积分求平面图形的面积、旋转体的体积和曲线的弧长。
4、多元函数微分学多元函数的概念、定义域和值域。
偏导数的定义和计算,全微分的定义和计算。
多元复合函数和隐函数的求导法则。
多元函数的极值和条件极值。
5、多元函数积分学二重积分的定义、性质和计算方法,直角坐标和极坐标下的二重积分计算。
三重积分的定义和计算,柱坐标和球坐标下的三重积分计算。
曲线积分和曲面积分的概念、性质和计算方法。
6、无穷级数数项级数的收敛和发散的概念,正项级数的审敛法,交错级数的审敛法。
幂级数的概念、收敛半径和收敛区间的求法,幂级数的和函数。
函数展开成幂级数。
7、常微分方程常微分方程的基本概念,一阶常微分方程的求解方法,如可分离变量方程、齐次方程、一阶线性方程等。
二阶常系数线性微分方程的求解方法。
二、线性代数1、行列式行列式的定义、性质和计算方法。
行列式按行(列)展开定理。
2、矩阵矩阵的概念、运算(加法、数乘、乘法、转置)。
逆矩阵的定义、性质和求法。
矩阵的秩的定义和求法。
分块矩阵的运算。
3、向量向量的概念、线性运算和线性表示。
向量组的线性相关性的定义和判断方法。
向量组的秩和极大线性无关组。
4、线性方程组线性方程组的解的存在性和唯一性的判断。
考研数学手写知识点总结一、数列和数项1. 定义数列是按一定顺序排列的一串数,每个数称为数列的项,用an表示,n称为项标。
2. 数列的表示一般用通项公式或者递推公式表示数列,通常表示成{an}或者{an}∞n=1。
3. 常见数列常见的数列有等差数列、等比数列、递推数列等,它们分别有自己的通项公式和性质。
4. 数列的求和常用的求和方法有等差数列的求和公式、等比数列的求和公式、Telescoping sum等。
二、集合与函数1. 集合的定义集合是由一个或多个共同特征的元素构成的整体,用大括号{}表示,元素之间用逗号隔开。
2. 集合的运算集合的运算包括并集、交集、差集、补集等,它们有自己的运算法则和性质。
3. 函数的定义函数是集合之间的一个对应关系,通常用f(x)表示,其中x是自变量,f(x)是因变量。
4. 函数的性质函数有奇偶性、周期性、单调性等性质,这些性质对函数的图像有一定的影响。
5. 函数的运算函数的运算包括加减乘除、复合函数、反函数等,它们有自己的运算法则和性质。
三、极限1. 极限的定义当自变量趋于某个值时,函数的值不断地接近于一个确定的数,这个确定的数称为极限。
2. 极限的计算常用的求极限的方法有代入法、夹逼法、单调有界法、洛必达法则等。
3. 极限的性质极限有唯一性、保号性、保序性、保界性等性质,这些性质有一定的应用价值。
4. 无穷小量与无穷大量当自变量趋于某个值时,函数的取值趋于零或者趋于无穷大,这种情况称为无穷小量与无穷大量。
四、导数与微分1. 导数的定义函数在某一点的导数是函数在这一点的切线斜率,常用f'(x)或者dy/dx表示。
2. 导数的计算常用的求导法则有常数法则、幂函数法则、指数函数法则、对数函数法则等。
3. 导数的性质导数有和性、差性、积性、商性、复合函数导数等性质。
4. 微分微分是导数的一个应用,微分形式为dy=f'(x)dx,微分近似计算的应用十分广泛。
五、积分1. 不定积分不定积分是导数的逆运算,常用∫f(x)dx表示,它相当于求函数在某一区间上的面积。
考研数学概念知识点总结1. 集合论集合是数学中的基本概念之一,集合论是数学中的一个重要分支。
集合是由具有某种共同性质的对象组成的整体。
集合的概念包括空集、子集、并集、交集、差集等。
在考研数学中,集合论是一个重要的基础概念,它涉及到集合的运算、集合的性质、集合的关系等内容。
2. 映射与函数映射是集合之间的一种对应关系,函数是一种特殊的映射。
函数的概念是数学中的一个重要内容,它在解决各种问题中起着非常重要的作用。
在考研数学中,函数的概念包括函数的定义、函数的性质、函数的图像、函数的运算、函数的极限等内容。
3. 极限与连续极限是微积分中的基本概念之一,它是描述趋于某个值的过程。
在考研数学中,极限与连续是一个重要的内容,它包括极限的定义、极限的性质、无穷小量与无穷大量、连续函数等内容。
4. 微分和积分微分和积分是微积分中的基本概念,它们是研究变化率和累积量的工具。
在考研数学中,微分和积分是一个重要的内容,它包括导数与微分、不定积分与定积分、微分方程等内容。
5. 线性代数线性代数是数学中的一个重要分支,它研究向量、矩阵、线性方程组等内容。
在考研数学中,线性代数是一个重要的内容,它包括向量空间、线性变换、特征值与特征向量、矩阵分解等内容。
6. 概率论与数理统计概率论与数理统计是数学中的一个重要分支,它是研究随机现象的规律性的学科。
在考研数学中,概率论与数理统计是一个重要的内容,它包括概率的基本概念、随机变量、概率分布、统计量、抽样分布等内容。
7. 数学分析数学分析是数学中的一个基础学科,它以极限、微积分为核心,在研究数学中的各种概念和方法。
在考研数学中,数学分析是一个重要的内容,它包括实数与数轴、数列与级数、函数列、数学归纳法、泰勒公式、微分中值定理、微分不等式、不定积分、定积分等内容。
8. 戴德金分解戴德金分解是函数的一个重要分解方法,它将函数分解为可积函数与非可积函数的和。
在考研数学中,戴德金分解是一个重要的内容,它包括戴德金积分的定义、性质、戴德金积分的存在性等内容。
考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。
希望能对大家的学习有所帮助。
考研数学知识点总结一、高等数学1. 极限与连续极限:数列极限、函数极限、无穷极限、极限的性质和运算法则连续:函数连续性、连续函数的性质、间断点、闭区间连续性定理2. 导数与微分导数的概念:函数的导数、导数的性质微分:函数的微分、微分的性质、高阶微分3. 微分方程微分方程的解法:可分离变量、一阶线性微分方程、二阶线性微分方程微分方程的应用:常微分方程的物理应用、生物应用、经济应用4. 重积分二重积分:累次积分、极坐标系下的二重积分三重积分:累次积分、柱坐标系、球坐标系下的三重积分5. 线性代数行列式与矩阵:行列式的性质、矩阵的性质和运算线性方程组:线性方程组的解法、线性方程组的应用特征值与特征向量:矩阵的特征值和特征向量、对角化、相似矩阵二、离散数学1. 集合与命题逻辑集合:集合的基本概念、集合的运算、集合的应用命题逻辑:命题的联结词、等值命题、蕴含命题、充分必要条件2. 图论图的基本概念:图的定义、图的性质、图的应用连通性:连通图、强连通图、连通度、割点、桥图的着色问题:平面图的着色、四色定理3. 组合数学排列组合:排列、组合、二项式定理生成函数:普通生成函数、指数型生成函数容斥原理:二项式系数的应用、排列组合的应用4. 概率论随机事件与概率:随机试验、随机事件的概率、概率的性质随机变量与概率分布:随机变量的概念、离散型随机变量、连续型随机变量随机过程:马尔可夫链、泊松过程、布朗运动三、数学分析1. 泛函分析赋范空间:线性空间的内积、希尔伯特空间的定义线性算子:紧算子、自共轭算子巴拿赫空间:巴拿赫空间的性质和定理2. 复变函数复数和复变函数:复数的基本性质、复变函数的连续性和可导性积分定理:柯西积分定理、留数定理解析函数:正实部函数、调和函数、齐纯函数3. 实变函数度量空间:度量空间的性质、完备度量空间勒贝格积分:勒贝格积分的性质、勒贝格积分的应用广义积分:广义积分的收敛性、绝对收敛四、概率论与数理统计1. 随机变量随机变量的概念:离散型随机变量、连续型随机变量、随机变量的分布函数随机变量的数字特征:数学期望、方差、协方差2. 大数定律与中心极限定理大数定律:切比雪夫不等式、辛钦大数定律、伯努利大数定律中心极限定理:林德贝格-列维中心极限定理、中心极限定理的其他形式3. 参数估计与检验参数估计:点估计、区间估计假设检验:假设检验的基本思想、参数假设检验方差分析:单因素方差分析、双因素方差分析五、数理逻辑与模糊数学1. 数理逻辑命题逻辑:命题的联结词、等值命题、蕴含命题、充分必要条件谓词逻辑:一阶谓词逻辑、量词、谓词逻辑的推理规则2. 模糊数学模糊集合:模糊集合的基本概念、模糊集合的运算模糊关系:模糊关系的合成、模糊关系的反对称性模糊逻辑:模糊逻辑的蕴含、摩根定律、模糊逻辑的合取和析取以上是考研数学的知识点总结,希望对大家有所帮助。
考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。
考研数学知识点定理汇总
以下是一些考研数学常见的知识点和定理的汇总:
1. 集合论知识点:
- 集合的定义和运算
- 集合的包含关系和等价关系
- 幂集和集合的基数
- 基本集合运算律和德摩根定律
2. 矩阵与行列式知识点:
- 矩阵的定义和运算
- 矩阵的特征值和特征向量
- 行列式的定义和性质
- 克莱姆法则和矩阵的逆
3. 数理统计知识点:
- 随机变量的概念和性质
- 概率分布函数和密度函数
- 期望、方差和协方差
- 大数定律和中心极限定理
4. 导数与微积分知识点:
- 一元函数的导数和微分
- 高阶导数和泰勒展开
- 一元函数的极值和最值
- 二重、三重积分和曲线积分
5. 线性代数知识点:
- 矩阵的秩和线性无关性
- 线性方程组的解的个数和解的结构
- 线性变换和线性空间
- 内积空间和正交变换
6. 常微分方程知识点:
- 一阶常微分方程的解法和应用
- 高阶常微分方程的解法和应用
- 线性微分方程的解法和应用
- 隐式函数和显式解
这些知识点和定理是考研数学中常见且重要的内容,考生可以基于这个汇总进行复习和学习。
同时,也建议结合专业教材进行系统的学习和理解。
第一讲 函数、极限与持续一、考试规定1. 理解函数旳概念,掌握函数旳表达措施,会建立应用问题旳函数关系。
2.理解函数旳奇偶性、单调性、周期性和有界性。
3. 理解复合函数及分段函数旳概念,理解反函数及隐函数旳概念。
4. 掌握基本初等函数旳性质及其图形,理解初等函数旳概念。
5. 理解(理解)极限旳概念,理解(理解)函数左、右极限旳概念以及函数极限存 在与左、右极限之间旳关系。
6. 掌握(理解)极限旳性质,掌握四则运算法则。
7. 掌握(理解)极限存在旳两个准则,并会运用它们求极限,掌握(会)运用两个重要极 限求极限旳措施。
8. 理解无穷小量、无穷大量旳概念,掌握无穷小量旳比较措施,会用等价无穷小量求极限。
9. 理解函数持续性旳概念(含左持续与右持续),会鉴别函数间断点旳类型 10. 理解持续函数旳性质和初等函数旳持续性,理解闭区间上持续函数旳性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
11. 掌握(会)用洛必达法则求未定式极限旳措施。
二、内容提纲 1、函数(1)函数旳概念: y=f(x),重点:规定会建立函数关系.(2)复合函数: y=f(u), u=ϕϕ()[()]x y f x ⇒=,重点:确定复合关系并会求复合函数旳定义域.(3)分段函数: 注意,)}(),(min{)},(),(max{,)(x g x f x g x f x f 为分段函数. (4)初等函数:通过有限次旳四则运算和复合运算且用一种数学式子表达旳函数。
(5)函数旳特性:单调性、有界性、奇偶性和周期性 * 注:1、可导奇(偶)函数旳导函数为偶(奇)函数。
尤其:若)(x f 为偶函数且)0(f '存在,则0)0(='f 2、若)(x f 为偶函数,则⎰xdt t f 0)(为奇函数;若)(x f 为奇函数,则⎰xadt t f )(为偶函数;3、可导周期函数旳导函数为周期函数。
尤其:设)(x f 认为T 周期且)(0x f '存在,则)()(00x f T x f '=+'。
考研数学知识点总结
在考研数学的准备过程中,我们不可忽视的一个重要环节就是知识点的总结与梳理。
只有把数学知识点理清楚,才能更好地应对考题。
本文将从数学分析、高等代数和概率统计三个方面,对一些重要的知识点进行总结。
一、数学分析
1.极限与连续
在数学分析中,极限与连续是最基础的概念之一。
对于简单的函数,要了解其极限以及连续性是非常重要的。
同时,还需要掌握一些典型函数的极限运算法则,如常见函数的极限、复合函数的极限、反函数的极限等等。
2.一元函数的微分学
微分学是数学分析的另一个重要分支。
在考研数学中,我们需要熟悉一元函数的导数概念,并了解导数的计算法则。
此外,还需学习函数的单调性、凹凸性以及最值等性质,以便在解题过程中能够运用这些理论知识。
3.一元函数的积分学
积分学也是数学分析中的一个核心内容。
我们需要掌握一元函数的不定积分和定积分的概念,并学习一些基本的积分法则和方法,如换元法、分部积分法、定积分的几何应用等。
此外,对于含有参数的积分也需要有所了解,包括参数积分的性质和计算方法。
二、高等代数
1.线性代数
线性代数是考研数学中的重要组成部分。
首先,需要从矩阵的角度来理解线性方程组,掌握求解线性方程组的基本方法和步骤。
其次,需要熟悉矩阵的基本运算
法则,如矩阵的加法、乘法、转置等。
另外,还需要学习矩阵的特征值和特征向量的概念,并了解相应的计算方法。
2.多项式与代数方程
多项式与代数方程也是高等代数中的重点内容之一。
我们需要了解多项式的基本性质,包括多项式的次数、系数、根与因式分解等。
此外,还需掌握代数方程的解的概念和求解方法,如二次方程、三次方程、四次方程的求解公式等。
3.群、环、域
在高等代数中,群、环、域是重要的代数结构。
我们需要了解这些代数结构的基本定义和性质,如群运算的封闭性、结合律、单位元和逆元等。
此外,还需学习群同态和同构的概念,以及环和域的基本性质和判断条件。
三、概率统计
1.概率的基本概念
概率统计作为考研数学的一部分,需要掌握概率的基本概念和计算方法。
我们需要了解事件与样本空间的关系,以及概率的公理化定义和性质。
此外,还需学习概率的加法定理和乘法定理,并了解条件概率和独立性的概念。
2.随机变量与概率分布
在概率统计中,随机变量是一个重要的概念。
我们需要了解随机变量的定义和分类,如离散型随机变量和连续型随机变量。
同时,还需要了解不同类型概率分布的特点和性质,如二项分布、正态分布、指数分布等。
3.参数估计与假设检验
参数估计和假设检验是概率统计的重要内容。
我们需要学习参数估计的基本方法,如点估计和区间估计。
此外,还需掌握假设检验的基本思想和步骤,了解显著性水平和p值的概念,并能熟练运用t检验、F检验等方法进行假设检验。
通过以上对考研数学知识点的总结,我们可以更好地理解数学分析、高等代数和概率统计这些内容。
希望大家在备考过程中能够注重知识点的理解和掌握,夯实基础,为取得优异的考试成绩打下坚实的基础。