南京师范近十二年数学分析考研题
- 格式:pdf
- 大小:1.35 MB
- 文档页数:21
南京师范大学2006年数学分析考研试题
一、判断下列命题是否正确,给出理由:(5分*2=10分)
1.若在区间I上有原函数且单调,则在I上连续。
2.若非正常积分收敛,则必存在。
二、(15分)求极限:(1) (2)
(3)
三、(15分)设函数在上连续且大于零,证明:在(0, 2)内有且只有一根.
四、(15分)计算 L+为A(1,0,0)到B(1,0,2)的任意一条曲线.
五、(15分)若在[a,b]上无界,证明:,对的任何邻域,使都无界.
六、(15分)用可积条件证明函数在上可积.
七、(15分)是偶函数,二阶导数在x=0的某邻域()(>0)内连续,且,证明:绝
对收敛.
八、(15分)(1)证明在[-1,1]上一致收敛.
(2) 证明在[-1,1]上不一致收敛.
九、(15分)若在[0,1]上连续,证明:.。
南京师范大学研究生招生入学考试试卷2007年硕士研究生招生入学考试试卷专业名称:基础数学 研究方向: 科目代码:334科目名称:数学分析考生注意: 答案必须写在答题纸上,否则无效,后果自负。
一.(每小题10分)计算下列极限:(1)xtdtx xx ⎰⨯+∞→2ln ln lim; (2)yx y x y x ++→→2200lim;(3)设()1,01∈x ,()n n n x x x -=+11() ,2,1=n ,证明{}n nx 收敛并求极限。
二.(20分)(1)设函数()x f 在点0x 的某邻域()0x U 内有1+n 阶的连续导函数。
证明对任意的()0x U x ∈有()()()()()()()(),!0000'0x R x x n x f x x x f x f x f n n n +-++-+= 其中()()()()()()100011!1++---+=n n n n x x x x x fn x R θθ,且10≤≤θ; (2)求()()11ln 2≤+x x的麦克劳林级数展开,并加以证明。
三.(20分) 设()x f 为()+∞,0内的连续函数且,()+∞=+→x f x lim 0,()0lim =+∞→x f x ,试证:(1)()x x f 1sin在[)+∞,a ()0>a 内一致连续; (2) ()xx f 1sin 在()+∞,0内不一致连续。
四.(15分)利用Stokes 公式计算:()()()⎰-+-++Ldz x y dy z x dx z y 2,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向。
五.(10分)证明:试研究方程()0ln >=a x ax 实根的个数。
六.(10分)设函数()v u F ,有连续的二阶偏导数,求证由方程0,0000=⎪⎪⎭⎫ ⎝⎛----z z y y z z x x F 所确定的隐函数()y x z z ,=满足下列两个方程:()()000z z yz y y xz x x -=∂∂-+∂∂-;222222⎪⎪⎭⎫⎝⎛∂∂∂=∂∂⋅∂∂y x z y z x z 。
历年南京师范大学865数学学科基础考研真题试卷与真题答案一、考试解读:part 1 学院专业考试概况:①学院专业分析:含学院基本概况、考研专业课科目:865数学学科基础的考试情况;②科目对应专业历年录取统计表:含南师大相关专业的历年录取人数与分数线情况;③历年考研真题特点:含南师大考研专业课865数学学科基础各部分的命题规律及出题风格。
part 2 历年题型分析及对应解题技巧:根据南师大865数学学科基础考试科目的考试题型(计算题、求导题、证明题、材料题等),分析对应各类型题目的具体解题技巧,帮助考生提高针对性,提升答题效率,充分把握关键得分点。
part 3 历年真题分析:最新真题是南师考研中最为珍贵的参考资料,针对最新一年的南师考研真题试卷展开深入剖析,帮助考生有的放矢,把握真题所考察的最新动向与考试侧重点,以便做好更具针对性的复习准备工作。
part 4 未来考试展望:根据上述相关知识点及真题试卷的针对性分析,提高考生的备考与应试前瞻性,令考生心中有数,直抵南师大考研的核心要旨。
part 5 南师大考试大纲:①复习教材罗列(官方指定或重点推荐+拓展书目):不放过任何一个课内、课外知识点。
②官方指定或重点教材的大纲解读:官方没有考试大纲,高分学长学姐为你详细梳理。
③拓展书目说明及复习策略:专业课高分,需要的不仅是参透指定教材的基本功,还应加强课外延展与提升。
part 6 专业课高分备考策略:①考研前期的准备;②复习备考期间的准备与注意事项;③考场注意事项。
part 7 章节考点分布表:罗列南京师范大学865数学学科基础的专业课试卷中,近年试卷考点分布的具体情况,方便考生知晓南师大考研专业课试卷的侧重点与知识点分布,更多南京师范大学考研初试指导、初试经验、复试经验、考研真题等,尽在仙林南师大考研网;有助于考生更具针对性地复习、强化,快准狠地把握高分阵地。
二、南师大历年考研真题试卷与答案详解:整理南师大该科目的2011-2019年考研真题,并配有2011-2019年答案详解,本部分包括了(解题思路、答案详解)两方面内容。
2021数学分析考研南京师大与复旦配套考研真题一、南京师范大学《602数学分析》考研真题二、复旦大学第一部分极限初论第1章变量与函数一、选择题是()。
[同济大学研]A.右界函数B.单调函数C.周期函数D.偶函数【答案】D查看答案【解析】二、解答题1.证明下列不等式:[浙江师范大学2006研]证明:因为|a+b|≤|a|+|b|,所以2.设,当y=1时,z=x,求f(x)和z。
[西安交通大学研] 解:依题意令,则,所以3.设求f(x)的表达式。
[北京大学研]解:令t=lnx,则,所以4.设,求f(x)的定义域和[中国人民大学研] 解:由,解得,从而f(x)的定义域为5.求函数的定义域和值域.[华东师范大学研]解:由可得.解得函数的定义域为又因为所以函数的值域:6.已知的定义域为,求的定义域.[武汉大学研]解:,即f(x)的定义域为.再由解得,∴所求定义域为7.设函数f(x)在(-∞,+∞)上是奇函数,f(1)=a且对任何x值均有(1)试用a表示f(2)与f(5);(2)问a取什么值时,f(x)是以2为周期的周期函数.[清华大学研]解:(1)在①式中,令x=-1.(2)由①式知当且仅当f(2)=0,即a=0时,f(x)是以2为周期的周期函数.8.已知,设.[南京邮电大学研]解:令,可用数学归纳法证明①当n=1时,显然①式成立.假设当n=k时,①式成立.当n=k+1时,即对n=k+1,①式也成立。
命题得证.9.已知.求.[北京理工大学研]解:由解得,互换x,y得当10.设,试验证,并求.[华中科技大学研]解:又。
目录Ⅰ历年考研真题试卷 (2)南京师范大学2007年攻读硕士学位研究生入学考试试题 (2)南京师范大学2008年攻读硕士学位研究生入学考试试题 (4)南京师范大学2009年攻读硕士学位研究生入学考试试题 (6)南京师范大学2010年攻读硕士学位研究生入学考试试题 (8)南京师范大学2011年攻读硕士学位研究生入学考试试题 (10)南京师范大学2012年攻读硕士学位研究生入学考试试题 (12)南京师范大学2013年攻读硕士学位研究生入学考试试题 (15)南京师范大学2014年攻读硕士学位研究生入学考试试题 (17)南京师范大学2015年攻读硕士学位研究生入学考试试题 (19)南京师范大学2016年攻读硕士学位研究生入学考试试题 (22)南京师范大学2017年攻读硕士学位研究生入学考试试题 (25)南京师范大学2018年攻读硕士学位研究生入学考试试题 (27)Ⅱ历年考研真题试卷答案解析 (29)南京师范大学2007年攻读硕士学位研究生入学考试试题答案解析 (29)南京师范大学2008年攻读硕士学位研究生入学考试试题答案解析 (37)南京师范大学2009年攻读硕士学位研究生入学考试试题答案解析 (45)南京师范大学2010年攻读硕士学位研究生入学考试试题答案解析 (52)南京师范大学2011年攻读硕士学位研究生入学考试试题答案解析 (59)南京师范大学2012年攻读硕士学位研究生入学考试试题答案解析 (68)南京师范大学2013年攻读硕士学位研究生入学考试试题答案解析 (76)南京师范大学2014年攻读硕士学位研究生入学考试试题答案解析 (85)南京师范大学2015年攻读硕士学位研究生入学考试试题答案解析 (93)Ⅰ历年考研真题试卷南京师范大学2007年攻读硕士学位研究生入学考试试题考试科目:602数学分析考生注意:所有答案必须写在专用答题纸上,写在本试题纸上无效。
一、(每小题10分,共30分)计算下列极限1、xt dtx xx ⎰∙+∞→2ln ln lim;2、yx y x y x ++→→2200lim ;3、设),,2,1(),1(),1,0(11 =-=∈+n x x x x n n n 证明{}n nx 收敛并求极限。
(完整)南京师范大学考研高等代数2008——20112008年硕士研究生招生入学考试试卷高等代数一、判断题(共60分,每小题6分;若正确,打钩并给出证明,若错误,打叉并给出反例或说明理由)1.对多项式18+x 来说,不存在素数p 满足艾森斯坦()Eisenstein 判别法的条件,故18+x 不是有理数域上的不可约多项式。
2.若数域P 上的多项式)(x f 在复数域上有重根,则在P 上一定有重因式。
3.设向量组(I )的秩大于向量组(II )的秩,则(I )不能由(II )线性表出。
4.设B A ,都是n 阶方阵,A 是对角矩阵,BA AB =,则B 也是对角矩阵。
5.设B A ,都是半正定矩阵,则AB 的特征值大于或等于0。
6.设),2,1(s i V i Λ=是n 维线性空间V 的子空间,n s <≤2,若{}0=j i V V I()j i ≠,则s V V V +++Λ21是直和。
7.实矩阵n m R A ?∈的秩为n 的充要条件是对任意的n 阶实矩阵C B ,,有AC AB =可推得C B =。
8.设b a ,属于数域P ,[]{}{}0))((,)()(Y n x f x P x f x f V10.在n 维欧几里得空间中,正交变换在一组基下的矩阵是正交矩阵。
二、计算题(每小题10分,共40分)1.设()n j i a ji nj n i ij Λ,2,1,=--=βαβα,n 阶方阵()ij a A =,求A 的行列式A 。
2.求--=143021002A 的所有不变因子,初等因子以及若尔当()Jordan 标准形。
3.设[]4x P 是所有次数小于4的多项式和零多项式构成的线性空间,求线性变换()()()()()x f x f x f x x f ++='''2?的特征值,求最大特征值的特征向量。
4.已知三维欧几里得空间V 中有一组基321,,ααα,其度量矩阵为--=110121012A ,求向量312ααβ-=的长度。