2.2 结识抛物线 课件3(数学北师大版九年级下册)
- 格式:ppt
- 大小:1.62 MB
- 文档页数:19
教学准备1. 教学目标(一)知识与技能1.能够利用描点法作出函数y=x2的图象,能根据图象认识和理解二次函数y=x2的性质.2.猜想并能作出y=-x2的图象,能比较它与y=x2的图象的异同.(二)过程与方法1.经历探索二次函数y=x2的图象的作法和性质的过程,获得利用图象研究函数性质的经验.2.由函数y=x2的图象及性质,对比地学习y=-x2的图象及性质,并能比较出它们的异同点,培养学生的类比学习能力和发展学生的求同求异思维.(三)情感与态度1.通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.2.在利用图象讨论二次函数的性质时,让学生尽可能多地合作交流,以便使学生能够从多个角度2. 教学重点/难点教学重点:作出函数y=±x2的图象,并根据图象认识和理解二次函数y=±x2的性质。
教学难点:由y=x2的图象及性质对比地学习y=-x2的图象及性质,并能比较出它们的异同点。
3. 教学用具4. 标签教学过程第一环节情境引入(生活中的抛物线)活动内容:寻找生活中的抛物线第二环节温故知新活动内容:复习:(1)二次函数的概念,(2)画函数的图象的主要步骤,(3)根据函数y=x2列表第三环节合作学习(探究二次函数y=±x2的图象和性质)活动内容:1. 用描点法画二次函数y=x2的图象,并与同桌交流。
2. 观察图象,探索二次函数y=x2的性质,提出问题:(1) 你能描述图象的形状吗?与同伴进行交流.(2) 图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.(3)图象与x轴有交点吗?如果有,交点坐标是什么?(4)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢?(5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?3.二次函数y=-x2的图象是什么形状?先想一想,然后作出它的图象4.它与二次函数y=x2的图象有什么关系?与同伴进行交流。