AUTOFORM分析拉延成型
- 格式:docx
- 大小:160.50 KB
- 文档页数:7
常见缺陷及解决办法1.拉延开裂开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。
产生开裂的原因大致有:(1)产品工艺性不好,如R角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。
(2)工艺补充、压边圈的设计不合理。
(3)拉延筋设计不合理,不能很好的控制材料流动。
(4)压边力过大。
(5)模具型面表面粗糙度达不到要求,摩擦阻力大。
(6)模具加工精度差,凸凹模间隙小,板料流动性差。
目前,主要通过改善产品工艺性、设计合理的坯料形状、增加刺破刀、加大R 角、合理设计工艺补充及压料面、调整拉延筋阻力及压边力和模面镜面处理等方式来解决拉延开裂问题。
2.起皱起皱是拉延匸序中另一个常见的缺陷,也是很难解决的板件缺陷。
板件发生起皱时,会影响到模具的寿命以及板件的焊接,板件发生叠料时还会使模具不能压合到底,从而成形不出设计的产品形状,同时,由于叠料部位不能进行防锈处理,容易导致板件生锈而影响到板件的使用寿命,给整车安全造成隐患。
目前主要从产品设计及工艺设计上来解决起皱问题,归纳起来有以下儿点: (1)产品设计时尽量避免型面高低落差大、型面截面大小变化剧烈,在不影响板件装配的情况下,在有可能起皱的部位加吸皱包。
(2)工艺上可以考虑增加整形工序。
(3)分模线调整。
随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE软件来分析确定合理的分模线位置。
(4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。
(5)合理设计拉延筋,以确保各个方向进料均匀为目标。
(6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。
AutoForm模拟分析算法AutoForm模拟分析算法主要有两种:隐式算法和一步成形法。
1.隐式算法静态隐式算法是解决金属成形问题的一种方法。
在静态隐式算法中,在每一增量步内都需要对静态平衡方程迭代求解。
冲压成形分析Autoform设置规范冲压成形分析autoform设置规范冲压成形分析Autoform设置规范1范围本标准规定了冲压成形Autoform分析的要求。
本标准适⽤于冲压拉延、成形、翻边、整形等⼯序CAE分析。
本标准适⽤⽤于Autoform4.0以上版本冲压SE分析设置,不适⽤于⽣产性精细化冲压⼯艺分析。
2分析流程冲压成形CAE分析流程见图1。
图1 冲压成形CAE分析流程3分析要求3.1 产品数模审核将待分析数模⽤三维CAD软件打开,根据产品成形理论及经验确认具体的冲压⽅向,重点检查冲压负⾓、⽴修、修冲⾓度、回弹、圆⾓、尖点、死⾓、翻整、侧修冲翻整等影响⼯艺补充的因素。
预估需要在CAD软件中进⾏调整的产品区域和绘制的⼯艺补充区域,并进⾏相应绘制说明。
3.2 ⼯艺⽅案制定3.2.1 检查产品数模,从成形难度、成本、质量要求、⽣产设备等⽅⾯综合考虑,制定详细的⼯艺成型路线。
⼀般⼯艺成型路线⼤致可分为两种:拉延→修冲→翻整或是落料→成形→翻整。
3.2.2 根据制定的成型路线,详细划分每⼯序⼯作内容,并绘制相应辅助线和辅助⾯。
3.3 产品数模输⼊3.3.1 将产品数模曲⾯转化为B曲⾯,以减少数据格式转换出现畸形⾯。
3.3.2 将产品数模及辅助线⾯按各⼯序⼯作内容要求,分别转换成igs格式导出。
⼀般分为拉延或数模、落料或修边曲线、翻整数模等。
3.3.3 将输出的igs⽂件按需要输⼊Autoform。
3.4 模型修整3.4.1 检查Autoform中导⼊的产品数模或⼯艺数模,先确认是否为左右对称件若为对称件则可以设置成对称形式可减少后续⼯艺⾯优化时间,输⼊冲压⽅向及选择正确的材料,剔除不良的⽹格⾯,并进⾏修补,同时填充数模上所有孔洞。
最终形成只有唯⼀外边界的模型。
如果后续有翻边⼯序,需根据具体情况决定是否删除翻边⾯。
3.4.2 利⽤fillet选项卡进⾏空隙、锐边及凸出⾯质量检查ErroTolerance容许的误差=0.1mm;Max. Side Lenth 最⼤边长=30mm(Face⾯);锐边与倒⾓:Fillet/Check Radius 过渡/检查圆⾓ =1mm;Global Radius 全局圆⾓=3mm。
AUTOFORM简明操作过程启动AUTOFORM,如图1,选择incremental seat增量算法,点OK,出现启动后主界面,如图2;图1图2点击菜单栏的File-New,选择需要分析的IGS文件,并文件命名,建立新档;如图3点击Process generator图标,出现如图4界面图3图4输入文件名选择igs 文件输入板料厚度设置料片,可外界导入,也可直接绘制,如图6,图7.绘制料片线进入Process generator设置界面,未设置项为红色显示,如图5图5料片线输入坐标值图6图7开始设置工具Tools,如图8为为设置状态按范围选择图8依次选择die, punch, binder.各自参数设置如下:凹模位于板料上方凹模运动行程,该例设为200凸模位于板料下方压边圈位于板料下方压边圈拉延行程该例设为80 binder选择工具中心Process设置,设置参数如下图:重力加载项即模具装在压机上的初始状态闭合状态即凹模和压板圈的压料过程速度V=1时间Time=S/V=S/1=S故closing和drawingTime设置数值如下计算die:200binder:80closing=die-binder=120drawing=binder=80拉延过程即料片压紧后到拉延到底的板料成形过程恒定压边力,根据实际设定摩擦系数LubeAutoForm默认状态为0.15更改此系数对成形效果影响较大,有时更改一下拉延效果会很漂亮添加拉延筋,Add drawbead. AutoForm采用等效拉延筋添加拉延筋设置前后对比如下图结果控制:拉延筋宽度一般设12或15阻尼力根据需要可更改可外界导入或直接绘制重新计算/断点续算:标记设置为各工序的结尾。
如果后续需要计算修边、翻边等,须选择此项输出选项ALL ON,以便显示所有的结果.设置完后,工具位置开始计算开始模拟计算检查:各行程是否正确开始计算单动拉延设置基本运用以上计算结果:。
常见缺陷及解决办法1.拉延开裂开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。
产生开裂的原因大致有:(1)产品工艺性不好,如R角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。
(2)工艺补充、压边圈的设计不合理。
(3)拉延筋设计不合理,不能很好的控制材料流动。
(4)压边力过大。
(5)模具型面表面粗糙度达不到要求,摩擦阻力大。
(6)模具加工精度差,凸凹模间隙小,板料流动性差。
目前,主要通过改善产品工艺性、设计合理的坯料形状、增加刺破刀、加大R角、合理设计工艺补充及压料面、调整拉延筋阻力及压边力和模面镜面处理等方式来解决拉延开裂问题。
2.起皱起皱是拉延工序中另一个常见的缺陷,也是很难解决的板件缺陷。
板件发生起皱时,会影响到模具的寿命以及板件的焊接,板件发生叠料时还会使模具不能压合到底,从而成形不出设计的产品形状,同时,由于叠料部位不能进行防锈处理,容易导致板件生锈而影响到板件的使用寿命,给整车安全造成隐患。
目前主要从产品设计及工艺设计上来解决起皱问题,归纳起来有以下几点:(1)产品设计时尽量避免型面高低落差大、型面截面大小变化剧烈,在不影响板件装配的情况下,在有可能起皱的部位加吸皱包。
(2)工艺上可以考虑增加整形工序。
(3)分模线调整。
随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE软件来分析确定合理的分模线位置。
(4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。
(5)合理设计拉延筋,以确保各个方向进料均匀为目标。
(6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。
AutoForm模拟分析算法AutoForm模拟分析算法主要有两种:隐式算法和一步成形法。
1.隐式算法静态隐式算法是解决金属成形问题的一种方法。
在静态隐式算法中,在每一增量步内都需要对静态平衡方程迭代求解。
基于Autoform的汽车发动机罩板拉延成形仿真研究
陶晨;王双
【期刊名称】《农业装备与车辆工程》
【年(卷),期】2018(56)2
【摘要】分析了汽车发动机罩板的拉延成形特性,通过运用UG进行工艺补充面设计,同时给出了利用软件Autoform对零件拉延成形进行有限元分析的步骤.基于CAE分析结果,探讨其中出现的缺陷(如起皱、破裂、变形不足等)的原因,提出解决方案并再次进行仿真,最终得到合理的拉延成形方案.
【总页数】4页(P69-72)
【作者】陶晨;王双
【作者单位】200093 上海市上海理工大学机械工程学院;200093 上海市上海理工大学机械工程学院
【正文语种】中文
【中图分类】TG365.6
【相关文献】
1.基于AutoForm的滑门内板的拉延成形数值模拟研究 [J], 刘鹏翔;程培元;胡一博
2.基于Autoform的支撑板拉延成形数值模拟与模具设计 [J], 徐宏
3.基于数值模拟的铝合金汽车发动机罩板浇注系统优化研究 [J], 王洋;李落星;朱必武
4.基于PAM-STAMP的汽车发动机盖板拉延成形仿真设计 [J], 王宝昌;董丽
5.基于AutoForm的前罩锁销加强件有限元仿真分析 [J], 黄好;岳陆游
因版权原因,仅展示原文概要,查看原文内容请购买。
基于AUTOFORM的冲压件成型仿真分析一、AUTOFORM简介AUTOFORM主要有以下特点:1. 全自动网格划分传统意义上的分析师,都在对几何的网格划分上具有较深的造诣,在一个方案的整个分析过程中,网格的处理,往往占据了70%的精力。
资深分析师的匮乏,严重影响了CAE 分析在工业界的推广应用。
AUTOFORM 由于在接触算法上的重大突破,从而在根本上改变了网格划分对技术人员所要求的内涵,其整个划分过程全自动,无需用户干预,具有快速、准确、稳定和简单的特点,不占用使用人员的精力。
全自动网格划分,使得CAE 分析的瓶颈问题得到解决,对普通技术人员而言,CAE 分析不再是一个神秘领域,使得CAE 工业应用的普及化真正成为现实。
2. 全程工艺设计辅助3. 计算速度快AUTOFORM 对板冲压成型过程的仿真模拟计算速度超越了传统意义上对板冲压成型过程进行模拟所需时间的理解。
其计算速度是同类CAE 软件的几倍甚至几十倍。
绝大部分制件的仿真分析计算都能在几十分钟内完成,有些甚至只需几分钟。
4. 模拟精度高AUTOFORM 不仅在瑞士设有研发部门,而且在德国还专门设有工业应用部门,其与欧洲的一些著名的汽车生产商和模具生产商之间也已建立了良好的联系和反馈机制。
经过多年的工业应用反馈积累改进和版本升级,目前,AUTOFORM 的模拟精度已经在世界范围内得到了广泛认可,这一点也已经在NUMISHEET’2002 的试题结果中得到了很好的反映。
5. 模拟结果稳定性高AUTOFORM 诸多内置参数来源于工业实际,无需用户外部干预。
与传统CAE 软件比较,其计算结果不依赖于操作者的FE 经验,不会因人而异,稳定性非常好。
这一点已经在NUMISHEET’2002 的试题结果中得到了很好的反映。
6. 界面简洁,操作性好AUTOFORM 的前、后处理所有功能都集成于一个界面之中,但整个界面简单明了,给人以井井有条之感。
其所有模块都兼具向导功能,用户只须按部就班将设置填好即可。
基于AutoForm汽车前纵梁外板延伸件的工艺分析及优化本文以某车型的汽车前纵梁外板延伸件为研究对象,基于AutoForm软件平台,分别模拟了其拉延工艺方案和压型工艺方案。
结果表明,拉延工艺方案的材料利用率为52%,压型工艺方案为81%。
在保证产品质量的前提下,考虑到材料成本、工装成本、冲次费用等因素,决定用压型工艺方案替代常用的拉延工艺方案:同时,进一步深入分析了压型工艺方案的可行性,并根据ThinkDesign软件和AutoForm软件的模拟结果结合现场模具整改调试减少了成形过程中的回弹,最后将优化结果用于指导实际生产,得到了符合质量要求的零件并已经批产。
汽车前纵梁产品在车身结构中承受着整车的有效载荷,是整车承受冲击力、碰撞力的关键部件,决定着整车的载重量,关系着整车的安全性能。
纵梁零件的屈服强度较高、外形不规则、具有局部成形、形状复杂、板料厚以及成形后翘曲、扭曲和回弹严重等特点。
因此,需针对前纵梁产品的缺陷进行预测,提前对可能出现的缺陷采取对策。
随着计算机技术的发展,如何利用有限元软件结合现场生产情况,保证产品质量,已经成为整个模具行业技术研究的有效手段之一,该技术对汽车的轻量化、开发成本、开发周期有着重大影响。
本文分析的产品零件为前纵梁的外板延伸件,大批量生产,零件材料为冷轧双相钢CR780T/420Y,料厚2.0mm。
工序方案分析工艺路线该零件的基本特点是尺寸精度一般、材料强度较高、零件外形左右是不对称结构、有凸包和其它形状的局部突变,是典型的板料冲压件,可拉延工艺方案成型,也可成形工艺方案成型。
从零件的形状对其分析,该零件的整体形状较简单、拉延部分基本上规则、拉深深度不大。
零件的材料流动性大,回弹变形趋势大须做整形工序。
考虑到该零件的修边复杂性和材料流动性,需要经过多道工序才能达到设计要求,工艺方案初步定为两种方案:方案一(拉延工艺):OP10拉延-OP20修边-OP30侧修边侧冲孔-OP40翻边整形-OP50侧冲孔;方案二(压型工艺):OP10落料冲孔-OP20成形翻边-OP30整形翻边-OP40冲孔修边侧冲孔。
基于Autoform的汽车覆盖件拉延过程模拟作者:高沙沙薄青红水志祥来源:《山东工业技术》2015年第14期摘要:在UG环境下对某汽车覆盖件的隔板后构件的拉延工序进行造型,运用板料成形分析软件Autoform进行了CAE拉延成形模拟分析。
通过模拟分析,可快速地得到近似的冲压成形模拟结果。
利用分析结果预测破裂和起皱等成形缺陷,优化冲压工艺参数,可以降低汽车冲压件的制造成本,缩短新产品开发周期。
关键词:汽车覆盖件;Autoform;拉延造型;CAE分析1 引言作为新车型的一个最重要组成部分的汽车覆盖件在整车开发中具有重要的地位。
汽车覆盖件一般尺寸大、厚度薄、形状复杂,成型难度较大。
目前,尚难借助理论计算来准确设计冲压工艺过程[1-2]。
传统的设计方法,由工艺设计专家根据经验给出,这种设计的正确与否要等到试模才能知道。
即使能通过修改工艺减少不合理因素的影响,也难保证开发周期和产品质量。
近年来,随着有限元技术和计算机技术的迅速发展,基于数值模拟技术的CAE分析在汽车模具行业中的应用不断深入,尤其是板料成形分析软件(如Autoform、Dynaform和Pam-stamp)的开发和应用[3-4],使冲压模具设计和加工定量化。
因此,加快了冲压工艺方案的确定,最终得到合理的冲压参数,减少对经验的依赖,降低对技术工人的要求。
本文采用Autoform对某汽车覆盖件的拉延过程进行模拟分析。
2 汽车覆盖件拉延过程模拟2.1 汽车覆盖件三维模型及特点以某汽车覆盖件的隔板后构件为研究对象,该产品为汽车内板件,属于细长类的板件,上下法兰边都为搭接面,表面质量要求较高,不允许有起皱、破裂等影响产品质量的缺陷。
材料为汽车覆盖件常用材料JSC270CN,相当于国内材质BLD,厚度为0.55mm,尺寸约为1098*176*50,图1为某汽车的隔板后构件产品图1。
2.2 对产品进行CAE数值模拟分析该产品要经过拉延、修边和冲孔工序,最主要的是拉延工序,其成形情况直接影响到产品的最终质量。
autoform成型命令
Autoform成型命令是在CAD软件中用于创建自动化成型工艺的命令。
通过Autoform成型命令,用户可以快速准确地设计和模拟金属板材的成型过程,以便在实际生产中达到所需的形状和尺寸。
这个命令通常在专业的模具设计和制造领域中得到广泛应用。
Autoform成型命令的主要功能包括:
1. 材料建模,通过指定金属板材的材料类型、厚度和拉伸性能等参数,进行材料的建模和特性分析,以便在成型过程中准确模拟材料的行为。
2. 成型工艺设计,根据产品的设计要求和成型工艺的特点,使用Autoform成型命令可以快速创建成型工艺,包括模具结构、拉延比、模具开口高度等参数的设定。
3. 模拟分析,利用Autoform成型命令可以进行成型过程的虚拟模拟和分析,包括模具闭合力、材料流动、应力分布等方面的计算和评估,以便优化成型工艺和模具设计。
4. 结果输出,Autoform成型命令可以生成成型过程的仿真结
果和报告,包括成型零件的形状、厚度分布、应力应变情况等信息,为实际生产提供参考依据。
除了以上功能,Autoform成型命令还可以与其他CAD/CAM软件
进行集成,实现成型工艺设计和模拟分析的无缝连接,提高生产效
率和产品质量。
总的来说,Autoform成型命令是一种强大的工具,能够帮助用
户快速、准确地设计和模拟金属板材的成型工艺,为实际生产提供
可靠的技术支持。
常见缺陷及解决办法
1.拉延开裂
开裂是拉延工序中最为常见的缺陷之一,其表现为出现破裂或裂纹,产品部分如果出现破裂或者裂纹将被视为不合格产品,所以必须予以解决。
产生开裂的原因大致有:
(1)产品工艺性不好,如R角过小、型面变化剧烈、产品深度较深以及材质成形性能差等。
(2)工艺补充、压边圈的设计不合理。
(3)拉延筋设计不合理,不能很好的控制材料流动。
(4)压边力过大。
(5)模具型面表面粗糙度达不到要求,摩擦阻力大。
(6)模具加工精度差,凸凹模间隙小,板料流动性差。
目前,主要通过改善产品工艺性、设计合理的坯料形状、增加刺破刀、加大R角、合理设计工艺补充及压料面、调整拉延筋阻力及压边力和模面镜面处理等方式来解决拉延开裂问题。
2.起皱
起皱是拉延工序中另一个常见的缺陷,也是很难解决的板件缺陷。
板件发生起皱时,会影响到模具的寿命以及板件的焊接,板件发生叠料时还会使模具不能压合到底,从而成形不出设计的产品形状,同时,由于叠料部位不能进行防锈处理,容易导致板件生锈而影响到板件的使用寿命,给整车安全造成隐患。
目前主要从产品设计及工艺设计上来解决起皱问题,归纳起来有以下几点:
(1)产品设计时尽量避免型面高低落差大、型面截面大小变化剧烈,在不影响板件装配的情况下,在有可能起皱的部位加吸皱包。
(2)工艺上可以考虑增加整形工序。
(3)分模线调整。
随着分模线的调整,往往会伴随着开裂缺陷的产生,目前主要通过使用CAE软件来分析确定合理的分模线位置。
(4)在工艺补充面上增加吸料筋、工艺台阶等,将多余的料消化掉。
(5)合理设计拉延筋,以确保各个方向进料均匀为目标。
(6)当开裂与起皱同时存在,且起皱不被允许时,一般先解决起皱再解决开裂。
AutoForm模拟分析算法
AutoForm模拟分析算法主要有两种:隐式算法和一步成形法。
1.隐式算法
静态隐式算法是解决金属成形问题的一种方法。
在静态隐式算法中,在每一增量步内都需要对静态平衡方程迭代求解。
理论上在这个算法中的增量步可以很大,但是实际运算中要受到接触以及摩擦等条件的限制。
随着单元数目的增加,计算时间几乎呈几何级数增加。
由于需要矩阵求逆以及精确积分,对内存要求很高。
隐式算法的不利方面还有收敛问题不容易得到解决以及当开始起皱失稳时,在分叉点处刚度矩阵出现奇异等。
其中静态隐式算法多配合动态显式算法用于求解成形后的回弹分析。
2.一步成形法
一步法有限元方程利用虚功原理导出,其基本思想是采用反向模拟。
将模拟计算按照与实际成形相反的顺序,从所期望的成形后的工件形状通过计算得出与此相对应的毛坯形状和有关工艺参数。
板材成形过程的变形决定其有利于进行方向模拟。
在冲压成形过程中,成形后的工件为一空间曲面,而板料毛坯为一平板。
以板平面为X-Y坐标平面,整个成形过程中各质点的Z向位移是确定的。
采用有限元计算求解时,节点未知量仅为X和Y方向的位移。
板料成形的方向模拟多采用近似方法,假设变形过程为简单加载过程,用塑性变形的理论进行模拟分析。
在分析的过程中以利用工件形状进行计算,用简化的方法避免了非常麻烦的接触处理。
一步法方向模拟要求输入的数据少,因此可以在概念及初期设计阶段就投入使用,可以预测毛坯形状,整个计算可以很快地求解出结果,因此可以反复调整参数进行计算模拟,对毛坯形状、压边力和拉延筋等进行优化。
3.AutoForm分析流程
分析一个CAD模型的一般步骤是:导入CAD模型(软件自动进行网格划分)、网格检查及空洞填充、确定基准模具、料厚及冲压方式、工具设定、坯料尺寸确定及网格自动划分、材料选择、拉延筋布置、工艺参数设置和分析计算等。
轿车翼子板模拟流程分析
1.导入CAD模型
由于AutoForm曲面处理功能的局限性,对一些曲面问题很难解决,所以有必要在三维CAD软件NX里对工艺数模进行检查,避免出现面交叉、面重叠等曲面问题,同时须提取B曲面,保证工艺数模在导入AutoForm时不出现面丢失、面交叉等缺陷(见图1)。
图1 导入CAD模型
2.网格检查及空洞填充
工艺数模导入之后,AutoForm会自动进行网格划分,可以通过显示网格边界的方式检查网格质量,对于平坦的空洞可以通过自动填充来解决,如果对填充的效果不满意,可以通过改变参数max size值来解决问题,对于边界复杂的空洞,AutoForm填充不能得到理想结果时,需要在NX软件中对数模空洞进行填充。
3.确定分析类型、模具基准、料厚及冲压方式
(1)AutoForm提供了增量法与一步法两种求解方式,对于成形性分析选用incremental增量法能得到更加精确的结果。
(2)根据客户要求,该件生产时所在冲压线首台设备为双动机床,所以本文选择双动拉延方式。
(3)根据客户要求,设定料厚为0.8mm。
(4)根据产品数模给定的料厚基准,选择凹模为几何偏置基准。
4.工具设定
对于拉延分析而言,需设定凹模、凸模和压边圈三个工具,其中凹模处于坯料的下面,凸模、压边圈处于坯料的上部,各工具的工作方向均为工具指向坯料的方向,软件默认Z轴的负方向为冲压方向,工具的工作方向与冲压方向相同时为正值,相反时为负值,如凹模工作方向为凹模指向坯料的方向,即为Z轴负方向,因此凹模工作方向为正值。
凸模与压边圈由凹模网格偏置得到,工作方向为负值。
5.坯料尺寸、材质确定及网格自动划分
AutoForm提供了5种不同的方式来设定坯料的大小:通过画线的方式来得到坯料线轮廓;输入IGS格式的坯料文件;通过中心坐标、长和宽的方式输入坯料尺寸;通过复制现有模型中的线来作为坯料线;通过对模型中的线进行拓展而得到的线作为坯料线(见图2)。
图2 坯料尺寸确定
本次分析所采用的坯料线是由NX软件设计的,通过IGS的方式导入到模型中,材料为特深冲用热镀锌钢板DC54D+Z,该材料耐腐蚀能力强、有良好的力学性能、加工性和焊接性,屈服强度为140~220MPa,抗拉强度为270~350MPa,n值不小于0.18,r值不小于1.6,断后延长率不小于36%。
AutoForm提供了较为完善的材料库,包括中国、日本、欧洲以及美国等常用钢板材料,用户可以新建或者修改现有材料库参数,并且可以通过设置roll angle参数来设置板料的轧制方向。
6.拉延筋布置
在冲压成形中,为了限制板料的流动,需要设置各种形状的拉延筋。
AutoForm中不需要建立实际的拉延筋有限元模型,而是采用一些曲线来模拟拉延筋行为,当板料流过时,施加拉延筋阻力(见图3)。
图3 等效拉延筋
采用这种等效拉延筋后,在分析时可以很方便的调整拉延筋阻力,节省分析时间,分析成功之后再根据相应的拉延筋阻力系数来设计真实拉延筋几何形状。
7.工艺参数设置
这一步主要是对摩擦系数、压边力以及冲压速度等工艺参数进行设置,因为拉延分析为典型的工艺分析,AutoForm有专门针对拉延分析的模版,所以只需要修改一些工艺参数即可,在输出结果的界面选择默认输出结果即可,由于采用虚拟拉延筋分析,默认的板料网格大小以及时间步长大小都可以满足正常分析的需要。
8.分析计算
以上步骤完成以后,可以用动画的形式检查一下工具的运动情况,如果没有问题就可以提交计算,计算的结果文件都保存在*.sim文件中,在计算的过程中随时可以查看计算结果。
9.CAE结果判断
计算完成之后,就可以用后处理打开结果文件,对计算结果进行分析、判定。
(1)料厚减薄评价。
判断准则:单向拉伸区域,减薄超过极限料厚一律视为破裂;单向拉伸区域和双向拉伸区域,减薄超过30%一律视为破裂;双向拉伸区域,减薄在极限料厚和30%之间,查看FLD指示。
对于外覆盖件,需同时评价最大变薄及最小变薄,将料厚减薄云图的刻度设置为-0.3~0.02,用不同颜色来显示,最大减薄为-0.283,产品部分的最小变薄率大于0.02。
本文所例产品料厚减薄情况如图4所示。
图4 料厚减薄
(2)成形极限图。
成形极限图刻度如图5所示,可以看出双向拉伸区域有黄色,说明有开裂的趋势,但离极限曲线还有一定安全量。
图5 成形极限
(3)主应变和副应变评价。
通过主应变和副应变来评价拉延质量,在产品内基本都属于双向拉伸状态,拉延质量良好,副应变和主应变变化情况如图6、7所示。
图6 副应变变化
图7 主应变变化
(4)滑移线评价。
外板件要求在可见区域内无滑移线,本分析显示滑移量很小,能满足要求(见图8)。
图8 滑移线显示
10.实际板件拉延情况
随着CAE技术以及计算机技术的发展,CAE的计算精度也越来越能反映出真实情况,本文利用AutoForm 对汽车翼子板进行拉延分析,分析结果显示拉延有开裂的趋势,无起皱、滑移线等缺陷,实际情况为拉延一次成功,无缺陷,CAE与实际情况符合较好。