平面内点的坐标.1平面内点的坐标课件
- 格式:ppt
- 大小:633.50 KB
- 文档页数:11
平面内点的坐标知识点总结 1、平面直角坐标系定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
水平的数轴叫做X 轴或横轴,取向右为正方向;垂直的数轴叫做Y 轴或纵轴,取向 上为正方向;两轴交点O 为原点。
点的坐标:对于坐标平面内的任意一点P ,过点p 向x 轴作垂线,垂足在x 轴上的坐标为p x ,则p x 叫做点p 的横坐标,过点p 向y 轴作垂线,垂轴在y 上的坐标为py ,则py 叫做点p 纵坐标。
点p 的坐标记为点(),p p p x y 。
注意(1)坐标平面内的点和有序实数对是一一对应的;(2)表示点的坐标的两个数是有顺序的,当a b ≠时,点(),p a b 与(),Q a b 表示两个不同的点。
2、坐标平面内点的坐标特点 (1)各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0,y >0; 第二象限:(-,+) 点P (x,y ),则x <0,y >0; 第三象限:(-,-) 点P (x,y ),则x <0,y <0; 第四象限:(+,-) 点P (x,y ),则x >0,y <0; 在x 轴上:(x,0) 点P (x,y ),则y =0;在x 轴的正半轴:(+,0) 点P (x,y ),则x >0,y =0;在x轴的负半轴:(-,0)点P(x,y),则x<0,y=0;在y轴上:(0,y)点P(x,y),则x=0;在y轴的正半轴:(0,+)点P(x,y),则x=0,y>0;在y轴的负半轴:(0,-)点P(x,y),则x=0,y<0;坐标原点:(0,0)点P(x,y),则x=0,y=0;(2)与x轴,y轴平行的直线上的点的坐标特点点(),a b不与原点重合,过(),a b点与x轴平行的直线上的点的纵坐标都是b,这条直线可表示为y b=;过(),a b点与y轴平行的直线上的点的横坐标都是a,这条直线可表示为x a=;反之也成立。
(3)点()p x y到x轴的距离为y,到y轴的距离为x。