16第十六讲(叠加法计算梁的位移)
- 格式:ppt
- 大小:3.27 MB
- 文档页数:14
第六章 梁的位移及简单超静定梁内容提要一、平面弯曲时梁的变形与位移Ⅰ、梁的变形1. 挠曲线 平面弯曲时,梁的轴线弯曲成位于形心主惯性平面内的一条光滑连续的平面曲线,称为挠曲线,如图6-1中的11AC B 。
2. 弯曲变形 以挠曲线(中性层)的曲率表示梁弯曲变形程度,曲率与弯矩间的关系为()()1zM x x EI ρ=-(6—1) 式中,()M x 为弯矩,z EI 为梁的弯曲刚度,(6-1)式右端的负号,是因为在图(6-1)所示坐标系中,y 向下为正,挠曲向上凸时曲率正,于是正弯矩产生负曲率,负弯矩产生正曲率。
(6-1)是在小变形,线弹性的条件下导出的,纯弯曲时,弯矩为常量,曲率为常量,挠曲线为一段圆弧线。
横力弯曲时,不计剪力对变形的影响,曲率和弯矩均为x 的函数,曲率与弯矩成正比。
Ⅱ、梁的位移1. 挠度 横截面在垂直于原轴线方向的位移,称为挠度,用w 表示。
表示挠度随横截面位置x 变化规律的方程为挠度(或挠曲线)方程 在图6-1所示坐标系中,w 向下为正,向上为负。
2. 转角 横截面相对于其原方位的角位移,称为转角,用θ表示。
在一般细长梁中,不计剪力对变形的影响,变形后的横截面仍保持为平面,且垂直于梁的挠曲线,于是转角θ也为x 轴与挠曲线在该点的切线之间的夹角。
(图6-1),在图6-1所坐标系中,θ以顺时针转向为正,反之为负。
在小变形的情况下,转角θ等于挠曲线在该点处的斜率,即 Ⅲ、变形与位移变形与位移是两个不同的概念,但它们又互相联系。
梁的变形(曲率)仅取决于弯矩和梁的弯曲刚度的大小,位移不仅取决于弯矩和梁的弯曲刚度,还与梁的约束条件有关。
二、挠曲线的近似微分方程及其积分Ⅰ、挠曲线的近似微分方程平面曲线在直角坐标系中曲率公式为在小变形时,()211w x '+≈,于是将此式代入(6-1)式,得到线弹性范围内,小变形情况挠曲线的近似微分方程为()()M x w x EI''=-()()EIw x M x ''=-或 (6—2) Ⅱ、通过积分求梁的位移等直梁弯矩不需分段列出时,将(6-2)式积分一次得 再积分一次得式中,1C 和2C 为积分常数,由梁的位移边界条件确定。