第3课时 简单的逻辑联结词、全称量词与存在量词
- 格式:doc
- 大小:470.50 KB
- 文档页数:6
第三节简单的逻辑联结词、全称量词与存在量词[知识能否忆起]一、简单的逻辑联结词1.用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.2.用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作“非p”或“p的否定”.4.命题p∧q,p∨q,綈p的真假判断:p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.二、全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为∃x0∈M,P(x0),读作“存在M中的元素x0,使p(x0)成立”.三、含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)∃x0∈M,綈p(x0)∃x0∈M,p(x0)∀x∈M,綈p(x)1.(2011·高考)若p是真命题,q是假命题,则( )A.p∧q是真命题B.p∨q是假命题C.綈p是真命题D.綈q是真命题答案:D2.(教材习题改编)下列命题中的假命题是( )A.∃x0∈R,x0+1x0=2 B.∃x0∈R,sin x0=-1C.∀x∈R,x2>0 D.∀x∈R,2x>0答案:C3.(2012·高考)命题“∃x0∈∁R Q,x30∈Q”的否定是( )A.∃x0∉∁R Q,x30∈Q B.∃x0∈∁R Q,x30∉QC.∀x∉∁R Q,x3∈Q D.∀x∈∁R Q,x3∉Q解析:选D 其否定为∀x∈∁R Q,x3∉Q.4.(教材习题改编)命题p:有的三角形是等边三角形.命题綈p:__________________.答案:所有的三角形都不是等边三角形5.命题“∃x0∈R,2x20-3ax0+9<0”为假命题,则实数a的取值围为________.解析:∃x0∈R,2x20-3ax0+9<0为假命题,则∀x∈R,2x2-3ax+9≥0恒成立,有Δ=9a2-72≤0,解得-22≤a≤2 2.答案:[-22,2 2 ]1.逻辑联结词与集合的关系“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题. 2.正确区别命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.含有逻辑联结词命题的真假判定典题导入[例1] (2012·质检)已知命题p:∃x0∈R,使tan x0=1,命题q:x2-3x+2<0的解集是{x|1<x<2},给出下列结论:①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是假命题.其中正确的是( )A.②③B.①②④C.①③④D.①②③④[自主解答] 命题p:∃x0∈R,使tan x0=1是真命题,命题q:x2-3x+2<0的解集是{x|1<x<2}也是真命题,故①命题“p∧q”是真命题;②命题“p∧(綈q)”是假命题;③命题“(綈p)∨q”是真命题;④命题“(綈p)∨(綈q)”是假命题.[答案] D由题悟法1.“p∧q”“p∨q”“綈p”形式命题的真假判断步骤(1)准确判断简单命题p、q的真假;(2)判断“p∧q”“p∨q”“綈p”命题的真假.2.含有逻辑联结词的命题的真假判断规律(1)p∨q:p、q中有一个为真,则p∨q为真,即一真全真;(2)p∧q:p、q中有一个为假,则p∧q为假,即一假即假;(3)綈p:与p的真假相反,即一真一假,真假相反.以题试法1.(1)如果命题“非p或非q”是假命题,给出下列四个结论:①命题“p且q”是真命题;②命题“p且q”是假命题;③命题“p或q”是真命题;④命题“p或q”是假命题.其中正确的结论是( )A.①③B.②④C.②③D.①④(2)(2012·盟校联考)已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x∈R,x2+4x +a=0”,若命题“p∧q”是真命题,则实数a的取值围是( )A.(4,+∞) B.[1,4]C.[e,4] D.(-∞,1]解析:(1)选A “非p或非q”是假命题⇒“非p”与“非q”均为假命题⇒p与q均为真命题.(2)选C “p∧q”是真命题,则p与q都是真命题.p真则∀x∈[0,1],a≥e x,需a≥e;q真则x2+4x+a=0有解,需Δ=16-4a≥0,所以a≤4.p∧q为真,则e≤a≤4.全称命题与特称命题的真假判断典题导入[例2] 下列命题中的假命题是( ) A .∀a ,b ∈R ,a n =an +b ,有{a n }是等差数列 B .∃x 0∈(-∞,0),2x 0<3x 0 C .∀x ∈R,3x≠0 D .∃x 0∈R ,lg x 0=0[自主解答] 对于A ,a n +1-a n =a (n +1)+b -(an +b )=a 常数.A 正确;对于B ,∀x ∈(-∞,0),2x >3x ,B 不正确;对于C ,易知3x≠0,因此C 正确;对于D ,注意到lg 1=0,因此D 正确.[答案] B由题悟法1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p (x )成立;(2)要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p (x 0)不成立即可.2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p (x 0)成立即可,否则这一特称命题就是假命题.以题试法2.(2012·十二校联考)下列命题中的真命题是( ) A .∃x 0∈R ,使得sin x 0cos x 0=35B .∃x 0∈(-∞,0),2x 0>1C .∀x ∈R ,x 2≥x -1D .∀x ∈(0,π),sin x >cos x解析:选C 由sin x cos x =35,得sin 2x =65>1,故A 错误;结合指数函数和三角函数的图象,可知B ,D 错误;因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,所以C 正确.全称命题与特称命题的否定典题导入[例3] (2013·适应性训练)命题“所有不能被2整除的整数都是奇数”的否定是( )A.所有能被2整除的整数都是奇数B.所有不能被2整除的整数都不是奇数C.存在一个能被2整除的整数是奇数D.存在一个不能被2整除的整数不是奇数[自主解答] 命题“所有不能被2整除的整数都是奇数”的否定是“存在一个不能被2整除的整数不是奇数”,选D.[答案] D若命题改为“存在一个能被2整除的整数是奇数”,其否定为________.答案:所有能被2整除的整数都不是奇数由题悟法1.弄清命题是全称命题还是特称命题是写出命题否定的前提.2.注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定.3.要判断“綈p”命题的真假,可以直接判断,也可以判断“p”的真假,p与綈p的真假相反.4.常见词语的否定形式有:原语句是都是>至少有一个至多有一个对任意x∈A使p(x)真否定形式不是不都是≤一个也没有至少有两个存在x0∈A使p(x0)假以题试法3.(2012·高考)已知命题p:∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则綈p是( ) A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0B.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0解析:选C 命题p的否定为“∃x1,x2∈R,(f(x2)-f( x1))(x2-x1)<0”.1.将a 2+b 2+2ab =(a +b )2改写成全称命题是( ) A .∃a ,b ∈R ,a 2+b 2+2ab =(a +b )2B .∃a <0,b >0,a 2+b 2+2ab =(a +b )2C .∀a >0,b >0,a 2+b 2+2ab =(a +b )2D .∀a ,b ∈R ,a 2+b 2+2ab =(a +b )2解析:选D 全称命题含有量词“∀”,故排除A 、B ,又等式a 2+b 2+2ab =(a +b )2对于全体实数都成立,故选D.2.(2012·高考)设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x的图象关于直线x =π2对称.则下列判断正确的是( )A .p 为真B .q 为真C .p ∧q 为假D .p ∨q 为真解析:选C 命题p ,q 均为假命题,故p ∧q 为假命题.3.(2013·模拟)已知命题p :所有有理数都是实数,命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .(綈p )∨qB .p ∧qC .(綈p )∧(綈q )D .(綈p )∨(綈q )解析:选D 不难判断命题p 为真命题,命题q 为假命题,所以綈p 为假命题,綈q 为真命题,所以(綈p )∨(綈q )为真命题.4.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数 B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数 C .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )`都是偶函数 D .∀m ∈R ,函数f (x )=x 2+mx (x ∈R )都是奇函数解析:选A 由于当m =0时,函数f (x )=x 2+mx =x 2为偶函数,故“∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )为偶函数”是真命题.5.(2012·高考)下列命题中,真命题是( ) A .∃x 0∈R ,e x 0≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b=-1 D .a >1,b >1是ab >1的充分条件解析:选D 因为∀x ∈R ,e x>0,故排除A ;取x =2,则22=22,故排除B ;a +b =0,取a =b =0,则不能推出a b=-1,故排除C.6.(2012·质检)已知命题p 1:∃x 0∈R ,x 20+x 0+1<0;p 2:∀x ∈[1,2],x 2-1≥0.以下命题为真命题的是( )A .(綈p 1)∧(綈p 2)B .p 1∨(綈p 2)C .(綈p 1)∧p 2D .p 1∧p 2解析:选C ∵方程x 2+x +1=0的判别式Δ=12-4=-3<0,∴x 2+x +1<0无解,故命题p 1为假命题,綈p 1为真命题;由x 2-1≥0,得x ≥1或x ≤-1,∴∀x ∈[1,2],x 2-1≥0,故命题p 2为真命题,綈p 2为假命题.∵綈p 1为真命题,p 2为真命题,∴(綈p 1)∧p 2为真命题.7.(2012·“江南十校”联考)下列说法中错误的是( )A .对于命题p :∃x 0∈R ,使得x 0+1x 0>2,则綈p :∀x ∈R ,均有x +1x≤2B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0” D .若p ∧q 为假命题,则p ,q 均为假命题解析:选D 显然选项A 正确;对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确;对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确;对于D ,若p ∧q 为假命题,则p ,q 中至少有一个为假命题,故选项D 错误.8.(2013·模拟)已知命题p :∀x ∈[1,2],x 2-a ≥0,命题q :∃x 0∈R ,x 20+2ax 0+2-a =0,若“p 且q ”为真命题,则实数a 的取值围是( )A .a =1或a ≤-2B .a ≤-2或1≤a ≤2C .a ≥1D .-2≤a ≤1解析:选A 若命题p :∀x ∈[1,2],x 2-a ≥0真,则a ≤1.若命题q :∃x 0∈R ,x 20+2ax 0+2-a =0真,则Δ=4a 2-4(2-a )≥0,a ≥1或a ≤-2,又p 且q 为真命题所以a =1或a ≤-2.9.命题“存在x 0∈R ,使得x 20+2x 0+5=0”的否定是________. 答案:对任何x ∈R ,都有x 2+2x +5≠010.已知命题p :“∀x ∈N *,x >1x”,命题p 的否定为命题q ,则q 是“________”;q的真假为________(填“真”或“假”).解析:q :∃x 0∈N *,x 0≤1x 0,当x 0=1时,x 0=1x 0成立,故q 为真.答案:∃x 0∈N *,x 0≤1x 0真11.若命题“存在实数x 0,使x 20+ax 0+1<0”的否定是假命题,则实数a 的取值围为________.解析:由于命题的否定是假命题,所以原命题为真命题,结合图象知Δ=a 2-4>0,解得a >2或a <-2.答案:(-∞,-2)∪(2,+∞)12.若∃θ∈R ,使sin θ≥1成立,则cos ⎝ ⎛⎭⎪⎫θ-π6的值为________. 解析:由题意得sin θ-1≥0.又-1≤sin θ≤1,∴sin θ=1. ∴θ=2k π+π2(k ∈Z ).故cos ⎝ ⎛⎭⎪⎫θ-π6=12.答案:1213.已知命题p :∃a 0∈R ,曲线x 2+y 2a 0=1为双曲线;命题q :x -1x -2≤0的解集是{x |1<x <2}.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧(綈q )”是真命题;③命题“(綈p )∨q ”是真命题;④命题“(綈p )∨(綈q )”是真命题.其中正确的是________.解析:因为命题p 是真命题,命题q 是假命题,所以命题“p ∧q ”是假命题,命题“p ∧(綈q )”是真命题,命题“(綈p )∨q ”是假命题,命题“(綈p )∨(綈q )”是真命题.答案:②④ 14.下列结论:①若命题p :∃x 0∈R ,tan x 0=2;命题q :∀x ∈R ,x 2-x +12>0.则命题“p ∧(綈q )”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b=-3; ③“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”.其中正确结论的序号为________.(把你认为正确结论的序号都填上)解析:在①中,命题p 是真命题,命题q 也是真命题,故“p ∧(綈q )”是假命题是正确的.在②中l 1⊥l 2⇔a +3b =0,所以②不正确.在③中“设a 、b ∈R ,若ab ≥2,则a 2+b 2>4”的否命题为:“设a 、b ∈R ,若ab <2,则a 2+b 2≤4”正确.答案:①③1.下列说法错误的是( )A .如果命题“綈p ”与命题“p 或q ”都是真命题,那么命题q 一定是真命题B .命题“若a =0,则ab =0”的否命题是:若“a ≠0,则ab ≠0”C .若命题p :∃x 0∈R ,ln(x 20+1)<0,则綈p :∀x ∈R ,ln(x 2+1)≥0 D .“sin θ=12”是“θ=30°”的充分不必要条件解析:选D sin θ=12是θ=30°的必要不充分条件,故选D.2.(2012·“江南十校”联考)命题p :若a ·b >0,则a 与b 的夹角为锐角;命题q :若函数f (x )在(-∞,0]及(0,+∞)上都是减函数,则f (x )在(-∞,+∞)上是减函数.下列说法中正确的是( )A .“p 或q ”是真命题B .“p 或q ”是假命题C .綈p 为假命题D .綈q 为假命题解析:选B ∵当a ·b >0时,a 与b 的夹角为锐角或零度角,∴命题p 是假命题;命题q 是假命题,例如f (x )=⎩⎪⎨⎪⎧-x +1,x ≤0,-x +2,x >0,综上可知,“p 或q ”是假命题.3.已知命题p :“∃x 0∈R,4x 0-2x 0+1+m =0”,若命题綈p 是假命题,则实数m 的取值围是________.解析:若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x+m =0有实数解,由于m =-(4x-2·2x)=-(2x-1)2+1≤1,∴m ≤1.答案:(-∞,1] 4.下列四个命题:①∃x 0∈R ,使sin x 0+cos x 0=2;②对∀x ∈R ,sin x +1sin x ≥2;③对∀x ∈⎝ ⎛⎭⎪⎫0,π2,tan x +1tan x≥2;④∃x 0∈R ,使sin x 0+cos x 0= 2.其中正确命题的序号为________.解析:∵sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈[-2, 2 ];故①∃x 0∈R ,使sin x 0+cos x 0=2错误; ④∃x 0∈R ,使sin x 0+cos x 0=2正确; ∵sin x +1sin x ≥2或sin x +1sin x ≤-2,故②对∀x ∈R ,sin x +1sin x≥2错误;③对∀x ∈⎝ ⎛⎭⎪⎫0,π2,tan x >0,1tan x >0,由基本不等式可得tan x +1tan x ≥2正确.答案:③④5.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,数x 的取值围; (2)綈p 是綈q 的充分不必要条件,数a 的取值围. 解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0. 又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0,解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2,即2<x ≤3.所以q 为真时,2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值围是(2,3).(2)设A ={x |x ≤a ,或x ≥3a },B ={x |x ≤2,或x >3}, 因为綈p 是綈q 的充分不必要条件, 所以A B .所以0<a ≤2且3a >3,即1<a ≤2. 所以实数a 的取值围是(1,2].6.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p ∨q ”是假命题,求a 的取值围.解:由2x 2+ax -a 2=0,得(2x -a )(x +a )=0, ∴x =a2或x =-a ,∴当命题p 为真命题时,⎪⎪⎪⎪⎪⎪a 2≤1或|-a |≤1, ∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”, 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点, ∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p ∨q ”为真命题时,|a |≤2.∵命题“p ∨q ”为假命题,∴a >2或a <-2.即a 的取值围为{ a |}a >2,或a <-2.1.(2012·模拟)有下列四个命题:p 1:若a ·b =0,则一定有a ⊥b ;p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y ;p 3:∀a ∈(0,1)∪(1,+∞),函数f (x )=a 1-2x +1都恒过定点⎝ ⎛⎭⎪⎫12,2; p 4:方程x 2+y 2+Dx +Ey +F =0表示圆的充要条件是D 2+E 2-4F ≥0.其中假命题的是( )A .p 1,p 4B .p 2,p 3C .p 1,p 3D .p 2,p 4 解析:选A 对于p 1:∵a ·b =0⇔a =0或b =0或a ⊥b ,当a =0,则a 方向任意,a ,b 不一定垂直,故p 1假,否定B 、D ,又p 3显然为真,否定C.2.若命题p :关于x 的不等式ax +b >0的解集是⎩⎨⎧⎭⎬⎫xx >-b a ,命题q :关于x 的不等式(x -a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”“p ∨q ”“綈p ”“綈q ”中,是真命题的有________.解析:依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“綈p ”为真、“綈q ”为真.答案:綈p ,綈q3.已知p :方程x 2+mx +1=0有两个不等的负根;q :方程4x 2+4(m -2)x +1=0无实根.若p 或q 为真,p 且q 为假,求m 的取值围.解:若方程x 2+mx +1=0有两个不等的负根x 1,x 2, 则⎩⎪⎨⎪⎧Δ>0,x 1+x 2<0,x 1x 2>0,即⎩⎪⎨⎪⎧ Δ=m 2-4>0,m >0. 解得m >2,即p :m >2. 若方程4x 2+4(m -2)x +1=0无实根, 则Δ=16(m -2)2-16=16(m 2-4m +3)<0.解得1<m <3,即q :1<m <3.∵p 或q 为真,p 且q 为假,∴p 、q 两命题应一真一假,即p 为真、q 为假或p 为假、q 为真. ∴⎩⎪⎨⎪⎧ m >2,m ≤1或m ≥3或⎩⎪⎨⎪⎧ m ≤2,1<m <3.解得m ≥3或1<m ≤2.∴m 的取值围是(1,2]∪[3,+∞).。
简单的逻辑联结词、全称量词与存在量词讲义一、知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.二、基础检验题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.()(2)命题p和綈p不可能都是真命题.()(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.()(4)“全等三角形的面积相等”是特称命题.()(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.()题组二:教材改编2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为()A.1 B.2 C.3 D.43.命题“正方形都是矩形”的否定是____________________.题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列命题中的假命题是()A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>06.已知命题p:∀x∈R,x2-a≥0;命题p:∃x0∈R,x20+2ax0+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.三、典型例题题型一:含有逻辑联结词的命题的真假判断1.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中的真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)2.已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.其中,正确的是________.(填序号)思维升华:“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.题型二:含有一个量词的命题命题点1:全称命题、特称命题的真假典例下列四个命题:p 1:∃x 0∈(0,+∞),0011()()23x x <; p 2:∃x 0∈(0,1),101023log log x x >;p 3:∀x ∈(0,+∞),x )21(>12log x ; p 4:∀x ∈)310(,,x)21(<13log x .其中真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,x)31(>0”的否定是( ) A .∃x 0∈R ,01()3x <0 B .∀x ∈R ,x)31(≤0 C .∀x ∈R ,x)31(<0D .∃x 0∈R ,01()3x ≤0.(2)命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( )A .∀x ∈R ,1<f (x )≤2B .∃x 0∈R ,1<f (x 0)≤2C .∃x 0∈R ,f (x 0)≤1或f (x 0)>2D .∀x ∈R ,f (x )≤1或f (x )>2思维升华:(1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是( ) A .∃α,β∈R ,使cos(α+β)=cos α+cos β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点(2)已知命题p :“∃x 0∈R ,0e x -x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x -x 0-1≥0 B .∃x 0∈R ,0e x -x 0-1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________.(2)已知f (x )=ln(x 2+1),g (x )=x)21(-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是___________. 思维升华:(1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)(2)(2017·洛阳模拟)已知p :∀x ∈]2141[,,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p且q ”为真命题,则实数m 的取值范围是__________..四、高频考点一、命题的真假判断典例1(1)(已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )二、充要条件的判断典例2 (1)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 (2)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件三、求参数的取值范围典例3(1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x 0∈R ,x 20+4x 0+a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈]3,21[,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是________.五、反馈练习1.命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧(綈q ) C .(綈p )∧qD .p ∧(綈q )2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假D .p ∨q 为真3.下列命题中为假命题的是( ) A .∀x ∈)2,0(,x >sin x B .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R ,3x >0D .∃x 0∈R ,lg x 0=04.若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( ) A .∀x ∈R ,f (-x )≠f (x ) B .∀x ∈R ,f (-x )=-f (x ) C .∃x 0∈R ,f (-x 0)≠f (x 0) D .∃x 0∈R ,f (-x 0)=-f (x 0)5.设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(綈q )B .(綈p )∧qC .p ∧qD .(綈p )∨q6.已知命题p :∃x 0∈R ,cos x 0=54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧(綈q )是真命题C .命题(綈p )∧q 是真命题D .命题(綈p )∨(綈q )是假命题 7.下列命题中,真命题是( )A .∃x 0∈R ,0e x ≤0B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是ab =-1 D .“a >1,b >1”是“ab >1”的充分条件8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为____________________.10.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________. 11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x 0∈Q ,x 20=2;③∃x 0∈R ,x 20+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.12.已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________.13.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是___.14.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(綈q )”是假命题; ②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.15.已知命题p :∃x 0∈R ,0e x-mx 0=0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是____.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2).(1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.。
考点三简单的逻辑联结词、全称量词与存在量词知识梳理1.简单的逻辑联结词(1) 逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联接词.(2) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(3) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(4) 一个命题p的否定记作¬p,读作“非p”或“p的否定”.2.复合命题及其真假判断(1) 复合命题:由简单命题再加上一些逻辑联结词构成的命题叫复合命题.(2) 复合命题p∧q,p∨q,非p以及其真假判断:简记为:p∧q中p、q有假则假,同真则真;p∨q有真为真,同假则假;p与¬p必定是一真一假.3. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,都有p(x)成立”可用符号简记为∀x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为∃x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.4. 含有一个量词的命题的否定 "x ∈M ,p (x )典例剖析题型一 含有一个量词的命题的否定例1 命题“存在一个无理数,它的平方是有理数”的否定是( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数变式训练 设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :任意x ∈A,2x ∈B ,则( )A .Øp :任意x ∈A,2x ∉B B .Øp :任意x ∉A,2x ∉BC .Øp :存在x ∉A,2x ∈BD .Øp :存在x ∈A,2x ∉B题型二 复合命题真假判断例2 下列命题中的假命题是( )A .存在x ∈R ,sin x =52B .存在x ∈R ,log 2x =1C .任意x ∈R ,(12)x >0 D .任意x ∈R ,x 2≥0 变式训练 已知命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( )A .p ∧qB .Øp ∧ØqC .Øp ∧qD .p ∧Øq题型三 由命题真假求参数范围例3 命题“存在x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值范围为________. 变式训练 已知命题p :“任意x ∈[1,2],x 2-a ≥0”,命题q :“存在x ∈R ,使x 2+2ax +2-a =0”,若命题“p 且q ”是真命题,则实数a 的取值范围是________.当堂练习1. 命题“对任意x ∈R ,都有20x ≥”的否定为( )A .对任意x ∈R ,使得20x <B .不存在x ∈R ,使得20x <C .存在0x ∈R ,都有200x ≥D .存在0x ∈R ,都有200x <2.若p,q是两个简单命题,且“p或q”是假命题,则必有()A.p真q真B.p真q假C.p假q假D.p假q真3.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数,则下列命题中为真命题的是()A.¬p或q B.p且q C.¬p且¬q D.¬p或¬q4.已知p:2+2=5,q:3>2,则下列判断正确的是()A.“p或q”为假,“¬q”为假B.“p或q”为真,“¬q”为假C.“p且q”为假,“¬p”为假D.“p且q”为真,“p或q”为假5.已知命题p:若x>y,则-x<-y,命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是.课后作业一、选择题1.命题“对任意的x∈R,x3-x2+1≤0”的否定是()A.不存在x∈R,x3-x2+1≤0 B.存在x∈R,x3-x2+1≤0C.存在x∈R,x3-x2+1>0 D.对任意的x∈R,x3-x2+1>02.下列命题中正确的是()A.若p∨q为真命题,则p∧q为真命题B.“x=5”是“x2-4x-5=0”的充分不必要条件C.命题“若x<-1,则x2-2x-3>0”的否定为:“若x≥-1,则x2-2x-3≤0”D.已知命题p:∃x∈R,x2+x-1<0,则¬p:∃x∈R,x2+x-1≥03.已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件.则下列命题为真命题的是()A.p∧q B.¬p∧¬q C.¬p∧q D.p∧¬q4.已知命题p:∃x0∈R,x20+2x0+2≤0,则¬p为()A.∃x0∈R,x20+2x0+2>0 B.∃x0∈R,x20+2x0+2<0C.∀x∈R,x2+2x+2≤0 D.∀x∈R,x2+2x+2>05.对于下述两个命题p:对角线互相垂直的四边形是菱形;q:对角线互相平分的四边形是菱形.则命题“p∨q”、“p∧q”、“¬p”中真命题的个数为()A.0 B.1 C.2 D.36.下列命题中的假命题是()A. ∀x∈R,2x-1>0B. ∀x∈N*,(x-1)2>0C. ∃x∈R,lg x<1D. ∃x∈R,tan x=2 7.若命题“∃x0∈R,使得x20+mx0+2m-3<0”为假命题,则实数m的取值范围是()A.[2,6] B.[-6,-2] C.(2,6) D.(-6,-2)8.已知命题p:∀x∈R,2x2-2x+1≤0,命题q:∃x∈R,使sin x+cos x=2,则下列判断:①p且q是真命题;②p或q是真命题;③q是假命题;④非p是真命题其中正确的是()A.①④B.②③C.③④D.②④二、填空题9.命题“$x∈R,|x|≤0”的否定是“________________”.10.若命题“∃x∈R使x2+2x+m≤0”是假命题,则m的取值范围是_____________.11.命题:“对任意k>0,方程x2+x-k=0有实根”的否定是________.12.命题“任意两个等边三角形都相似”的否定为___________________.13.若命题“∀x∈R,ax2-ax-2≤0”是真命题,则实数a的取值范围是________.。
第三节简单的逻辑连接词、全称量词与存在量词考纲分析1.了解逻辑联结词“或”“且”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.高频考点1. 含有一个量词的命题的否定;2. 真值表的利用数学思想与方法分类讨论思想的运用、逻辑推理能力的提高高考出题分值5分基础知识1.逻辑联结词(1)用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2)用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3)对一个命题p全盘否定,就得到一个新命题,记作⌝p,读作“非p”或“p的否定”.(4)命题p且q、p或q、非p的真假判断2.全称量词与存在量词1.全称量词与全称命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题,叫做全称命题.(3)全称命题“对M中任意一个x,有p(x)成立”可用符号简记为,()x M p x∀∈,读作“对任意x属于M,有p(x)成立”.2.存在量词与特称命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做特称命题.(3)特称命题“存在M中的一个x0,使p(x0)成立”可用符号简记为00,()x M p x∃∈,读作“存在M中的元素x0,使p(x0)成立”.3.全称命题与特称命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)“p或q”的否定为:“非p且非q”;“p且q”的否定为:“非p或非q”.(3)含有一个量词的命题的否定题型分类题型一含有逻辑联结词的命题1.【2017届山东青岛二模】已知命题,p q ,“p ⌝为假”是“p q ∨为真”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件2.已知命题p :若x>y ,则-x<-y ;命题q :若x>y ,则x 2>y 2.在命题①p ∧q ;②p ∨p ;③p ∧(¬q);④(¬p)∨q 中,真命题是( ) A .①③ B .①④ C .②③ D .②④ 【领悟技法】1.逻辑联结词与集合的关系:“或、且、非”三个逻辑联结词,对应着集合运算中的“并、交、补”,因此,常常借助集合的“并、交、补”的意义来解答由“或、且、非”三个联结词构成的命题问题.2.“p ∨q”“p ∧q”“⌝p”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p 、q 的真假;(3)确定“p ∧q”“p ∨q”“⌝p”形式命题的真假.3.含逻辑联结词命题真假的等价关系(1)p ∨q 真⇔p,q 至少一个真⇔(⌝p)∧(⌝q)假.(2)p ∨q 假⇔p,q 均假⇔(⌝p)∧(⌝q)真. (3)p ∧q 真⇔p,q 均真⇔(⌝p)∨(⌝q)假. (4)p ∧q 假⇔p,q 至少一个假⇔(⌝p)∨(⌝q)真.(5)⌝p 真⇔p 假; ⌝p 假⇔p 真.4.命题p 且q 、p 或q 、非p 的真假判断规律:p ∧q 中p 、q 有一假为假,p ∨q 有一真为真,p 与非p 必定是一真一假.题型二全称命题与特称命题的真假判断 1.【2017届安徽安庆二模】设命题()0:0,p x ∃∈+∞,013x x +>;命题q :()2,x ∀∈+∞,22xx >,则下列命题为真的是( )A. ()p q ∧⌝B. ()p q ⌝∧C. p q ∧D. ()p q ⌝∨2.已知命题2:4,log 2p x x ∀≥≥;命题:q 在ABC ∆中,若3A π>,则sin A >.则下列命题为真命题的是( )A .p q ∧B .()p q ∧⌝C .()()p q ⌝∧⌝D .()p q ⌝∨ 【领悟技法】1.全称命题真假的判断方法(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,证明p(x)成立; (2)要判断一个全称命题是假命题,只要能举出集合M 中的一个特殊值x =x 0,使p(x 0)不成立即可.2.特称命题真假的判断方法要判断一个特称命题是真命题,只要在限定的集合M 中,找到一个x =x 0,使p(x 0)成立即可,否则这一特称命题就是假命题.3. 不管是全称命题,还是特称命题,若其真假不容易正面判断时,可先判断其否定的真假.1.命题“所有实数的平方是非负实数”的否定是( )(A )所有实数的平方是负实数(B )不存在一个实数,它的平方是负实数 (C )存在一个实数,它的平方是负实数 (D )不存在一个实数它的平方是非负实数 2已知命题3:2,80p x x ∀>->,那么p ⌝是( )A.32,80x x ∀≤-≤ B .32,80x x ∃>-≤ C .32,80x x ∀>-≤ D .32,80x x ∃≤-≤ 【领悟技法】1.命题的否定与否命题的区别:“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.2.弄清命题是全称命题还是特称命题是写出命题否定的前提.3.注意命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定.4.要判断“⌝p”命题的真假,可以直接判断,也可以判断“p”的真假,p 与⌝p 的真假相反. 5.常见词语的否定形式有: ≤ 一个也没有至少有两个1.【2017山东,文5】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a<b.下列命题为真命题的是A .p q ∧ B.p q ∧⌝ C.p q ⌝∧ D.p q ⌝∧⌝ 模拟练习1.【2017陕西师范附属二模】若命题:p 对任意的x R ∈,都有3210x x -+<,则p ⌝为( )A. 不存在x R ∈,使得3210x x -+< B. 存在x R ∈,使得3210x x -+<C. 对任意的x R ∈,都有3210x x -+≥ D.存在x R ∈,使得3210x x -+≥2. 【1-2】【2017届安徽蚌埠二模】在射击训练中 ,某战士射击了两次 ,设命题p 是“ 第一次射击击中目标”,命题q 是“ 第二次射击击中目标 ”,则命题“两次射击中至少有一次没有击中目标”为真命题的充要条件是 ( ) A. ()()p q ⌝∨⌝ 为真命题 B. ()p q ∨⌝ 为真命题 C. ()()p q ⌝∧⌝ 为真命题D. p q ∨ 为真命题3. 【1-4】已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数.若p 或q 是真命题,p 且q 是假命题,则实数a 的取值范围是( ) A .(-12,-4]∪[4,+∞) B .[-12,-4]∪[4,+∞) C .(-∞,-12)∪(-4,4) D .[-12,+∞)每日一练1、函数的定义域为 。
第3课时简单的逻辑联结词、全称量词与存在量词1.了解逻辑联结词“或”、“且”、“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.【知识梳理】1.简单的逻辑联结词(1)命题中的、、叫做逻辑联结词.(2)命题p且q,p或q,非p的真假判断2.(1)全称量词:短语“所有的”、“”在逻辑中通常叫做全称量词,用“∀”表示;含有全称量词的命题叫做.(2)存在量词:短语“存在一个”、“”在逻辑中通常叫做存在量词,用“∃”表示;含有存在量词的命题叫做.3.含有一个量词的命题的否定考向一 含有逻辑联结词命题的真假判断1.已知命题p :存在实数x ,使sin x =π2成立;命题q :x 2-3x +2<0的解集为(1,2).给出下列四个结论:①命题“p ∧q ”是真命题;②命题“p ∧⌝q ”是假命题;③命题“⌝p ∧q ”是真命题;④命题“⌝p ∨⌝q ”是假命题.其中正确的结论是( )A .②③B .②④C .①②④D .①②③④2.“p 且q 是真命题”是“非p 为假命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件考向二 全称命题、特称命题的真假判断 1.下列命题中的真命题是( )A .∃x ∈R ,sin x +cos x =32 B .∀x ∈(0,π),sin x >cos x C .∃x ∈(-∞,0),2x <3x D .∀x ∈(0,+∞),e x >x +1 考向三 含有一个量词的命题的否定 (1)(2013·东北三校联合一模)已知命题p :∃x ∈⎝ ⎛⎭⎪⎫0,π2,sin x =12,则⌝p 为( )A .∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x =12B .∀x ∈⎝ ⎛⎭⎪⎫0,π2,sin x ≠12C .∃x ∈⎝⎛⎭⎪⎫0,π2,sin x ≠12D .∃x ∈⎝ ⎛⎭⎪⎫0,π2,sin x >12 (2)若命题p :∀x ∈⎝ ⎛⎭⎪⎫-π2,π2,tan x >sin x ,则命题⌝p :()A .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≥sin x 0B .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0>sin x 0C .∃x 0∈⎝ ⎛⎭⎪⎫-π2,π2,tan x 0≤sin x 0D .∃x 0∈⎝ ⎛⎭⎪⎫-∞,-π2∪⎝ ⎛⎭⎪⎫π2,+∞,tan x 0>sin x 0 3.命题“∀x ∈R ,x 2-x +14≥0”的否定是( )A .∀x ∈R ,x 2-x +14<0B .∀x ∉R ,x 2-x +14<0C .∃x ∉R ,x 2-x +14<0D .∃x ∈R ,x 2-x +14<0对含有量词的命题的否定不当致误已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ,x 2+2ax +2-a =0”.若命题“p ∧⌝q ”是真命题,则实数a 的取值范围是( )A .a ≤-2或a =1B .a ≤2或1≤a ≤2C .a >1D .-2≤a ≤1【自测】1.若p 是真命题,q 是假命题,则( )A .p ∧q 是真命题B .p ∨q 是假命题C .⌝p 是真命题D .⌝q 是真命题2.已知命题p :∃n ∈N,2n >1 000,则⌝p 为( )A .∀n ∈N,2n ≤1 000B .∀n ∈N,2n >1 000C .∃n ∈N,2n ≤1 000D .∃n ∈N,2n <1 0003.下列命题中,真命题是()A.∃m∈R,使函数f(x)=x2+mx(x∈R)是偶函数B.∃m∈R,使函数f(x)=x2+mx(x∈R)是奇函数C.∀m∈R,函数f(x)=x2+mx(x∈R)都是偶函数D.∀m∈R,函数f(x)=x2+mx(x∈R)都是奇函数5.(教材改编)下列命题中,所有真命题的序号是________.①5>2且7>4;②3>4或4>3;③2不是无理数.6.(2012·高考安徽卷)命题“存在实数x,使x>1”的否定是() A.对任意实数x,都有x>1B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤17.(2012·高考辽宁卷)已知命题p:∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则綈p是()A.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0B.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≤0C.∃x1,x2∈R,(f(x2)-f(x1))(x2-x1)<0D.∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)<08.(2012·高考湖北卷)命题“∃x0∈∁R Q,x30∈Q”的否定是()A.∃x0∁R Q,x30∈Q B.∃x0∈∁R Q,x30QC.∀x∁R Q,x3∈Q D.∀x∈∁R Q,x3Q。
第一章 集合与常用逻辑用语第3课时简单的逻辑联结词、全称量词与存在量词1. (选修11P 20第4(1)题改编)命题“若a 、b 、c 成等比数列,则ac =b 2”的逆否命题是________________________________________________________________________.答案:若ac ≠b 2,则a 、b 、c 不成等比数列2. (选修11P 20第6题改编)若命题p 的否命题为q ,命题q 的逆否命题为r ,则p 与r 的关系是__________.答案:互为逆命题3. (选修11P 20第7题改编)已知p 、q 是r 的充分条件,r 是s 的充分条件,q 是s 的必要条件,则s 是p 的__________条件.答案:必要不充分4. (原创)写出命题“若x +y =5,则x =3且y =2”的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:若x =3且y =2,则x +y =5.是真命题. 否命题:若x +y ≠5,则x ≠3或y ≠2.是真命题. 逆否命题:若x ≠3或y ≠2,则x +y ≠5.是假命题. 5. 下列命题中的真命题有________.(填序号)①$ x ∈R ,x +1x=2;② $x ∈R ,sinx =-1;③ "x ∈R ,x 2>0; ④ "x ∈R ,2x >0. 答案:①②④解析:对于①,x =1时,x +1x =2,正确;对于②,当x =3π2时,sinx =-1,正确;对于③,x =0时,x 2=0,错误;对于④,根据指数函数的值域,正确.6. 命题p :有的三角形是等边三角形.命题綈p :____________________________. 答案:所有的三角形都不是等边三角形1. 四种命题及其关系 (1) 四种命题(2)(3) 四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.2. 充分条件与必要条件(1) 如果pÞq,那么称p是q的充分条件,q是p的必要条件.(2) 如果pÞq,且q p,那么称p是q的充要条件,记作pÛq.(3) 如果pÞq,qÞ/p,那么称p是q的充分不必要条件.(4) 如果qÞp,pÞq,那么称p是q的必要不充分条件.(5) 如果pÞ/ q,且qÞ/ p,那么称p是q的既不充分也不必要条件.3. 简单的逻辑联结词(1) 用联结词“且”联结命题p和命题q,记作p∧q,读作“p且q”.(2) 用联结词“或”联结命题p和命题q,记作p∨q,读作“p或q”.(3) 对一个命题p全盘否定记作綈p,读作“非p”或“p的否定”.(4) 命题p∧q,p∨q,綈p的真假判断p∧q中p、q有一假为假,p∨q有一真为真,p与非p必定是一真一假.4. 全称量词与存在量词(1) 全称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“"x”表示.含有全称量词的命题,叫做全称命题.全称命题“对M中任意一个x,有p(x)成立”可用符号简记为"x∈M,p(x),读作“对任意x属于M,有p(x)成立”.(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“$x”表示.含有存在量词的命题,叫做存在性命题.存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为$x∈M,p(x),读作“存在一个x属于M,使p(x)成立”.5. 含有一个量词的命题的否定"x∈M,p(x)"x∈M,Øp(x).[备课札记]题型1 否命题与命题否定例1 (1) 命题“若a >b ,则2a >2b -1”的否命题为____________________________;(2) 命题:“若x 2+x -m =0没有实根,则m ≤0”是____(填“真”或“假”)命题; (3) 命题p :“有些三角形是等腰三角形”,则Øp 是____________________. 答案:(1) 若a ≤b ,则2a ≤2b -1 (2) 真 (3) 所有三角形都不是等腰三角形解析:(2) 很可能许多同学会认为它是假命题原因为当m =0时显然方程有根,其实不然,由x 2+x -m =0没实根可推得m<-14,而{m|m<-14}是{m|m ≤0}的真子集,由m<-14可推得m ≤0,故原命题为真,而它的逆否命题“若m>0,则x 2+x -m =0有实根”显然为真,其实用逆否命题很容易判断它是真命题.(3) Øp 为“对任意x ∈A ,有p(x)不成立”,它恰与全称性命题的否定命题相反. 变式训练把下列命题改写成“若p 则q ”的形式,并写出它们的逆命题、否命题、逆否命题. (1) 正三角形的三个内角相等;(2) 已知a 、b 、c 、d 是实数,若a =b ,c =d ,则a +c =b +d.解:(1) 原命题:若一个三角形是正三角形,则它的三个内角相等. 逆命题:若一个三角形的三个内角相等,则这个三角形是正三角形. 否命题:若一个三角形不是正三角形,则它的三个内角不全相等.逆否命题:若一个三角形的三个内角不全相等,那么这个三角形不是正三角形. (2) 原命题:已知a 、b 、c 、d 是实数,若a =b ,c =d ,则a +c =b +d. 逆命题:已知a 、b 、c 、d 是实数,若a +c =b +d ,则a =b 且c =d.否命题:已知a 、b 、c 、d 是实数,若a 与b ,c 与d 不都相等,则a +c ≠b +d. 逆否命题:已知a 、b 、c 、d 是实数,若a +c ≠b +d ,则a 与b ,c 与d 不都相等. 题型2 充分必要条件例2 已知p :x 2-8x -20≤0,q :x 2-2x +1-m 2≤0(m >0),若Øp 是Øq 的必要不充分条件,求实数m 的取值范围.解:Øp :x 2-8x -20>0,得x <-2或x >10, 设A ={x|x <-2或x >10},Øq :x 2-2x +1-m 2>0,得x <1-m ,或x >1+m , 设B ={x|x <1-m 或x >1+m}. ∵ Øp 是Øq 的必要非充分条件,∴ B 真包含于A ,即⎩⎪⎨⎪⎧1-m ≤-21+m ≥10Þm ≥9. ∴ 实数m 的取值范围为m ≥9. 备选变式(教师专享)下列四个结论正确的是________.(填序号)① “x ≠0”是“x +|x|>0”的必要不充分条件;② 已知a 、b ∈R ,则“|a +b|=|a|+|b|”的充要条件是ab>0;③ “a>0,且Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集是R ”的充要条件;④ “x ≠1”是“x 2≠1”的充分不必要条件. 答案:①③解析:① 因为由x ≠0推不出x +|x|>0,如x =-1,x +|x|=0,而x +|x|>0x ≠0,故①正确;因为a =0时,也有|a +b|=|a|+|b|,故②错误,正确的应该是“|a +b|=|a|+|b|”的充分不必要条件是ab>0;由二次函数的图象可知③正确;x =-1时,有x 2=1,故④错误,正确的应该是“x ≠1”是“x 2≠1”的必要不充分条件.题型3 全称命题与存在性命题的否定例3 命题“所有不能被2整除的整数都是奇数”的否定是________________________________.答案:存在一个不能被2整除的整数不是奇数 备选变式(教师专享)若命题改为“存在一个能被2整除的整数是奇数”,其否定为________________________________.答案:所有能被2整除的整数都不是奇数 题型4 求参数范围例4 已知命题p :方程a 2x 2+ax -2=0在[-1,1]上有解;命题q :只有一个实数x 满足不等式x 2+2ax +2a ≤0,若命题“p 或q ”是假命题,求实数a 的取值范围.解:由a 2x 2+ax -2=0,得 (ax +2)(ax -1)=0,显然a ≠0,∴ x =-2a 或x =1a .∵ x ∈[-1,1],故⎪⎪⎪⎪2a ≤1或⎪⎪⎪⎪1a ≤1, ∴ |a|≥1.由题知命题q “只有一个实数x 满足x 2+2ax +2a ≤0”, 即抛物线y =x 2+2ax +2a 与x 轴只有一个交点, ∴ Δ=4a 2-8a =0,∴ a =0或a =2,∴ 当命题“p 或q ”为真命题时|a|≥1或a =0. ∵ 命题“p 或q ”为假命题,∴ a 的取值范围为{a|-1<a<0或0<a<1}. 备选变式(教师专享)已知命题p :函数y =log a (1-2x)在定义域上单调递增;命题q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立.若p ∨q 是真命题,求实数a 的取值范围.解:∵ 命题p :函数y =log a (1-2x)在定义域上单调递增,∴ 0<a<1. 又命题q :不等式(a -2)x 2+2(a -2)x -4<0对任意实数x 恒成立,∴ a =2或⎩⎪⎨⎪⎧a -2<0,Δ=4(a -2)2+16(a -2)<0, 即-2<a ≤2. ∵ p ∨q 是真命题,∴ a 的取值范围是-2<a ≤2.1. 命题“所有能被2整除的数都是偶数”的否定是___________________________ ________________________.答案:存在一个能被2整除的数不是偶数2. 设α、β为两个不同的平面,直线l Ìα,则“l ⊥β”是“α⊥β”成立的________条件.答案:充分不必要解析:根据定理知由l ⊥β可以推出α⊥β.反之不成立,仅当l 垂直于α、β的交线时才成立.3. “若a +b 为偶数,则a 、b 必定同为奇数或偶数”的逆否命题为______________________________.答案:若a 、b 不同为奇数且不同为偶数,则a +b 不是偶数4.已知命题p 1:函数y =ln(x +1+x 2),是奇函数,p 2:函数y =x 12为偶函数,则下列四个命题:① p 1∨p 2;② p 1∧p 2;③ (Øp 1)∨p 2;④ p 1∧(Øp 2). 其中,真命题是________.(填序号) 答案:①④解析:由函数的奇偶性可得命题p 1为真命题,命题p 2为假命题,再由命题的真假值表可得②③为假,①④为真.1. 若a 、b 为实数,则 “0<ab<1”是“b<1a”的________条件.答案:既不充分也不必要解析:0<ab<1,a 、b 都是负数时,不能推出b<1a ;同理b<1a也不能推出0<ab<1.2. 在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,正确命题的个数记为f(p),已知命题p :“若两条直线l 1:a 1x +b 1y +c 1=0,l 2:a 2x +b 2y +c 2=0平行,则a 1b 2-a 2b 1=0”.那么f(p)=________.答案:2解析:若两条直线l 1:a 1x +b 1y +c 1=0与l 2:a 2x +b 2y +c 2=0平行,则必有a 1b 2-a 2b 1=0,但当a 1b 2-a 2b 1=0时,直线l 1与l 2不一定平行,还有可能重合,因此命题p 是真命题,但其逆命题是假命题,从而其否命题为假命题,逆否命题为真命题,所以在命题p 的四种形式的命题(原命题、逆命题、否命题、逆否命题)中,有2个正确命题,即f(p)=2.3. 设命题p :关于x 的不等式2|x -2|<a 的解集为;命题q :函数y =lg(ax 2-x +a)的值域是R .如果命题p 和q 有且仅有一个正确,求实数a 的取值范围.解:由不等式2|x -2|<a 的解集为Æ得a ≤1.由函数y =lg(ax 2-x +a)的值域是R 知ax 2-x +a 要取到所有正数, 故⎩⎪⎨⎪⎧a>0Δ=1-4a 2≥00<a ≤12 或a =0即0≤a ≤12. 由命题p 和q 有且仅有一个正确得a 的取值范围是(-∞,0)∪⎝⎛⎦⎤12,1.4. 设数列{a n }、{b n }、{c n }满足:b n =a n -a n +2,c n =a n +2a n +1+3a n +2(n =1,2,3,…),求证:{a n }为等差数列的充分必要条件是{c n }为等差数列且b n ≤b n +1(n =1,2,3,…).证明:必要性:设{a n }是公差为d 1的等差数列,则 b n +1-b n =(a n +1-a n +3) - (a n -a n +2)= (a n +1-a n ) - (a n +3-a n +2)= d 1- d 1=0, 所以b n ≤b n +1(n =1,2,3,…)成立.又c n +1-c n =(a n +1-a n )+2(a n +2-a n +1)+3(a n +3-a n +2)= d 1+2d 1 +3d 1 =6d 1(常数)(n =1,2,3,…),所以数列{c n }为等差数列. 充分性:设数列{c n }是公差为d 2的等差数列,且b n ≤b n +1(n =1,2,3,…). ∵ c n =a n +2a n +1+3a n +2, ① ∴ c n +2=a n +2+2a n +3+3a n +4, ②①-②,得c n -c n +2=(a n -a n +2)+2 (a n +1-a n +3)+3 (a n +2-a n +4)=b n +2b n +1+3b n +2. ∵ c n -c n +2=(c n -c n +1)+(c n +1-c n +2)= -2d 2, ∴ b n +2b n +1+3b n +2=-2d 2, ③从而有b n +1+2b n +2+3b n +3=-2d 2, ④④-③,得(b n +1-b n )+2 (b n +2-b n +1)+3 (b n +3-b n +2)=0.⑤ ∵ b n +1-b n ≥0,b n +2-b n +1≥0,b n +3-b n +2≥0, ∴ 由⑤得b n +1-b n =0(n =1,2,3,…).由此不妨设b n=d3 (n=1,2,3,…),则a n-a n+2=d3(常数).由此c n=a n+2a n+1+3a n+2c n=4a n+2a n+1-3d3,从而c n+1=4a n+1+2a n+2-5d3,两式相减得c n+1-c n=2(a n+1-a n) -2d3,因此a n+1-a n=12(c n+1-c n)+d3=12d2+d3(常数) (n=1,2,3,…),∴数列{a n}为等差数列.1. 在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系.要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可.对涉及数学概念的命题的判定要从概念本身入手.2. 充要条件的判断,重在“从定义出发”,利用命题“若p,则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A是B的什么条件”中,A是条件,B是结论,而“A的什么条件是B”中,A是结论,B是条件.有时还可以通过其逆否命题的真假加以区分.3. 含有逻辑联结词的命题真假的判断规律(1) p∨q:p、q中有一个为真,则p∨q为真,即一真全真;(2) p∧q:p、q中有一个为假,则p∧q为假,即一假即假;(3) Øp:与p的真假相反,即一真一假,真假相反.[备课札记]。