isight与 proe 和ansys集成的多学科优化案例介绍
- 格式:docx
- 大小:2.00 MB
- 文档页数:19
前言●Isight 5.5简介笔者自2000年开始接触并采用Isight软件开展多学科设计优化工作,经过12年的发展,我们欣喜地看到优化技术已经深深扎根到众多行业,帮助越来越多的中国企业提高产品性能和品质、降低成本和能耗,取得了可观的经济效益和社会效益。
作为工程优化技术的优秀代表,Isight 5.5软件由法国Dassault/Simulia公司出品,能够帮助设计人员、仿真人员完成从简单的零部件参数分析到复杂系统多学科设计优化(MDO, Multi-Disciplinary Design Optimization)工作。
Isight将四大数学算法(试验设计、近似建模、探索优化和质量设计)融为有机整体,能够让计算机自动化、智能化地驱动数字样机的设计过程,更快、更好、更省地实现产品设计。
毫无疑问,以Isight为代表的优化技术必将为中国经济从“中国制造”到“中国创造”的转型做出应有的贡献!●本书指南Isight功能强大,内容丰富。
本书力求通过循序渐进,图文并茂的方式使读者能以最快的速度理解和掌握基本概念和操作方法,同时提高工程应用的实践水平。
全书共分十五章,第1章至第7章为入门篇,介绍Isight的界面、集成、试验设计、数值和全局优化算法;第8章至第13章为提高篇,全面介绍近似建模、组合优化策略、多目标优化、蒙特卡洛模拟、田口稳健设计和6Sigma品质设计方法DFSS(Design For 6Sigma)的相关知识。
本书约定在本书中,【AA】表示菜单、按钮、文本框、对话框。
如果没有特殊说明,则“单击”都表示用鼠标左键单击,“双击”表示用鼠标左键双击。
在本书中,有许多“提示”和“试一试”,用于强调重点和给予读者练习的机会,用户最好详细阅读并亲身实践。
本书内容循序渐进,图文并茂,实用性强。
适合于企业和院校从事产品设计、仿真分析和优化的读者使用。
在本书出版过程中,得到了Isight发明人唐兆成(Siu Tong)博士、Dassault/Simulia (中国)公司负责人白锐、陈明伟先生的大力支持,工程师张伟、李保国、崔杏圆、杨浩强、周培筠、侯英华、庞宝强、胡月圆、邹波等参与撰写,李鸽、杨新龙也为本书提供了宝贵的建议和意见,在此向所有关心和支持本书出版的人士表示感谢。
iSIGHT工程优化实例分前言随着设备向大型化、高速化等方向的发展,我们的工业设备(如高速列出、战斗机等)的复杂程度已远超乎平常人的想象,装备设计不单要用到大量的人力,甚至已牵涉到了数十门学科。
例如,高速车辆设计就涉及通信、控制、计算机、电子、电气、液压、多体动力学、空气动力学、结构力学、接触力学、疲劳、可靠性、维修性、保障性、安全性、测试性等若干学科。
随着时代的进步,如今每个学科领域都形成了自己特有研究方法与发展思路,因此在设计中如何增加各学科间的沟通与联系,形成一个统一各学科的综合设计方法(或平台),成为工程和学术界所关注的重点。
多年来,国外已在该领域做了许多著有成效的研究工作,并开始了多学科优化设计方面的研究。
就国外的研究现状而言,目前已经实现了部分学科的综合优化设计,并开发出了如iSIGHT、Optimus等多学科商业优化软件。
iSIGHT是一个通过软件协同驱动产品设计优化的多学科优化平台,它可以将数字技术、推理技术和设计搜索技术有效融合,并把大量需要人工完成的工作由软件实现自动化处理。
iSIGHT软件可以集成仿真代码并提供智能设计支持,对多个设计方案进行评估和研究,从而大大缩短了产品的设计周期,显著地提高了产品质量和可靠性。
目前市面上还没有关于iSIGHT的指导书籍,而查阅软件自带的英文帮助文档,对许多国内用户而言尚有一定的难度。
基于以上现状,作者根据利用iSIGHT做工程项目的经验编写了这本《iSIGHT工程优化实例》。
本书分为优化基础、工程实例和答疑解惑三个部分,其中工程实例中给出了涉及铁路、航空方面多个工程案例,以真实的工程背景使作者在最短的时间内掌握这款优化的软件。
本书在编写的过程中,从互联网上引用了部分资料,在此对原作者表示衷心地感谢!我要真诚地感谢大连交通大学(原大连铁道学院)和王生武教授,是他们给了我学习、接触和使用iSIGHT软件机会!仅以本书献给所有关心我的人!赵怀瑞2007年08月于西南交通大学目录第一章认识iSIGHT (1)1.1 iSIGHT软件简介 (1)1.2 iSIGHT工作原理简介 (5)1.3 iSIGHT结构层次 (6)第二章结构优化设计理论基础 (8)2.1 优化设计与数值分析的关系 (8)2.2 优化设计基本概念 (8)2.3 优化模型分类 (10)2.4 常用优化算法 (11)2.5大型结构优化策略与方法 (25)第三章iSIGHT软件界面与菜单介绍 (31)3.1 iSIGHT软件的启动 (31)3. 2 iSIGHT软件图形界面总论 (31)3.3 任务管理界面 (35)3.4 过程集成界面 (42)3.5 文件分析界面 (45)3.6 过程监控界面 (49)3.4 多学一招—C语言的格式化输入/输出 (52)第四章iSIGHT优化入门 (54)4.1 iSIGHT优化基本问题 (54)4.2 iSIGHT集成优化的一般步骤 (54)4.3 iSIGHT优化入门—水杯优化 (55)第五章模压强化工艺优化 (85)5.1 工程背景与概述 (85)5.2 优化问题描述 (85)5.3 集成软件的选择 (86)5.4有限元计算模型介绍 (86)5.5 模压强化优化模型 (87)5.8 iSIGHT集成优化 (90)5.9优化结果及其分析 (97)5.10 工程优化点评与提高 (98)第六章单梁起重机结构优化设计 (99)6.1 工程与概述 (99)6.2 优化问题描述 (99)6.3 集成软件的选择 (100)6.4起重机主梁校核有限元计算模型介绍 (101)6.5 主梁优化模型 (101)6.8 iSIGHT集成优化 (103)6.9优化结果及其分析 (108)6.10 工程优化点评与提高 (109)6.11 多学一招—ANSYS中结果输出方法 (109)第七章涡轮增压器压气机叶片优化设................................................... 错误!未定义书签。
基于iS IGHT 的多学科设计优化技术研究与应用泰山石膏股份有限公司 任 利 山东农业大学机械与电子工程学院 邵园园临沂师范学院工程学院 韩 虎 摘 要:阐述了多学科设计优化技术,在iSI GHT 、Pr o /E 和Ansys 软件集成环境下,对轴承座进行多学科设计优化。
并对在单学科设计优化和多学科设计优化的环境下得到的优化结果进行了比较,得出了多学科设计优化结果更加有效地达到了优化目标的结论。
关键词:多学科设计优化;iSI GHT;软件集成Abstract:The technol ogy of multidisci p linary design op ti m izati on is elaborated 1Bearing bl ock multidisci p linary de 2sign op ti m izati on is conducted under the integrated envir on ment of iSI GHT,Pr o /E and Ansys,and the op ti m izati on result is better than that fr om single -disci p linary design op ti m izati on 1Keywords:multidisci p linary design op ti m izati on;iSI GHT;s oft w are integrati on1 多学科设计优化技术多学科设计优化(Multidisci p linary Design Op 2ti m izati on -MDO )是当前国际上飞行器设计研究中一个最新、最活跃的领域。
按照Jar osla w Sobieszczanski -Sobieski 的看法[1],MDO 是用于进行系统设计的方法,这种系统包括多个相互耦合的学科,设计师可以在这些学科上显著地影响系统的性能。
邮局订阅号:82-946360元/年技术创新软件天地《PLC 技术应用200例》您的论文得到两院院士关注一类基于iSIGHT 的多学科优化方法研究Research of a type of MDO design method using iSIGHT(上海交通大学)王浩范启富WANG Hao FAN Qi-fu摘要:近年来多学科优化方法在国内外发展迅速,得到了广泛的应用,尤其是在飞行器设计领域。
而iSIGHT 是目前市场占有率最高的多学科优化设计软件平台,许多工程师选择iSIGHT 已经在各个领域获得周期缩短、产品成本降低和品质提升等各方面的突破。
本文以某导弹设计优化案例就iSIGHT 在多学科优化方面的智能优化策略选择方面进行了探讨。
关键词:多学科优化;飞行器设计;协同优化;一致性约束优化中图分类号:TP301.5文献标识码:AAbstract:In recent years multi-disciplinary design optimization (MDO)has been developed rapidly and is wildly used,especially in aircraft design.iSIGHT is a MDO design software platform which is most wildly used nowadays,many engineers have used iSIGHT to gain such advantage like shortening the develop cycle 、lowering the cost 、and improving the quality.This paper researches on iSIGHT ’s MDO optimization plan,which is based on a missile design case.Key words:MDO;iSIGHT;airship-design;SAND;CO文章编号:1008-0570(2009)12-1-0179-03引言飞行器设计是一个非常复杂的工程,具有多学科、多层次且学科之间耦合严重的特点。
Isight与Pro/e和Ansys集成的多学科优化案例介绍迫于研究生毕业设计的要求,需要用到多学科优化,自己当时学习的时候网上找了很久没找到教程,这里就将通过自己研究学习后的心得介绍介绍。
案例中使用的软件:isight5.5 proe4.0 ansys12.0注意:必须是这几个版本的组合,本人多次尝试,用ansys15.0、proe5.0什么的组合都不行,只有这个搭配才能正常集成。
参考教材《isight参数化理论与实例详解》,该书电子链接〔百度文库里面有:目标:有必要装置关键结构尺寸参数进行优化设计,使得在满足整体装置刚度要求的情况下,装置更加轻量化。
一般优化设计模型一般标准的优化设计模型为:式中,d=<d1,d2…d k>是优化设计过程中待确定的设计变量,f<d>是待优化的目标函数,q i<d>是不等式形式的约束函数,h i<d>是等式形式的约束函数,d1A和d1B是相对于设计变量d t的上届和下届,以下对此进行分析。
设计变量装置主体结构包括由矩形钢焊接而成的支撑框架和环形基座,如下图所示,装置的体积V、形变量E1与矩形钢的长a、宽b、厚度c、环形基座的厚度d有关优化目标在保证形变量要求的基础上同时获得更合理的尺寸分布,使装置的质量最小;Ansys分析模型可以很方便地导出体积信息,而质量与密度成正比,因此,为减轻整体装置重量,可将装置的体积作为优化目标,即Min V约束条件装置结构优化的关键是保证整体装置的静刚度特性不超过设计要求的条件下减小重量,约束条件包括状态约束和变量约束,状态约束主要是整体结构的形变量、许用应力,变量的取值范围为变量约束,如下式所示,其中|E1|max为自动焊接装置的最大变形量,σmax为最大等效应力。
优化过程Isight优化设计分析流程通过Isight集成三维建模软件Pro/E和有限元分析软件Ansys,在Pro/E中进行参数化建模,调用参数化建模的历史文件对设计变量进行赋值,并通过批处理文件驱动Ansys对调用的参数化模型进行分析,提取结果文件作为优化的输出文件,然后通过选取Isight合适的优化算法对设计变量及优化目标设定的次数进行迭代循环操作。
基于iSIGHT的多学科设计优化平台的研究与实现一、本文概述随着现代工程技术的快速发展,产品设计的复杂性日益增加,涉及多个学科领域的知识和技术。
这种复杂性要求设计师在设计过程中必须考虑多种因素,如性能、成本、可靠性、可制造性等,从而实现整体最优设计。
然而,传统的设计优化方法往往只能针对单一学科进行优化,难以处理多学科之间的耦合和冲突。
因此,开发一种基于多学科设计优化(MDO)的平台,对于提高产品设计的质量和效率具有重要意义。
本文旨在研究并实现一种基于iSIGHT的多学科设计优化平台。
iSIGHT作为一种先进的优化算法平台,具有强大的优化求解能力和丰富的优化算法库,为多学科设计优化提供了有力支持。
本文将首先介绍多学科设计优化的基本原理和方法,然后详细阐述基于iSIGHT 的多学科设计优化平台的架构、功能和技术实现,并通过具体案例验证平台的可行性和有效性。
通过本文的研究和实现,旨在为设计师提供一个高效、可靠的多学科设计优化工具,帮助他们在设计过程中综合考虑多个学科因素,实现整体最优设计。
本文也希望为相关领域的研究者和技术人员提供一些有益的参考和启示,推动多学科设计优化技术的发展和应用。
二、多学科设计优化概述随着现代工程技术的不断发展和复杂性的增加,传统的单学科设计优化方法已经无法满足许多复杂系统的设计要求。
因此,多学科设计优化(MDO,Multidisciplinary Design Optimization)应运而生,它通过将不同学科的知识、方法和工具集成在一起,实现复杂系统整体性能的最优化。
MDO旨在解决在产品设计过程中出现的跨学科耦合问题,以提高产品的设计质量和效率。
MDO的核心思想是在产品设计阶段就考虑不同学科之间的相互影响和约束,通过协同优化各个学科的设计参数,实现整个系统的全局最优。
这种方法能够有效地减少设计迭代次数,缩短产品开发周期,并降低成本。
同时,MDO还能够提高产品的综合性能,使其在满足各项性能指标要求的同时,达到最优的整体效果。