第9章--机械振动(阻尼振动和受迫振动)
- 格式:ppt
- 大小:1.99 MB
- 文档页数:9
【实验目的】1.观测阻尼振动,学习测量振动系统基本参数的方法。
2.研究受迫振动的幅频特性和相频特性,观察共振现象。
3.观察不同阻尼对受迫振动的影响。
【实验原理】当摆轮受到周期性强迫外力矩t M M ωcos 0=的作用,并在有空气阻尼的媒质中运动时(阻尼力矩为 ),其运动方程为t M dt d b k dtd J ωθθθcos 022+--= (1)其中,J 为摆轮的转动惯量,θk -为弹性力矩,0M 为强迫力矩的幅值,ω为强迫力的圆频率。
令J k =20ω,J b=β2,JM m 0=,则(1)式变为 t m dt d dtd ωθωθβθcos 22022=++ (2) 其中,β为阻尼系数,0ω为系统的固有频率,m 为强迫力矩。
当0cos =t m ω时,(2)式即为阻尼振动方程,当0=β,即在无阻尼情况时,(2)式变为简谐振动方程。
方程(2)的通解为()()0201cos cos ϕωθαωθθβ+++=-t t e t (3)由(3)式可见,受迫振动可分为两部分:第一部分,()αωθβ+-t e t 01cos 表示阻尼振动,经过一定时间后衰减消失。
第二部分,说明强迫力矩对摆轮作功,向振动体传递能量,最后达到一个稳定的振动状态,其振幅为()22222024ωβωωθ+-=m(4)它与强迫力矩之间的相位差ϕ为()2022022012T T T T tg -=-=-πβωωβωϕ (5) 由(4)式和(5)式可看出,振幅2θ与相位差ϕ的数值取决于强迫力矩m 、频率ω、固有频率0ω和阻尼系数β四个因素,而与振动起始状态无关。
由()[]04222220=+-∂∂ωβωωω极值条件可得出,当受迫力的圆频率2202βωω-= 时产生共振,θ有极大值。
若共振时的圆频率和振幅分别用r ω 、r θ表示,则dtd b θ-2202βωω-=r (6)2222βωβθ-=m r (7)(6)式和(7)式表示,阻尼系数β越小,共振时圆频率越接近于系统固有频率,振幅也越大。
机械振动中的阻尼振动与受迫振动在机械系统中,振动是一种普遍存在的现象,它包含着阻尼振动和受迫振动两种类型。
阻尼振动是指系统在一定的阻尼作用下运动的周期性减弱振动,而受迫振动是指系统受到外部力的作用而发生周期性振动。
本文将探讨机械振动中的阻尼振动和受迫振动的特点及其应用。
一、阻尼振动阻尼振动是指振动系统在受到阻力的作用下产生的振动。
阻尼力可以分为粘性阻尼、干摩擦阻尼和液体摩擦阻尼等不同形式。
阻尼振动的特点是振幅逐渐减小,振动频率也逐渐减小。
阻尼振动的主要原因是能量的损失。
当机械系统受到阻尼力的作用时,振动系统的机械能会逐渐转化为热能而损失。
这导致振动幅度逐渐减小,最终停止振动。
例如,摆钟在受到空气阻力的影响下,其摆动幅度会逐渐减小,最终停止。
阻尼振动的应用广泛。
在机械工程中,阻尼振动常常被用于减震和能量吸收的装置设计。
例如,在车辆的悬挂系统中使用减震器,可以有效地缓解车辆行驶中的颠簸感。
同时,阻尼振动还常用于物体的减振和抗震设计,例如建筑物中的隔震装置。
二、受迫振动受迫振动是指振动系统在外部力的作用下产生的振动。
外力可以是周期性的,也可以是非周期性的。
受迫振动的特点是振幅和频率与外力的频率相关。
外力对振动系统的影响可以分为共振和强迫两种情况。
共振是指外力的频率接近或等于振动系统的固有频率时,振动幅度会显著增大。
强迫是指外力的频率与振动系统的固有频率有一定的差别,但仍然能引起系统振动。
受迫振动在实际生活中有许多应用。
例如,在音乐中,乐器的共振现象使得乐器能够产生特定的音调。
另外,受迫振动还在工程领域中有着广泛的应用,如振动筛、振动输送机等。
它们利用外力作用产生振动,以完成特定的分选和输送任务。
三、阻尼振动与受迫振动的关系阻尼振动与受迫振动是机械振动中两种常见的振动类型,它们在某些情况下可以相互转化。
当受迫振动系统存在阻尼时,会产生阻尼振动。
此时,外力的频率与振动系统的固有频率相同或接近时,阻尼振动的幅度会受到外力的影响,产生共振效应。
阻尼振动和受迫振动的动力学振动是物体在围绕平衡位置上下运动的一种现象。
当物体受到外力的作用时,它可能出现阻尼振动或受迫振动。
本文将分别讨论这两种振动的动力学特征。
1. 阻尼振动阻尼振动指的是物体在受到阻尼力的影响下进行振动。
阻尼力是由于摩擦或阻力而产生的一种力。
一般而言,阻尼力与物体的运动速度成正比。
在阻尼振动中,振幅会逐渐减小,直到最终趋于零。
这是因为阻尼力的作用导致了振动能量的损失。
阻尼振动的动力学方程可以表示为:m * d^2x/dt^2 + c * dx/dt + k * x = 0其中,m为物体的质量,x为物体的位移,t为时间,c为阻尼系数,k为弹簧的劲度系数。
这是一个二阶常微分方程,可以通过求解得出振动的解析解。
2. 受迫振动受迫振动是指物体在受到外力周期性作用下进行振动。
外力的周期性作用可能是恒定的或变化的。
受迫振动的一个典型例子是在谐振子中。
谐振子是一个具有弹簧和质量的系统,当受到周期性驱动力时,谐振子会在特定的驱动频率下展现出共振现象。
共振是指外力频率与谐振子固有频率相同或接近时的现象。
受迫振动的动力学方程可以表示为:m * d^2x/dt^2 + c * dx/d t + k * x = F0 * sin(ω * t)其中,F0为驱动力的振幅,ω为驱动力的角频率。
通过求解这个方程,可以得到受迫振动的解,包括相位和幅频特征。
3. 动力学特征比较阻尼振动和受迫振动在动力学特征上有一些区别。
首先,阻尼振动的振幅会随时间逐渐减小,直到最终停止。
而受迫振动在存在共振现象时,振幅可能会增大甚至无限增大。
其次,阻尼振动的频率与振幅无关,而受迫振动的频率会对振幅产生明显的影响。
当驱动力的频率接近谐振子的固有频率时,振幅会显著增加。
最后,阻尼振动和受迫振动在相位上也略有不同。
在阻尼振动中,振动的相位随着时间的推移而发生改变。
而在受迫振动中,振动的相位与驱动力的相位存在一定的差距。
综上所述,阻尼振动和受迫振动都是振动的一种形式,但它们在动力学特征上有一些差别。
机械振动的类型和特性机械振动是指物体在固有平衡位置附近发生周期性的往复运动。
在机械工程领域中,机械振动广泛应用于各种工程设备和结构的设计和分析中,因此了解机械振动的类型和特性对于工程师和设计师至关重要。
本文将讨论机械振动的类型和特性,并介绍其在机械工程中的应用。
一、机械振动的类型1.自由振动:自由振动是指物体在无外力作用下,受到初始位移或初始速度的作用而发生的振动。
在自由振动中,物体将以自身的固有频率进行振动。
常见的自由振动包括钟摆的摆动和弹簧的振动。
2.受迫振动:受迫振动是指物体在外界周期性力的作用下发生的振动。
外界力可以是恒定频率的周期性力,也可以是可变频率的力。
在受迫振动中,物体将以外界力的频率进行振动。
例如,当一个弹簧振子被一个周期性外力驱动时,将发生受迫振动。
3.强迫振动:强迫振动是指外界周期性力对振动系统进行强制振动。
外界力的频率可以是振动系统的固有频率的倍数,也可以是其倍频。
在强迫振动中,外界力将强制振动系统按照特定频率振动,与振动系统的固有频率相互作用。
例如,一台发动机的活塞在运转时,由于连杆和曲柄的作用,将使得活塞强迫振动。
二、机械振动的特性1.频率:频率是指振动中每个周期内发生的完整振动次数。
频率通常用赫兹(Hz)表示,1Hz等于每秒一次完整的振动。
振动的频率是其固有特性之一,不同物体具有不同的固有频率。
2.振幅:振幅指的是振动过程中物体离开平衡位置的最大位移距离。
振动系统的振幅大小与外力的大小和频率有关。
3.相位:相位是指振动物体的位置状态相对于某一标准位置的关系。
它描述了振动物体的位置或状态相对于某一参考点或标准位置的提前或滞后情况。
4.阻尼:阻尼是指振动系统受到的阻碍振动能量传递和减弱振幅的现象。
阻尼分为无阻尼、欠阻尼和过阻尼等类型,阻尼对振动特性和振幅都有重要影响。
三、机械振动在机械工程中的应用机械振动在机械工程中具有广泛的应用,以下是一些典型的应用举例:1.动力学分析:机械振动的特性对于动力学分析至关重要。
阻尼振动与受迫振动振动是自然界中普遍存在的一种现象,它在物理学、工程学等领域中具有重要的应用价值。
而阻尼振动和受迫振动是振动学中两个重要的概念。
阻尼振动是指在振动系统中存在摩擦或阻力的情况下所产生的振动。
当一个物体受到外力作用而开始振动时,若存在阻尼,振动的幅度将逐渐减小,最终停止。
这种振动方式在日常生活中很常见,例如钟摆摆动时逐渐停下来的过程。
阻尼振动的特点是振幅逐渐减小,振动频率不变。
这是因为阻尼力与振动速度成正比,而速度越大,阻尼力就越大。
因此,振动系统在受到外力作用后,振幅将逐渐减小,直到最终停止振动。
与阻尼振动相对应的是受迫振动,它是指在外力作用下振动系统发生的振动。
受迫振动的特点是振幅随时间的变化而发生周期性的变化,振幅的变化与外力的频率和振幅有关。
受迫振动的一个重要应用是共振现象。
当外力的频率与振动系统的固有频率相等时,共振现象会发生。
在共振状态下,振幅将达到最大值,这是因为外力与系统的振动频率相同,能够为系统提供持续的能量输入,从而使振幅增大。
阻尼振动和受迫振动经常在实际工程中应用。
例如,在汽车悬挂系统中,为了提高乘坐舒适性,往往会采用阻尼装置来减小车身的振动。
而在建筑工程中,为了避免共振现象对建筑物产生破坏性影响,工程师们会根据建筑物的固有频率来设计结构。
除了工程领域,阻尼振动和受迫振动也在物理学和生物学中有广泛的应用。
例如,在电子学中,阻尼振动可以用于减小电路的振荡幅度;在生物学中,研究细胞的振动特性有助于了解细胞的结构和功能。
总之,阻尼振动和受迫振动是振动学中的两个重要概念。
阻尼振动是指在存在阻力或摩擦力的情况下发生的振动,振幅逐渐减小;而受迫振动是指在外力作用下发生的振动,振幅随时间的变化而发生周期性变化。
这两种振动方式在实际应用中具有重要意义,对于理解和应用振动学理论有着重要的作用。
清华大学实验报告工程物理系工物40 钱心怡 75实验日期:2015年3月3日一.实验名称阻尼振动和受迫振动二.实验目的1.观测阻尼振动,学习测量振动系统参数的基本方法2.研究受迫振动的频幅特性和相频特性,观察共振现象3.观察不同阻尼对振动的影响三.实验原理1.阻尼振动在转动系统中,设其无阻尼时的固有角频率为ω0,并定义阻尼系数β其转动的角度与时间的关系满足如下方程d2θdt2+2βdθdt+ω02θ=0解上述方程可得当系统处于弱阻尼状态下时,即β<ω0时,θ和t满足如下关系θ(t)=θi exp(−βt)cos(√ω02−β2t+∅i)解得阻尼振动角频率为ωd=√ω02−β2,阻尼振动周期为T d=√ω02−β2同时可知lnθ和t成线性关系,只要能通过实验数据得到二者之间线性关系的系数,就可以进一步解得阻尼系数和阻尼比。
2.周期性外力作用下的受迫振动当存在周期性外力作用时,振动系统满足方程Jd 2θdt 2+γdθdt+kθ=Mωtθ和t 满足如下关系:θ(t )=θi exp (−βt )cos (√ω02−β2t +ϕi )+θm cos(ωt −ϕ)该式中的第一项随着时间t 的增大逐渐趋于0,因此经过足够长时间后,系统在外力作用下达到平衡,第一项等于0,在该稳定状态下,系统的θ和t 满足关系:θ(t )=θm cos(ωt −ϕ) 其中θm =MJ√(ω02−ω2)+4β2ω2 ;ϕ=arctan2βωω02−ω2(θ∈(0,π))3.电机运动时的受迫振动当波尔共振仪的长杆和连杆的长度远大于偏心轮半径时,当偏心轮电机匀速转动时,设其角速度为ω,此时弹簧的支座是弹簧受迫振动的外激励源,摆轮转角满足以下方程:J d 2θdt 2+γdθdt+k (θ−αm cosωt )=0 即为 Jd 2θdt 2+γdθdt+kθ=kαm cosωt与受周期性外力矩时的运动方程相同,即有θ(t )=θi exp (−βt )cos (√ω02−β2t +ϕi )+θm cos(ωt −ϕ)θm =αω2√(ω02−ω2)+4β2ω2=α√(1−(ωω0)2)2+4ζ2(ωω0)2ϕ=arctan 2βωω02−ω2=arctan 2ζ(ωω0)1−(ωω0)2 可知,当ω=ω0时φ最大为π2,此时系统处于共振状态。
§9.3阻尼振动和受迫振动一. 阻尼振动1. 阻尼力x μf-=2. 振动的微分方程(以弹簧振子为例)x μkx x m--=022=++x ωx n x 阻尼系数: 2 n = μ/ m3. 阻尼振动的振动方程、表达式和振动曲线(2)过阻尼和临界阻尼(1)小阻尼( n 2 < ω02 ))cos(220ϕ+-=-t n ωAex nt202ω=n 202ω>n 临界阻尼:过阻尼:在过阻尼和临界阻尼时,无振动.1.振幅特点振幅随t 衰减2.周期特点阻尼振动的特点:严格讲,阻尼振动不是周期性振动,更不是简谐振动,但阻尼振动有某种重复性。
质点经一次完全振动所经历的时间称为衰减振动的周期>220π2nT -='ω0π2ω=T二.受迫振动(在外来策动力作用下的振动)1. 系统受力弹性力阻尼力xμ-周期性策动力tF x μkx x m cos 0ω+--= kx -2. 受迫振动的微分方程tf x x n x ωωcos 220=++ tF F ωcos 0=其中mF f mn mk 002===μωFkxF 1-=x μF2-=3.受迫振动微分方程的稳态解为:)cos(ϕ-=t ωA x 下面用旋转矢量叠加的方法求稳态的解振幅和初相(将稳态解代入到振动微分方程中有) :tωf t ωA ωt ωA n t ωA ω cos ) cos( ) sin( 2) cos( 202=-+----ϕϕωϕ令( 同时画出t 时刻对应的矢量图):tωf t y cos )(=[y ( t )]f)π cos()(21+-=ϕt ωA ωt yϕ[y 1 ( t )]2A ω)2/π cos( 2)(2+-=ϕt ωnA ωt y [y 2 ( t )]2A n ω)cos()(203ϕ-=t ωA ωt y [y 3 ( t )]20A ω因而:)()()()(321t y t y t y t y ++=根据t 时刻的旋转矢量图,可得稳态时的振幅和初相:2/1222202]4)[(ωn ωωfA +-=2202tan ωωn ω-=ϕ(1)位移共振(振幅取极值)讨论(振幅共振曲线)共振频率:2202nr -=ωω共振振幅:2202nn fA r -=ω结论:受迫振动的振幅A 及受迫振动与驱动力的相位差ϕ都与起始条件无关。