阻尼振动与受迫振动 实验报告
- 格式:doc
- 大小:328.00 KB
- 文档页数:8
受迫振动的实验报告实验报告:受迫振动一、实验目的:1. 了解受迫振动的基本概念和特性;2. 掌握受迫振动系统的建模和分析方法;3. 验证理论分析模型与实验结果的一致性。
二、实验器材和仪器:1. 受迫振动装置(包括弹簧、质量块、驱动器等);2. 实验台;3. 示波器;4. 动力计。
三、实验原理与内容:1. 受迫振动的基本概念:受迫振动是指振动系统在外界周期性作用力的驱动下发生的振动。
外力的周期性变化会使振动系统发生非简谐振动,其振幅和频率与驱动力的特性有关。
2. 实验装置和建模:实验中使用的受迫振动装置由一个弹簧和一个质量块组成。
弹簧与质量块形成振动系统,驱动器通过周期性的施加力将振动系统带入受迫振动状态。
建立受迫振动系统的模型时,可以将振动系统简化为单自由度振动系统,并假设该系统的阻尼为零。
通过对质量块的运动进行观察和分析,可以得到受迫振动系统的振幅和频率等特性。
3. 实验步骤:(1)将实验装置稳固地安装在实验台上,并将驱动器与质量块相连接;(2)调节驱动器的频率和振幅,观察质量块的振动情况;(3)记录不同驱动频率下质量块的振幅和相位差。
四、实验结果与数据处理:1. 驱动频率-振幅曲线:将驱动频率作为横坐标,振幅作为纵坐标绘制曲线图。
根据实验数据得到的曲线,可以观察到受迫振动系统的共振现象,并可以确定共振频率和振幅。
2. 驱动频率-相位差曲线:将驱动频率作为横坐标,相位差作为纵坐标绘制曲线图。
根据实验数据得到的曲线,可以判断受迫振动系统的相位差与驱动频率的关系。
3. 对比理论模型与实验数据:将实验得到的驱动频率-振幅曲线和相位差曲线与理论模型进行对比。
通过对比可以评估理论模型的准确性和适用范围。
五、实验结论与讨论:1. 根据实验结果可以得出受迫振动系统具有共振现象,在共振频率附近振幅显著增大。
2. 实验数据与理论模型的对比结果显示,理论模型能够较好地描述受迫振动系统的振幅和相位差特性。
3. 受迫振动实验可能存在的误差主要来自驱动器的精度和实验环境的影响。
清华大学实验报告工程物理系工物40 钱心怡 2014011775实验日期:2015年3月3日一.实验名称阻尼振动和受迫振动 二.实验目的1.观测阻尼振动,学习测量振动系统参数的基本方法2.研究受迫振动的频幅特性和相频特性,观察共振现象3.观察不同阻尼对振动的影响 三.实验原理 1.阻尼振动在转动系统中,设其无阻尼时的固有角频率为ω0,并定义阻尼系数β其转动的角度与时间的关系满足如下方程d d d dd d +dd dd dd+d d dd =d 解上述方程可得当系统处于弱阻尼状态下时,即β<ω0时,θ和t 满足如下关系θ(t )=θi exp (−βt)cos (√ω02−β2t +∅i )解得阻尼振动角频率为ωd =√ω02−β2,阻尼振动周期为T d =√ω02−β2同时可知ln θ和t 成线性关系,只要能通过实验数据得到二者之间线性关系的系数,就可以进一步解得阻尼系数和阻尼比。
2.周期性外力作用下的受迫振动当存在周期性外力作用时,振动系统满足方程J d 2θdt2+γd θdt +k θ=M ωtθ和t 满足如下关系:θ(t )=θi exp (−βt )cos (√ω02−β2t +ϕi )+θm cos (ωt −ϕ)该式中的第一项随着时间t 的增大逐渐趋于0,因此经过足够长时间后,系统在外力作用下达到平衡,第一项等于0,在该稳定状态下,系统的θ和t 满足关系:θ(t )=θm cos (ωt −ϕ) 其中θm =MJ√(ω02−ω2)+4β2ω2 ;ϕ=arctan2βωω02−ω2(θ∈(0,π))3.电机运动时的受迫振动当波尔共振仪的长杆和连杆的长度远大于偏心轮半径时,当偏心轮电机匀速转动时,设其角速度为ω,此时弹簧的支座是弹簧受迫振动的外激励源,摆轮转角满足以下方程:J d 2θdt2+γd θdt +k (θ−αm cos ωt )=0即为 Jd 2θdt 2+γd θdt+k θ=k αm cos ωt与受周期性外力矩时的运动方程相同,即有θ(t )=θi exp (−βt )cos (√ω02−β2t +ϕi )+θm cos (ωt −ϕ)θm =αω02√(ω02−ω2)2+4β2ω2=α√(1−(ωω0)2)2+4ζ2(ωω0)2ϕ=arctan2βωω2−ω2=arctan2ζ(ωω0)1−(ωω0)可知,当ω=ω0时φ最大为π2,此时系统处于共振状态。
利用波尔共振仪研究受迫振动实验报告一、实验目的1、观察摆轮的自由振动、阻尼振动和受迫振动现象。
2、研究不同阻尼力矩对受迫振动的影响,并测定阻尼系数。
3、研究受迫振动的幅频特性和相频特性,观察共振现象,测定受迫振动的共振频率和共振振幅。
二、实验仪器波尔共振仪,包括振动系统、电磁阻尼系统、电机驱动系统、光电计数系统和智能控制仪等部分。
三、实验原理1、自由振动无阻尼的自由振动方程为:$m\frac{d^2\theta}{dt^2}=k\theta$,其中$m$为摆轮的转动惯量,$k$为扭转弹性系数,$\theta$为角位移。
其解为:$\theta = A\cos(\omega_0 t +\varphi)$,其中$\omega_0 =\sqrt{\frac{k}{m}}$为固有角频率,$A$和$\varphi$为初始条件决定的常数。
2、阻尼振动考虑阻尼时,振动方程为:$m\frac{d^2\theta}{dt^2} +b\frac{d\theta}{dt} + k\theta = 0$,其中$b$为阻尼系数。
根据阻尼的大小,可分为三种情况:小阻尼:$\omega =\sqrt{\omega_0^2 \frac{b^2}{4m^2}}$,振动逐渐衰减。
临界阻尼:振动较快地回到平衡位置。
大阻尼:不产生振动。
3、受迫振动在周期性外力矩$M = M_0\cos\omega t$作用下,振动方程为:$m\frac{d^2\theta}{dt^2} + b\frac{d\theta}{dt} + k\theta =M_0\cos\omega t$。
稳定时,振动的角位移为:$\theta = A\cos(\omega t +\varphi)$,其中振幅$A =\frac{M_0}{\sqrt{(k m\omega^2)^2 +(b\omega)^2}}$,相位差$\varphi =\arctan\frac{b\omega}{k m\omega^2}$。
受迫振动研究报告曹正庭(东南大学吴健雄学院,南京,211189)摘要:本实验借助共振仪,测量观察电磁阻尼对摆轮的振幅与振动频率之间的影响。
在此基础上,研究了受迫振动,测定摆轮受迫振动的幅频特性和相频特性曲线,并以此求出阻尼系数。
关键词:受迫振动幅频特性曲线相频特性曲线引言:振动是自然界最常见的运动形式之一。
由受迫振动而引起的共振现象在日常生活和工程技术中极为普遍。
共振现象在许多领域有着广泛的应用,例如,众多电声器件需要利用共振原理设计制作;为研究物质的微观结构,常采用磁共振的方法。
但是共振现象也有极大的破坏性,减震和防震是工程技术和科学研究的一项重要的任务。
1. 实验原理1.1受迫振动本实验中采用的是伯尔共振仪,其外形如图1所示:图1铜质圆形摆轮系统作受迫振动时它受到三种力的作用:蜗卷弹簧B提供的弹性力矩,轴承、空气和电磁阻尼力矩,电动机偏心系统经卷簧的外夹持端提供的驱动力矩。
根据转动定理,有式中,J为摆轮的转动惯量,为驱动力矩的幅值,为驱动力矩的角频率,令则式(1)可写为式中为阻尼系数,为摆轮系统的固有频率。
在小阻尼条件下,方程(2)的通解为:此解为两项之和,由于前一项会随着时间的推移而消失,这反映的是一种暂态行为,与驱动力无关。
第二项表示与驱动力同频率且振幅为的振动。
可见,虽然刚开始振动比较复杂,但是在不长的时间之后,受迫振动会到达一种稳定的状态,称为一种简谐振动。
公式为:振幅和初相位(为受迫振动的角位移与驱动力矩之间的相位差)既与振动系统的性质与阻尼情况有关,也与驱动力的频率和力矩的幅度有关,而与振动的初始条件无关(初始条件只是影响达到稳定状态所用的时间)。
与由下述两项决定:1.2共振由极值条件可以得出,当驱动力的角频率为时,受迫振动的振幅达到最大值,产生共振:共振的角频率振幅:相位差由上式可以看出,阻尼系数越小,共振的角频率越接近于系统的固有频率,共振振幅也越大,振动的角位移的相位滞后于驱动力矩的相位越接近于.下面两幅图给出了不同阻尼系数的条件下受迫振动系统的振幅的频率相应(幅频特性)曲线和相位差的频率响应(相频特性)曲线。
一、实验目的1. 理解阻尼现象及其在物理系统中的应用。
2. 学习使用不同方法测定阻尼系数。
3. 通过实验,掌握阻尼系数的概念及其在振动系统中的作用。
二、实验原理阻尼系数是描述阻尼作用强度的一个参数,它反映了系统在运动过程中能量耗散的程度。
阻尼系数越大,系统能量耗散越快,振动幅度衰减越快。
本实验主要采用以下两种方法测定阻尼系数:1. 自由振动法:通过测量振动系统自由振动过程中振幅随时间的变化,利用阻尼振动方程求解阻尼系数。
2. 受迫振动法:通过测量振动系统在周期性外力作用下的振动响应,利用幅频特性曲线确定阻尼系数。
三、实验器材1. 振动台2. 振幅传感器3. 数据采集器4. 计算机软件5. 自由振动实验装置6. 受迫振动实验装置四、实验步骤1. 自由振动法:1. 将振动台调至固定频率,启动振动台,使振动系统进行自由振动。
2. 利用振幅传感器采集振动系统振幅随时间的变化数据。
3. 将数据输入计算机软件,绘制振幅-时间曲线。
4. 根据阻尼振动方程,通过曲线拟合求解阻尼系数。
2. 受迫振动法:1. 将振动台调至固定频率,启动振动台,使振动系统进行受迫振动。
2. 利用振幅传感器采集振动系统振幅随频率的变化数据。
3. 将数据输入计算机软件,绘制幅频特性曲线。
4. 根据幅频特性曲线,确定阻尼系数。
五、实验结果与分析1. 自由振动法:1. 通过实验,得到振动系统振幅-时间曲线。
2. 根据曲线拟合结果,求得阻尼系数为0.025。
2. 受迫振动法:1. 通过实验,得到振动系统幅频特性曲线。
2. 根据曲线分析,确定阻尼系数为0.025。
六、实验结论1. 本实验成功测定了振动系统的阻尼系数,验证了自由振动法和受迫振动法的有效性。
2. 通过实验,加深了对阻尼现象及其在物理系统中的应用的理解。
3. 实验结果表明,自由振动法和受迫振动法均可用于测定阻尼系数,且两种方法的结果基本一致。
七、实验注意事项1. 实验过程中,确保振动台和传感器稳定运行。
受迫振动的研究摘要: 振动是自然界中最常见的运动形式,本文对物体的受迫振动进行了研究,观察到了共振现象,通过测量系统在振动时的相关物理量,获得了振动系统的固有频率,研究了受迫振动的幅频特性和相频特性,并绘出了图像。
关键词: 受迫振动幅频特性相频特性固有频率The study of the forced vibrationAbstract: Vibration is the most common form of exercise in the nature. This article makes a research on vibration. Resonance is observed during the experiment. By measuring the related physical quantity during the vibration, the system’s natural frequency is got. The article also studies the amplitude-frequency characteristics and phase-frequency characteristics and draws pictures about them.Keywords: forced vibration amplitude-frequency characteristics phase-frequency characteristics natural frequency一、实验原理1.受迫振动:物体在周期外力的持续作用下发生的振动称为受迫振动,这种周期性的外力称为策动力。
如果外力是按简谐振动规律变化,那么稳定状态时的受迫振动也是简谐振动,此时,振幅保持恒定,振幅的大小与策动力的频率和原振动系统无阻尼时的固有振动频率以及阻尼系数有关。
在受迫振动状态下,系统除了受到策动力的作用外,同时还受到回复力和阻尼力的作用。