五、秩检验与游程检验
- 格式:ppt
- 大小:751.50 KB
- 文档页数:30
16种常用的数据分析方法汇总2015-11-10 分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
《社会统计学》课程大纲课程介绍统计是社会科学研究中广泛采用的定量分析方法。
本课程系统地介绍了社会统计学的基本原理、基本概念和主要内容,按照变量的四个测量层次(定类、定序、定距和定比),课程详细阐述了统计描述和统计推论的操作程序和具体方法,并结合生动的实例说明了统计分析在社会研究中的作用和地位。
作为一门初中级社会统计学课程,本课程内容限定在单变量和双变量统计范围之内。
教学大纲指导思想:社会现象的独特性和社会研究方法的特点决定了统计在社会研究中的重要地位,统计也因此而成为社会研究的重要工具和重要手段。
近十几年来,统计理论、统计方法和统计手段迅速发展,其应用范围也越来越广泛。
本课程的目的就是为深入这一领域建立一个基础和平台,即对统计的基本概念、原理、类型、方法、程序、作用等有基本的和概括了解与把握,并能应用这些知识对研究问题进行简单的统计分析。
本课程的教与学强调:第一,社会研究是一项系统的和严谨的工作,从研究设计资料收集资料整理分析撰写研究报告,各个步骤之间相互联系、相互影响,密不可分。
统计分析作为研究的一个重要环节,只有放在社会研究过程的背景之下,注重其与研究问题及研究方法的联系,才能更准确地掌握每一种统计类型和统计方法的特征,才能针对具体的研究问题选择恰当的统计方法。
第二,作为一门应用性极强的课程,本课程特别强调理论联系实际的原则,在教与学的过程中,一方面教师要通过列举和分析大量研究和应用实例,深化学生对统计原理的和统计思想的理解;另一方面要求学生将学习到的知识不断运用到对实际社会问题的分析中去。
为此,要求学生在学习课程讲授的知识的同时,认真完成每一讲后面所指定的“实践性”的练习。
第三,在实际的社会研究中,资料的统计分析都是通过计算机完成的。
各种统计描述和统计分析方法被制作成用于计算机的专门的和通用的统计软件,如SPSS、SAS、STATE等。
本课程将熟练掌握和灵活运用上述统计软件作为本课程教与学的不可分割的一部分。
16种常用的数据分析方法汇总2015-11-10分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:易9除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A单样本t检验:推断该样本来自的总体均数卩与已知的某一总体均数卩0常为理论值或标准值)有无差别;B配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10 以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
、名词解释1.社会统计学社会统计学是运用统计学的一般原理,对社会各种静态结构和动态趋势进行定量描述或推断的一种专门方法与技术。
人们既用它来分析已经发生和正在发生的现象,也用它来估计预测未来可能发生的现象。
2.国势学派产生于德国,其创始人为康令和阿亨瓦尔。
该学派一直以统计学为名,但只用文字记述,不用数字计量,历史上人们将该学派称为“有名无实”学派。
3.政治算术学派该学派的创始人为英国人格朗特和威廉·配第。
该学派“用数字、重量、尺度来表达自己想说的问题”,虽然没有使用统计学这一名词,但所使用的社会宏观数量对比和分析方法揭示了统计学所要研究的内容,因此历史上人们将这一学派称为“有实无名”学派。
马克思对配第评价很高,誉他为“政治经济学之父,在某种程度上也可以说是统计学的创始人”。
4.数理统计学派该学派的创始人未比利时人凯特勒,其最大的贡献就是将法国的古典概率论引入统计学,用纯数学的方法对社会现象进行研究。
由于把概率论引进统计学,使社会随机现象数量方面的研究提高了准确性。
因此,一门兼有数学和统计学双重意义的学科被命名为“数理统计学”。
凯特勒也被人称为“现代统计学之父”。
5.大量观察法大量观察法,就是就总体中足够多的单位进行调查和综合分析,用以反映社会总体的数量特征。
大量观察法是统计调查阶段的重要方法6.大数规律大数规律是随机现象出现的基本规律,它的一般意义是:观察过程中每次取得的结果可能不同(因为具有偶然性),但大量重复观察结果的平均值却几乎接近某个确定的数值。
7.描述性统计描述性统计,就是讨论范围仅以搜索的资料本身为限,而不予以扩大。
早期的统计都是描述统计。
8.推论性统计推论性统计,主要是依据概率论,研究如何依据有限资料对总体性质作推断,从而使统计的功能大为扩充。
是在树立统计学派之后发展起来的,属于比较现代的统计分析方法。
9.样本和(或)样本总体样本或样本总体,是通过抽样得到的用以推断总体特征的那个“部分”。
NIST随机性检测⽅法及应⽤要点NIST随机性检测⽅法及应⽤本科教学⼯程⼤学⽣创新创业训练研究1 引⾔密码算法是构建安全信息系统的核⼼要素之⼀,是保障信息与数据机密性、完整性和真实性的重要技术。
密码算法检测评估是密码算法研究的重要组成部分,它为密码算法的设计、分析提供客观的量化指标和技术参数,对密码算法的应⽤具有重要的指导意义.在密码算法的设计和评测过程中,需要从多个⽅⾯对其进⾏检测和分析。
“⼀次⼀密(One-Time Pad)”是序列密码产⽣的思想来源,序列密码的核⼼是通过固定算法,将⼀串短的密钥序列扩展为长周期的密钥流序列,且密钥流序列在计算能⼒内应与随机序列不可区分。
因此,分析秘钥流序列的随机性是密码算法安全性研究的重要内容,利⽤NIST检测⽅法对密码算法进⾏评测可以为理论分析提供⼤量参考数据,从⽽减少理论分析者的⼯作量,同时可以暴露出⽤现有的分析⽅法⽆法发现的安全漏洞。
2 NIST检测⽅法2.1 随机性检测随机性检测通常通过概率统计的⽅法考察被检测序列是否满⾜随机序列的某些特征以判定其是否随机。
从理论上讲,若被检测序列未通过某⼀随机性检测,可以肯定该序列不随机;但反之,若被检测序列能够通过某⼀种随机性检测,却不能肯定这个序列是随机的,即通过随机性检测是序列具有随机性的必要⾮充分条件。
因为各检测⽅法中的检测项⽬往往都是根据随机序列所表现出的某⼀⽅⾯的特征⽽设计的。
事实上,任何⼀个由有限种检测项⽬组成的集合都⽆法囊括随机性的所有⽅⾯。
但在实际应⽤中,如果这个检测的设计对于随机序列使⽤时的具体要求⽽⾔是充分的,且被检测序列⼜能通过该检测,则认为该序列的随机性是“合格”的。
随机性检测利⽤概率统计的⽅法对随机数发⽣器或者密码算法产⽣序列的随机性进⾏描述.不同的检测项⽬从不同的⾓度刻画待检测序列与真随机序列之间的差距.[]的⽅法.假设检验就是在总体分布未知或者只知其形式随机性检测通常采⽤假设检验但不知其参数的情况下,为了推断总体的某些性质⽽提出某些关于总体的假设,然后根据样本对提出的假设做出判断.随机性假设检验,就是已知真随机序列的某⼀⽅⾯符合⼀个特定的分布,那么假设待检测序列是随机的,则该待检测序列在这⽅⾯也应该符合这个特定的分布.2?value?PX服从法,这⾥以测试统计量在实际应⽤中,常⽤来衡量随机性的⽅法是分布为例来说明。
16种常用的数据分析方法汇总2015-11-10 分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。
1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。
常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。
1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。
2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
三、信度分析检査测量的可信度,例如调查问卷的真实性。
分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。
四、列联表分析用于分析离散变量或定型变量之间是否存在相关。
对于二维表,可进行卡方检验,对于三维表,可作Mentel-Hanszel分层分析。
秩和检验与游程检验在教学评价与测量中的应用案例
郭熙汉
【期刊名称】《汉口学院学报》
【年(卷),期】2016(009)001
【摘要】通过具体案例介绍秩和检验与游程检验在教学评价与测量中的应用,主
要解决的问题是如何评价一个定类变量和一个定序变量所反映的被评价对象的特征。
【总页数】4页(P43-46)
【作者】郭熙汉
【作者单位】汉口学院教学和科研督导中心,湖北武汉430212
【正文语种】中文
【中图分类】H315
【相关文献】
1.累计频次检验在教学评价与测量中的应用案例
2.S-P表检验在教学评价与测量中的应用案例
3.再测信度与复本信度在教学评价与测量中的应用案例
4.方差分析在
教学评价与测量中的应用案例5.符号检验和符号秩检验在教学评价与测量中的应
用案例
因版权原因,仅展示原文概要,查看原文内容请购买。