圆柱弹簧的设计计算
- 格式:doc
- 大小:419.50 KB
- 文档页数:13
圆柱螺旋弹簧设计计算
圆柱螺旋弹簧设计计算:
1. 理论背景:
a) 圆柱螺旋弹簧的原理:圆柱螺旋弹簧,也叫圆柱形螺旋弹簧,是由一组相互
交错的螺旋体和螺母组成的。
当加载时,弹簧体得到延伸,而螺母围绕弹簧体旋转,除把压缩和拉伸联结在一起发挥缓冲作用外,还具有润滑作用。
b) 圆柱螺旋弹簧设计原则:圆柱螺旋弹簧的设计应遵循计算公式、材料要求、
可行性等原则。
计算公式需要仔细考虑,其结果取决于弹簧的存在位置,构造形状和材料等因素,都受常规制造工艺条件的制约。
2. 设计流程:
a) 需求确定:确定所使用的圆柱螺旋弹簧的类型、材料、构造形状、尺寸和其
他设计要求。
b) 计算设计:根据设计要求和原则,运用有关计算公式,计算出所需弹簧的中
心周长和绕线转折处周长等参数。
c) 设计校核:根据实际使用情况及要求,综合分析由计算设计结果确定的弹簧
尺寸,进行结构安全性分析和性能验证,设计完善。
3. 成品检测:
a) 符合要求:圆柱螺旋弹簧成品检查,校验其各尺寸参数是否符合要求,确保
图纸尺寸的准确性。
b) 功能测试:检查弹簧的功能是否正常,测试弹簧的位移、压缩、伸出和伸长
量是否符合要求。
c) 耐久性测试:测试圆柱螺旋弹簧的耐久性,检测其在一定环境条件下的使用
寿命和安全性。
4. 总结:
圆柱螺旋弹簧的设计计算是一个复杂的过程,在设计计算前要确定需求,根据
设计原则完成计算设计流程,确保设计质量,对成品进行检测,及时发现存在的质量问题,提高质量水平。
圆柱螺旋压缩弹簧计算1.圆柱螺旋压缩弹簧的计算原理:圆柱螺旋压缩弹簧的计算原理基于胡克定律和弹性力学理论。
胡克定律指出,在弹性范围内,弹簧的变形量与外力之间存在线性关系。
根据弹性力学理论,圆柱螺旋压缩弹簧的变形量与载荷、弹簧材料的物理性质以及弹簧的几何尺寸相关。
2.弹性系数的计算:弹簧的弹性系数是指单位变形量产生的弹力大小,通常用牛顿/米(N/m)表示。
对于圆柱螺旋压缩弹簧,其弹性系数的计算公式为:K=(Gd^4)/(8D^3n)其中,K为弹性系数,G为剪切模量,d为线径,D为弹簧直径,n为弹簧的有效圈数。
3.刚度系数的计算:弹簧的刚度系数是指单位载荷产生的变形量大小,通常用米/牛顿(m/N)表示。
对于圆柱螺旋压缩弹簧,其刚度系数的计算公式为:C=1/K其中,C为刚度系数,K为弹性系数。
4.变形量的计算:ΔL=(F*L)/(n*Gd^4/8D^3)其中,ΔL为变形量,F为外力大小,L为弹簧的自由长度,n为弹簧的有效圈数,G为剪切模量,d为线径,D为弹簧直径。
5.实例分析:假设有一个圆柱螺旋压缩弹簧,其线径为10mm,弹簧直径为50mm,有效圈数为10,剪切模量为80GPa,弹簧的自由长度为100mm。
现在对该弹簧进行计算。
首先计算弹性系数K:K=(80*10^9Pa*(10/1000)^4)/(8*(50/1000)^3*10)≈8.025N/m然后计算刚度系数C:C=1/K≈0.1249m/N最后计算变形量ΔL:假设外力F为100NΔL = (100N * 100mm) / (10 * (80 * 10^9 Pa * (10 / 1000)^4) / (8 * (50 / 1000)^3))综上所述,圆柱螺旋压缩弹簧的计算涉及弹性系数、刚度系数和变形量的计算。
根据弹簧的几何尺寸、材料性质和外力大小,可以通过相应的计算公式得到这些参数,从而进行弹簧的设计和选择。
圆柱螺旋弹簧计算圆柱螺旋弹簧是一种常见的弹簧结构,广泛应用于机械、汽车、电子等领域。
它的作用是根据外力的作用而发生形变,储存能量,并在外力解除后产生回弹力。
计算圆柱螺旋弹簧的参数与性能是设计和使用弹簧的重要内容,下面将详细介绍如何计算圆柱螺旋弹簧。
首先,需要明确圆柱螺旋弹簧的基本结构。
圆柱螺旋弹簧由螺旋线圈和两端的固定部分组成。
常见的参数包括螺旋线圈的内径和外径、线径、弹簧的总长度、螺旋线圈的数量等。
在计算圆柱螺旋弹簧的过程中,需要涉及到以下几个关键参数:1. 弹性系数(Spring constant):弹性系数是指弹簧在承受单位长度的形变时所产生的弹性力。
可以通过材料的力学性能参数、弹簧的几何参数和弹簧的截面形状等来计算和确定。
2. 自由长度(Free length):自由长度是指弹簧在没有受到任何外力时所处的长度。
可以根据设计需求和螺旋线圈的总数来确定。
3. 延伸长度(Extension length):延伸长度是指弹簧在受到外力拉伸时所产生的形变长度。
可以通过弹簧的自由长度和形变量来计算。
4. 刚度(Stiffness):刚度是指当弹簧被拉伸或压缩时单位长度所受到的力的大小。
可以通过弹簧的弹性系数和长度来计算。
5. 最大拉伸长度(Maximum deflection):最大拉伸长度是指弹簧能够承受的最大形变量。
可以根据弹簧的材料特性和几何参数来计算。
接下来,我们将逐步介绍如何计算圆柱螺旋弹簧的各个参数。
1. 弹性系数(Spring constant)弹性系数是指单位长度内所受到的弹性力。
对于圆柱螺旋弹簧而言,弹性系数可以通过以下公式来计算:K=(Gd^4)/(8D^3n)其中,K为弹性系数,G为材料的剪切模量,d为线径,D为螺旋线圈的直径,n为螺旋线圈的总数。
2. 自由长度(Free length)自由长度是指弹簧在没有受到任何外力时所处的长度。
自由长度可以根据设计需求和螺旋线圈的总数来确定。
圆柱螺旋弹簧设计计算表
4 - 16
外径Demax. 350 mm工作线圈数nmin. 3比
率b/h1:5 - 5:1自由长度L0max. 1500 mm长细
比L0/D1 - 15间距p(0.2 - 0.4) D - 无预压弹簧
弹簧收尾设计
.
A =半圈
B = 整圈
C = 侧面整圈
D =双扭曲整圈
E = 侧面双扭曲整圈
F = 内部整圈
G =. 提高的挂勾H = 侧面提高的挂勾L = 锥形旋转小圈收尾I = 小圈J = 侧面小圈K = 倾斜的整圈
M = 锥形旋转螺栓收尾N = 螺丝状收尾O = 螺丝状束缚收尾
拉伸弹簧通常使用几种不同高度和特性的挂钩来固定(A..J)。
从技术角度讲,固定挂钩是最好的解决方案,但是,这也带来弹簧负载的一些确定问题。
弹簧负载带给挂钩集中的负载应力,该负载应力可能明显地高于弹簧线圈所计算的应力。
针对在挂钩中产生的弯曲应力,小圈(类别 I, J)或双圈(类别 D, E)是最佳方案。
针对由线变成线圈所产生的集中的扭转应力,侧边整圈(类别 C,E,I)是最佳方案。
对于挂钩的独立设计,以下挂钩高度值指定如下:
热成型弹簧,方形线圈弹簧以及循环负载弹簧通常无弹簧卡钩使用(M..O. design)。
无固定挂钩弹簧使用边缘线圈固定,弹簧功能变形中线圈间距不会变化。
圆柱螺旋压缩弹簧计算公式
弹簧常量(Spring Constant)是指单位压缩或拉伸长度下所储存的能量。
它是衡量弹簧刚性和柔性的重要指标。
圆柱螺旋压缩弹簧的弹簧常量可以通过以下公式计算:
k=(Gd^4)/(8D^3n)
其中,k为弹簧常量,G为弹簧材料的剪切模量,d为弹簧线圈的直径,D为弹簧线圈的平均直径,n为弹簧线圈的总数。
F = kx
其中,F为受到的力,k为弹簧常量,x为弹簧的位移。
Fmax = kxmax
其中,Fmax为最大力,k为弹簧常量,xmax为允许的最大位移。
Lmax = Ln - (D/2 + d/2 + c)
其中,Lmax为最大压缩长度,Ln为弹簧线圈的总长度,D为弹簧线圈的平均直径,d为弹簧线圈的直径,c为线圈间的缝隙。
x_max = (Ln - L0) / n
其中,x_max为最大位移,Ln为弹簧线圈的总长度,L0为弹簧的初始长度,n为弹簧线圈的总数。
S=F/x
其中,S为刚度,F为受到的力,x为位移。
E = (1/2)kx^2
其中,E为弹性能量,k为弹簧常量,x为位移。
以上就是关于圆柱螺旋压缩弹簧的计算公式。
通过这些公式,我们可以准确地计算弹簧的性能参数,为机械设计提供依据,并确保弹簧在实际使用中能够正常工作。
当然,在实际设计中,还需要考虑许多其他因素,如疲劳寿命、可靠性和安全系数等,并结合实际应用需求进行综合设计。
圆柱螺旋弹簧设计计算标准
圆柱螺旋弹簧的设计及计算是现代机械设计制造行业中很重要的
一个环节,而圆柱螺旋弹簧是在工业机械领域中最常用的一种精密弹
簧设备。
因此,为了保证圆柱形螺旋弹簧的质量,了解其设计和计算
标准,对实现可靠性和可持续性是非常重要的。
首先,圆柱形螺旋弹簧的设计标准主要包括它的端面形状、平面
尺寸、齿筒外径、材料条件和载荷等。
一般情况下,弹簧的端面形状
可以是多支或一支,而其平面尺寸可以根据实际应用的不同而有所不同。
齿筒外径则要根据弹簧飞线的大小以及端面形状和平面尺寸等来
确定,材料条件则要根据实际安装位置和使用状况来考虑,而载荷数
值也是要根据实际使用状况和圆柱形螺旋弹簧的计算分析结果来确定的。
其次,圆柱形螺旋弹簧的计算标准主要根据它的工作状态来确定,这些状态可以分为压缩,拉伸和扭矩等几种。
压缩状态下,主要需要
计算圆柱形螺旋弹簧端面之间的扭转比和本行转角;拉伸状态下,则
要计算其弹簧金曲线;而扭矩状态下,要算出简单或复杂混合扭矩系
数。
除此之外,还要根据实际状态去计算铰接数据,这些数据包括铰
接段长度和铰接面与安装平面的联系系数等。
总的来说,圆柱形螺旋弹簧的设计和计算标准非常复杂,需要经
过综合分析和计算,以确保设计的正确性。
它的设计标准主要是端面
形状、平面尺寸和载荷等,而它的计算标准则主要根据它的工作状态、金曲线和铰接数据等来确定。
此外,还要考虑材料条件和试验要求等,才能实现有效的圆柱形螺旋弹簧设计。
圆柱螺旋拉伸弹簧的设计计算
首先,弹簧材料的选择是设计弹簧的第一步。
弹簧一般由钢材制成,
常用的有普通碳素钢、合金钢等。
材料的选择主要考虑弹性模量、屈服强
度和抗疲劳性能等指标。
一般情况下,选择具有较高屈服强度和良好抗疲
劳性能的钢材作为弹簧材料。
接下来,需要确定弹簧的几何参数,包括弹簧线圈数、线径、外径和
自由长度等。
这些参数的确定需要根据弹簧设计的工作条件和性能要求进
行计算。
其中,弹簧线圈数的确定是根据弹簧的刚度要求和可用的安装空
间来确定的。
线径和外径的选择需要考虑到弹簧的受力情况,一般来说,
线径越大,弹簧的刚度越大,外径越大,弹簧的承载能力越大。
自由长度
是指弹簧在没有受力时的长度,它的选择需要考虑到装配和安装上的要求。
最后,弹簧的刚度需要根据设计要求来确定。
弹簧的刚度表示了弹簧
在受力时的变形程度,刚度越大,变形越小。
弹簧的刚度可以通过加载和
测量弹簧受力变形来确定,也可以通过计算公式进行估算。
常用的计算公
式有虎克公式、彼得逊公式和牛顿公式等。
根据这些公式,可以根据弹簧
的几何参数和受力情况来计算弹簧的刚度。
总结起来,圆柱螺旋拉伸弹簧的设计计算包括弹簧材料的选择、弹簧
的几何参数计算以及刚度的确定等。
在进行计算时,需要考虑到弹簧设计
的工作条件和性能要求,并通过加载和测量弹簧受力变形或计算公式来确
定弹簧的各项参数。
这样设计出的弹簧可以满足工程应用的需求,保证安
全可靠地工作。
圆柱螺旋压缩弹簧计算公式圆柱螺旋压缩弹簧是机械中常用的一种元件,可以用于各种机械装置中,用于提供压缩力、缓冲力和储能等功能。
圆柱螺旋压缩弹簧的设计和计算公式一般包括弹簧刚度、载荷、工作长度、自由长度等参数的计算。
下面将详细介绍圆柱螺旋压缩弹簧的计算公式。
1.弹簧刚度:弹簧刚度是指弹簧在单位长度内所产生的载荷与该长度内的变形之比,用符号C表示,其单位为N/mm。
弹簧刚度可以通过几何参数和材料的弹性模量来计算。
若弹簧线直径为d,弹簧线直径外形半径为D,圈数为n,弹簧长度为L,则弹簧刚度C的计算公式为:C=(Gd^4)/(8D^3n)其中,G为弹簧材料的剪切模量,d和D的单位为mm,n为无量纲。
2.载荷:载荷是指施加在弹簧上的力或重量,用符号F表示,其单位为N。
载荷的大小会影响到弹簧的变形和工作性能。
3.工作长度:工作长度是指弹簧在工作状态下的长度,也称为工作高度,用符号H表示,其单位为mm。
工作长度的大小与弹簧的刚度和载荷有关。
4.自由长度:自由长度是指弹簧在无外力作用时的长度,用符号L0表示,其单位为mm。
自由长度的大小与弹簧线直径、圈数和线径外径有关。
根据载荷、工作长度和自由长度,可以计算出弹簧的变形量。
变形量是指弹簧在工作状态下相对于自由状态下的变化长度,用符号δ表示,其单位为mm。
5.弹簧力:弹簧力是指弹簧在工作状态下所产生的力,用符号Fspring表示,其单位为N。
弹簧力可以通过弹簧刚度和变形量的乘积来计算。
Fspring = C * δ其中C为弹簧刚度,δ为变形量。
综上所述,圆柱螺旋压缩弹簧的计算公式包括弹簧刚度、载荷、工作长度、自由长度和弹簧力等参数的计算公式。
这些参数的计算可以帮助工程师根据具体的需求来选择和设计合适的圆柱螺旋压缩弹簧,以满足机械装置的要求。
圆柱螺旋压缩弹簧计算示例弹簧设计和计算主要包括5个步骤:确定工作要求、选择弹簧材料、确定工作状态、计算参数、验算和修改。
首先,我们需要明确工作要求,包括弹簧的负载、行程以及工作环境等。
以一些机械设备为例,我们假设需要设计一个圆柱螺旋压缩弹簧用于支撑一个重物,重量为200N,弹簧的行程为100mm。
接下来,我们要选择合适的弹簧材料。
弹簧常用的材料有优质碳钢、合金钢等。
根据弹簧的使用环境和要求,我们选择了优质碳钢。
假设选择了SWOSC-V(石油淬火碳钢)材料。
然后,我们需要确定工作状态。
在设计弹簧时,一般有两种工作状态,即静态状态和动态状态。
静态状态是指弹簧处于固定位置不变形的状态,动态状态是指弹簧在加载和卸载过程中发生的变形。
根据设备的使用情况,我们假设弹簧在动态状态下工作。
接下来,我们计算弹簧的参数。
首先,需要计算弹簧的刚度系数(也称为弹性系数)。
刚度系数可以用于计算弹簧的变形量和弹簧的伸缩力。
刚度系数的计算公式为:k=(Gd^4)/(8D^3N)其中,k表示刚度系数,G表示弹簧材料的剪切模量,d表示弹簧线径,D表示弹簧的平均直径,N表示弹簧的圈数。
弹簧的线径和圈数需要根据设计要求和实际情况进行选择。
在本示例中,我们假设线径为10mm,圈数为10。
根据所选材料表中的数据,我们可以得到弹簧材料的剪切模量G为80GPa。
将以上参数代入计算公式,我们可以得到刚度系数k的数值。
接下来,我们需要计算弹簧的变形量。
在动态状态下,弹簧在被加载和卸载过程中会发生变形。
变形量的计算公式为:δ=(Pd^3)/(8ND^3G)其中,δ表示变形量,P表示弹簧的工作负载。
将以上参数代入计算公式,我们可以得到弹簧的变形量。
最后,我们需要进行验算和修改。
根据设计的计算结果,我们可以对弹簧的参数进行验算,包括弹簧的弹性系数和变形量。
如果计算结果不符合要求,需要进行相应的修改,如增大线径或圈数来增加刚度系数,或者选择材料的不同等。
% 圆柱螺旋压缩弹簧设计计算% M文件中的表16-3和表16-5见参考文献[1]% 已知条件:最小和最大弹簧载荷、工作行程、剪切弹性模量、许用应力、最小内径F1=500;F2=1200;h=60;G=7.85e4;sigma=1420;D1_min=50;% 1-按照强度条件确定弹簧丝直径% 由于弹簧丝材料强度与它的直径相关,需要采用试算法ds=input(' 试选弹簧丝直径(mm) ds = ');sigma_b=input(' 按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = ');tau_p=0.45*sigma_b;fprintf(' 许用剪切应力tau_p = %3.4f MPa \n',tau_p);Cj=D1_min/ds+1;fprintf(' 计算弹簧指数Cj = %3.4f \n',Cj);C=input(' 按照表16-5,选择弹簧指数C = ');Kq=(4*C-1)/(4*C-4)+0.615/C;fprintf(' 计算曲度系数Kq = %3.4f \n',Kq);dj=sqrt(8*Kq*F2*C/(pi*tau_p));fprintf(' 计算簧丝直径dj = %3.4f mm \n',dj);if dj>dsdisp ' 不安全,需要重选弹簧丝直径'elsedisp ' 安全'd=ds; % 确定弹簧丝直径end第1次试算:试选弹簧丝直径(mm) ds = 6按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = 1420许用剪切应力tau_p = 639.0000 MPa计算弹簧指数Cj = 9.3333按照表16-5,选择弹簧指数C = 9计算曲度系数Kq = 1.1621计算簧丝直径dj = 7.0721 mm不安全,需要重选弹簧丝直径第2次试算:试选弹簧丝直径(mm) ds = 7按照表16-3,选择弹簧丝强度极限(MPa) sigma_b = 1370许用剪切应力tau_p = 616.5000 MPa计算弹簧指数Cj = 8.1429按照表16-5,选择弹簧指数C = 8计算曲度系数Kq = 1.1840计算簧丝直径dx = 6.8520 mm安全% 2-按照刚度条件确定弹簧工作圈数Kj=(F2-F1)/h;fprintf(' 计算弹簧刚度Kj = %3.4f N/mm \n',Kj);nj=G*d/(8*C^3*Kj);fprintf(' 计算弹簧圈数nj = %3.4f \n',nj);n=input(' 选取弹簧工作圈数n = ');n2=input(' 选取弹簧支承圈数n2 = ');n1=n+n2;fprintf(' 弹簧总圈数n1 = %3.4f \n',n1);% 计算弹簧的刚度和变形量Kp=G*d/(8*C^3*n);f1=F1/Kp;f2=F2/Kp;fprintf(' 弹簧实际刚度Kp = %3.4f N/mm \n',Kp);fprintf(' 弹簧最小变形量f1 = %3.4f mm \n',f1);fprintf(' 弹簧最大变形量f2 = %3.4f mm \n',f2);计算结果:计算弹簧刚度Kj = 11.6667 N/mm计算弹簧圈数nj = 11.4990选取弹簧工作圈数n = 12选取弹簧支承圈数n2 = 2弹簧总圈数n1 = 14.0000弹簧实际刚度Kp = 11.1796 N/mm弹簧最小变形量f1 = 44.7243 mm弹簧最大变形量f2 = 107.3383 mm% 3-弹簧稳定性校核D2=C*d;fprintf(' 弹簧中径D2 = %3.4f mm \n',D2);delta=input(' 选取相邻两圈弹簧丝间隙系数delta = ');t=(1+delta)*d+f2/n; % 圆柱螺旋压缩弹簧fprintf(' 弹簧节距t = %3.4f mm \n',t);Y=input(' 选取弹簧端部结构类型Y = '); % 弹簧端部结构类型:1或是2if Y==1H0=n*t+(n2-0.5)*d;elseif Y==2H0=n*t+(n2+1)*d;endfprintf(' 弹簧自由高度H0 = %3.4f mm \n',H0);b=H0/D2;fprintf(' 弹簧高径比 b = %3.4f \n',b);% 采用3次样条插值确定圆柱螺旋弹簧不稳定系数CbDBZC=input(' 选取弹簧端部支承类型DBZC = '); % 弹簧端部支承类型:1、2、3 switch DBZCcase 1 % 1-弹簧两端固定支承bx=[5.3 5.4 5.5 5.75 6 6.5 7 7.5 8 8.5 9 10];Cby=[0.80 0.65 0.60 0.45 0.40 0.325 0.265 0.225 0.19 0.165 0.145 0.125];case 2 % 2-弹簧一端固定、一端自由支承bx=[3.7 3.85 4 4.5 5 5.5 6 6.5 7 8 9 10];Cby=[0.80 0.60 0.50 0.31 0.24 0.20 0.17 0.15 0.13 0.105 0.08 0.075];case 3 % 3-弹簧两端自由支承bx=[2.6 2.8 3 3.5 4 4.5 5 5.5 6 7 8 9 10];Cby=[0.8 0.5 0.4 0.27 0.21 0.15 0.12 0.09 0.075 0.05 0.04 0.03 0.025]; endCb=interp1(bx,Cby,b,'spline'); % 3次样条插值fprintf(' 弹簧不稳定系数Cb = %3.4f \n',Cb);% 绘制圆柱螺旋弹簧不稳定系数Cb线图plot(bx,Cby,'ro',bx,Cby);grid on;xlabel('\bf\it b');ylabel('\bf\it Cb');title('\bf 弹簧不稳定系数线图');switch DBZCcase 1gtext('\bf 1-弹簧两端固定支承')case 2gtext('\bf 2-弹簧一端固定、一端自由支承')case 3gtext('\bf 3-弹簧两端自由支承')endFc=Cb*Kp*H0;fprintf(' 弹簧稳定临界载荷Fc = %3.4f N \n',Fc);if Fc<F2disp ' 弹簧工作不稳定,需要改变参数或是加装导向装置'elsedisp ' 弹簧工作稳定'end计算结果:弹簧中径D2 = 56.0000 mm选取相邻两圈弹簧丝间隙系数delta = 0.15弹簧节距t = 16.9949 mm选取弹簧端部结构类型Y = 1弹簧自由高度H0 = 214.4383 mm弹簧高径比 b = 3.8293选取弹簧端部支承类型DBZC = 3弹簧不稳定系数Cb = 0.2278弹簧稳定临界载荷Fc = 546.0792 N弹簧工作不稳定,需要改变参数或是加装导向装置。
15.3 圆柱螺旋压缩(拉伸)弹簧的设计计算(三) 圆柱螺旋压缩(拉伸)弹簧受载时的应力及变形圆柱螺旋弹簧受压或受拉时,弹簧丝的受力情况是完全一样的。
现就下图<圆柱螺旋压缩弹簧的受力及应力分析>所示的圆形截面弹簧丝的压缩弹簧承受轴向载荷P的情况进行分析。
由图<圆柱螺旋压缩弹簧的受力及应力分析a>(图中弹簧下部断去,末示出)可知,由于弹簧丝具有升角α,故在通过弹簧轴线的截面上,弹簧丝的截面A-A呈椭圆形,该截面上作用着力F及扭矩。
因而在弹簧丝的法向截面B-B上则作用有横向力Fcosα、轴向力Fsinα、弯矩M=Tsinα及扭矩Tˊ= T cosα。
由于弹簧的螺旋升角一般取为α=5°~9°,故sinα≈0;cosα≈1(下图<圆柱螺旋压缩弹簧的受力及应力分析b>),则截面B-B上的应力(下图<圆柱螺旋压缩弹簧的受力及应力分析c>)可近似地取为式中C=D2/d称为旋绕比(或弹簧指数)。
为了使弹簧本身较为稳定,不致颤动和过软,C值不能太大;但为避免卷绕时弹簧丝受到强烈弯曲,C值又不应太小。
C值的范围为4~16(表<常用旋绕比C值>), 常用值为5~8。
圆柱螺旋压缩弹簧的受力及应力分析常用旋绕比C值为了简化计算,通常在上式中取1+2C≈2C(因为当C=4~16时,2C>>l,实质上即为略去了τp),由于弹簧丝升角和曲率的影响,弹簧丝截面中的应力分布将如图<圆柱螺旋压缩弹簧的受力及应力分析>c 中的粗实线所示。
由图可知,最大应力产生在弹簧丝截面内侧的m点。
实践证明,弹簧的破坏也大多由这点开始。
为了考虑弹簧丝的升角和曲率对弹簧丝中应力的影响,现引进一个补偿系数K(或称曲度系数),则弹簧丝内侧的最大应力及强度条件可表示为式中补偿系数K,对于圆截面弹簧丝可按下式计算: 圆柱螺旋压缩(拉伸)弹簧受载后的轴向变形量λ可根据材料力学关于圆柱螺旋弹簧变形量的公式求得:式中:n—弹簧的有效圈数;G—弹簧材料的切变模量,见前一节表<弹簧常用材料及其许用应力>。
1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量〔拉压行程〕。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4.下表是GB/T23935-2021〔圆柱螺旋弹簧设计计算〕中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下列图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程〔角度〕;
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2021〔圆柱螺旋弹簧设计计算〕中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
圆柱螺旋压缩弹簧设计计算
对于圆柱螺旋压缩弹簧的设计计算,首先需要确定压缩弹簧的基本
参数,包括弹簧的长度、弹簧的外径、弹簧的内径、弹簧的压缩高度、弹簧的圈数和弹簧的负荷。
同时还需要确定使用材料、计算等级设定
及拉伸曲线等参数。
其次,在设计确定基本参数后,根据几何原则和
结构分析相关理论,建立并编制圆柱螺旋压缩弹簧的数据库,并利用
数据库,结合实际需求和使用条件,根据弹簧的形状调整所需的参数值,计算所需的特定压缩量。
然后根据已建立的弹性平面曲线及弹簧
的拉伸性能,做好拉伸及压缩弹簧计算,并绘制出压缩弹簧的荷载-位
移曲线。
最后,对于一些特殊形状的压缩弹簧,像外面添加一组悬挂
环等,需要根据实际情况另行计算,确保压缩弹簧正确行使其作用。
综上所述,圆柱螺旋压缩弹簧设计计算主要需要确定压缩弹簧的基本
参数,建立并编制弹簧的数据库,根据弹簧的拉伸性能进行计算,并
绘制压缩弹簧的荷载-位移曲线,最后,对边添加了特殊结构的压缩弹簧,也要另行计算,以确保压缩弹簧正确执行其功能。
圆柱螺旋压缩弹簧计算圆柱螺旋压缩弹簧计算是设计和制造压缩弹簧的重要步骤。
压缩弹簧广泛应用于各种机械设备和工具中,例如汽车悬挂系统、工业机械、家电等。
在进行圆柱螺旋压缩弹簧计算时,需要考虑到材料的性质、几何参数和应力分析等因素。
首先,进行圆柱螺旋压缩弹簧计算之前需要了解弹簧的工作条件和设计要求。
这包括弹簧所受的力、位移和弹簧的寿命要求等。
根据这些要求,可以确定弹簧的材质、弹簧线直径、绕制方向等。
传统的圆柱螺旋压缩弹簧计算方法是根据胡克定律来进行的。
胡克定律表明,弹簧的弹性应变与所受的应力成正比。
根据弹簧的线性弹性行为,可以得到以下的胡克定律方程:F=k·δ式中,F表示所受的力,k表示弹簧的刚度,δ表示弹簧的压缩位移。
根据胡克定律,我们可以获得刚度k的计算公式:k=Gd^4/(8NαD^3)式中,G表示弹簧材料的剪切模量,d表示弹簧线直径,N表示弹簧的总匝数,D表示弹簧的平均直径,α表示绕制角度。
通过这些参数的计算,可以得到弹簧的刚度。
然后,我们需要计算弹簧的自由长度。
自由长度是指在没有外力作用下,弹簧的长度。
自由长度的计算公式如下:L0=N·P式中,L0表示自由长度,N表示弹簧的总匝数,P表示弹簧线的间距。
除了刚度和自由长度,还需要计算弹簧的压缩长度。
压缩长度是指弹簧在受到外力压缩后的长度。
压缩长度的计算公式如下:d=L0-δ式中,d表示弹簧的压缩长度,L0表示自由长度,δ表示弹簧的压缩位移。
弹簧的应力分析也是圆柱螺旋压缩弹簧计算的关键。
弹簧在受到外力作用时,会发生应力的变化。
这些应力会直接影响到弹簧的性能和寿命。
因此,在计算中需要考虑到弹簧的应力分布情况。
弹簧的应力分布可以通过以下公式计算得到:σ=F/A式中,σ表示弹簧的应力,F表示所受的力,A表示弹簧的截面积。
除了弹簧的应力分布,还需要计算弹簧的最大应力。
弹簧的最大应力是指弹簧所能承受的最大应力。
计算弹簧的最大应力可以通过以下公式得到:σmax = Kn · σ式中,σmax表示弹簧的最大应力,Kn表示安全系数。
1. 弹簧刚度:
2. 力值: 其中:G 为材料剪切模量,一般不锈钢取71500Mpa,碳钢取
78500Mpa ;
d 为材料直径;
D 为弹簧中径;
n 为弹簧有效圈数;
f 为变形量(拉压行程)。
3. 应力: K 为曲度系数,公式为: 其中C 为弹簧旋绕比,是弹簧中径与线径的比值,即
4. 下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中压缩弹簧及拉伸弹簧的试验切应力及许用应力表
表2-1
n D d G 34
,
8P =f 8f 34,
⋅==n D Gd P P K PC K ⋅=⋅=2
3d 8d 8PD ππτC
C C K 615.04414+--=d D
C =
比压簧多了初拉力,加上初拉力就行。
初拉力: 其中初拉力τ0按初切应力图选取,见下图。
三.扭簧:
1.计算刚度 Dn
Ed M 3670'4= Nmm/° 2.扭矩 ϕ⋅=Dn
Ed M 36704
Nmm 式中:d---材料直径;
E---材料的弹性模量,一般不锈钢丝取188000Mpa ,碳素钢丝
取206000Mpa ;
D---弹簧外径;
ϕ---弹簧的扭转行程(角度);
4. 应力: K1为曲度系数,顺旋向扭转取1,逆旋向扭转时按下式:
308τπ⋅=D d P 132
.10K d
M ⋅=σ
下表是GB/T23935-2009(圆柱螺旋弹簧设计计算)中扭转弹簧的试验切应力及许用应力表
C
C C C K 4414221---=。
圆柱螺旋扭转弹簧设计计算目前,广泛应用的弹簧应力和变形的计算公式是根据材料力学推导出来的。
若无一定的实际经验,很难设计和制造出高精度的弹簧,随着设计应力的提高,以往的很多经验不再适用。
例如,弹簧的设计应力提高后,螺旋角加大,会使弹簧的疲劳源由簧圈的内侧转移到外侧,所有的计算也只是给我们一个大的方向从而减少研发成本。
下面我给大家介绍下大至的计算方法。
(见图一)圆线弹黄64 • 180 ∙Af ∙ // ∙ D12∙180∙Λ∕∙∏∙Z)1 2∙ 180-螺旋线圈构成的圆柱形弹簧,工作线圈间为恒定间距,能够承受垂直于环绕轴沿着卷绕方向和反方向的扭力。
线径大于16mm的弹簧通常为冷卷。
热成型弹簧用于强负载的直径大于IOnIm的较大尺寸弹簧。
备注:该计算设计用于线圈卷绕方向的扭转负载,不计入弹簧内部或外部导向零件的支撑效果。
也不计入出现的摩擦效果。
线圈之间的可能的摩擦也不计入在内。
适合中低负载、线性工作特性、相关低弹簧系数、低费用。
扭簧按两种基本设计制造:紧和松(线圈间隙)。
如果是静态负载,紧凑的线圈为推荐选项。
但是,工作线圈之间出现摩擦,这将导致弹簧寿命减少。
另外,线圈的过于接近的间隙阻止弹簧完美喷丸。
备注:承载负载过程中,在卷绕方向上的负载弹簧长度增加。
热成型弹簧通常一定在线圈之间会有间隙。
C二弹簧指数(c=D∕d; c=D∕t)[-]b二线宽[单位:mm, in]d二线径[单位:mm, in]D二中心弹簧直径[单位:mm, in]M二弹簧负载[Nmπι, Ib in]E=拉伸弹性模量[MPa, psi]k二扭转弹簧率[Nmm∕° , Ib in∕° ]Kb=曲线修正因数[-]LK=卷绕部分的长度[单位:mm, in]n=工作线圈数[-]P二线圈间距[单位:mm, in]廿线厚度[单位:mm, in]a=角度偏移[° ]dθ=自由弹簧的角度[。
]S=弹簧材料的弯曲应力[MPa, psi]曲线修正因数、修正因数显示弹簧来自曲线的额外应力、弹簧功能尺寸。
圆柱弹簧的设计计算(一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。
由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。
弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。
圆柱螺旋弹簧的几何尺寸参数普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。
普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式参数名称及代号计算公式备注压缩弹簧拉伸弹簧中径D2 D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值内径D1 D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d(二)特性曲线弹簧应具有经久不变的弹性,且不允许产生永久变形。
因此在设计弹簧时,务必使其工作应力在弹性极限范围内。
在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。
为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。
这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。
对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线>所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。
右图a中的H0是压缩弹簧在没有承受外力时的自由长度。
弹簧在安装时,通常预加一个压力 Fmin,使它可靠地稳定在安装位置上。
Fmin称为弹簧的最小载荷(安装载荷)。
在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λmin。
Fmax为弹簧承受的最大工作载荷。
在Fmax作用下,弹簧长度减到H2,其压缩变形量增到λmax。
圆柱螺旋压缩弹簧的特性曲线λmax与λmin的差即为弹簧的工作行程h,h=λmax-λmin。
Flim为弹簧的极限载荷。
在该力的作用下,弹簧丝内的应力达到了材料的弹性极限。
与Flim对应的弹簧长度为H3,压缩变形量为λlim。
等节距的圆柱螺旋压缩弹簧的特性曲线为一直线,亦即压缩弹簧的最小工作载荷通常取为 Fmin=(0.1~0.5)Fmax;但对有预应力的拉伸弹簧(图<圆柱螺旋拉伸弹簧的特性曲线>), Fmin>F0,F0为使只有预应力的拉伸弹簧开始变形时所需的初拉力。
弹簧的最大工作载荷Fmax,由弹簧在机构中的工作条件决定。
但不应到达它的极限载荷,通常应保持Fmax≤0.8Flim。
弹簧的特性曲线应绘在弹簧工作图中,作为检验和试验时的依据之一。
此外,在设计弹簧时,利用特性曲线分析受载与变形的关系也较方便。
圆柱螺旋拉伸弹簧的特性曲线(三) 圆柱螺旋压缩(拉伸)弹簧受载时的应力及变形圆柱螺旋弹簧受压或受拉时,弹簧丝的受力情况是完全一样的。
现就下图<圆柱螺旋压缩弹簧的受力及应力分析>所示的圆形截面弹簧丝的压缩弹簧承受轴向载荷P的情况进行分析。
由图<圆柱螺旋压缩弹簧的受力及应力分析a>(图中弹簧下部断去,末示出)可知,由于弹簧丝具有升角α,故在通过弹簧轴线的截面上,弹簧丝的截面A-A呈椭圆形,该截面上作用着力F 及扭矩。
因而在弹簧丝的法向截面B-B上则作用有横向力Fcosα、轴向力Fsinα、弯矩M=Tsinα及扭矩Tˊ= Tcosα。
由于弹簧的螺旋升角一般取为α=5°~9°,故sinα≈0;cosα≈1(下图<圆柱螺旋压缩弹簧的受力及应力分析b>),则截面B-B上的应力(下图<圆柱螺旋压缩弹簧的受力及应力分析c>)可近似地取为式中C=D2/d 称为旋绕比(或弹簧指数)。
为了使弹簧本身较为稳定,不致颤动和过软,C 值不能太大;但为避免卷绕时弹簧丝受到强烈弯曲,C值又不应太小。
C值的范围为4~16(表<常用旋绕比C值>), 常用值为5~8。
圆柱螺旋压缩弹簧的受力及应力分析常用旋绕比C值d(mm) 0.2~0.4 0.45~1 1.1~2.22.5~6 7~16 18~42C=D2/d 7~145~12 5~10 4~94~8 4~6为了简化计算,通常在上式中取1+2C≈2C(因为当C=4~16时,2C>>l,实质上即为略去了τp),由于弹簧丝升角和曲率的影响,弹簧丝截面中的应力分布将如图<圆柱螺旋压缩弹簧的受力及应力分析>c中的粗实线所示。
由图可知,最大应力产生在弹簧丝截面内侧的m点。
实践证明,弹簧的破坏也大多由这点开始。
为了考虑弹簧丝的升角和曲率对弹簧丝中应力的影响,现引进一个补偿系数K(或称曲度系数),则弹簧丝内侧的最大应力及强度条件可表示为式中补偿系数K,对于圆截面弹簧丝可按下式计算:圆柱螺旋压缩(拉伸)弹簧受载后的轴向变形量λ可根据材料力学关于圆柱螺旋弹簧变形量的公式求得:式中:n—弹簧的有效圈数;G—弹簧材料的切变模量,见前一节表<弹簧常用材料及其许用应力>。
如以Pmax代替P则最大轴向变形量为:1) 对于压缩弹簧和无预应力的拉伸弹簧:2)对于有预应力的拉伸弹簧:拉伸弹簧的初拉力(或初应力)取决于材料、弹簧丝直径、弹簧旋绕比和加工方法。
用不需淬火的弹簧钢丝制成的拉伸弹簧,均有一定的初拉力。
如不需要初拉力时,各圈间应有间隙。
经淬火的弹簧,没有初拉力。
当选取初拉力时,推荐初应力τ0'值在下图的阴影区内选取。
初拉力按下式计算:使弹簧产生单位变形所需的载荷kp称为弹簧刚度,即弹簧初应力的选择范围弹簧刚度是表征弹簧性能的主要参数之一。
它表示使弹簧产生单位变形时所需的力,刚度愈大,需要的力愈大,则弹簧的弹力就愈大。
但影响弹簧刚度的因素很多,由于kp与C的三次方成反比,即C值对kp的影响很大。
所以,合理地选择C值就能控制弹簧的弹力。
另外,kp还和G、d、n有关。
在调整弹簧刚度时,应综合考虑这些因素的影响。
(四) 承受静载荷的圆柱螺旋压缩(拉伸)弹簧的设计弹簧的静载荷是指载荷不随时间变化,或虽有变化但变化平稳,且总的重复次数不超过次的交变载荷或脉动载荷而言。
在这些情况下,弹簧是按静载强度来设计的。
在设计时,通常是根据弹簧的最大载荷、最大变形、以及结构要求(例如安装空间对弹簧尺寸的限制)等来决定弹簧丝直径、弹簧中径、工作圈数、弹簧的螺旋升角和长度等。
具体设计方法和步骤如下:1) 根据工作情况及具体条件选定材料,并查取其机械性能数据。
2) 选择旋绕比C,通常可取C≈5~8(极限状态时不小于4或超过16),并算出补偿系数 K 值。
3) 根据安装空间初设弹簧中径D2,乃根据C值估取弹簧丝直径d,并查取弹簧丝的许用应力。
4) 试算弹簧丝直径d '必须注意,钢丝的许用应力决定于其σB,而σB是随着钢丝的直径变化的,又因[τ]是按估取的d值查得σB的H计算得来的,所以此时试算所得的d '值,必须与原来估取的d值相比较,如果两者相等或很接近,即可按标准圆整为邻近的标准弹簧钢丝直径d,并按D2=Cd 以求出;如果两者相差较大,则应参考计算结果重估d值,再查其而计算[τ],代入上式进行试算,直至满意后才能计算D2.计算出的D2,值也要按表<普通圆柱螺旋弹簧尺寸系列>进行圆整。
5) 根据变形条件求出弹簧工作圈数:对于有预应力的拉伸弹簧对于压缩弹簧或无预应力的拉伸弹簧6) 求出弹簧的尺寸D、D1、H0,并检查其是否符合安装要求等。
如不符合,则应改选有关参数(例如C值)重新设计。
7) 验算稳定性。
对于压缩弹簧,如其长度较大时,则受力后容易失去稳定性(如下图a),这在工作中是不允许的。
为了便于制造及避免失稳现象,建议一般压缩弹簧的长细比b=H0/D2按下列情况选取:当两端固定时,取b<5.3;当一端固定,另一端自由转动时,取b<3.7;当两端自由转动时,取b<2.6。
压缩弹簧失稳及对策当b大于上述数值时,要进行稳定性验算,并应满足Fc=CukpH0>Fmax式中:Fc——稳定时的临界载荷;Cu——不稳定系数,从下图<不稳定系数线图>中查得;Fmax——弹簧的最大工作载荷。
如 Fmax>Fc时,要重新选取参数,改变b值,提高Fc值,使其大于Fmax值,以保证弹簧的稳定性。
如条件受到限制而不能改变参数时,则应加装导杆(如上图b)或导套(如上图c)。
导杆(导套)与弹簧间的间隙c值(直径差)按下表(导杆(导套)与弹簧间的间隙表)的规定选取。
不稳定系数线图导杆(导套)与弹簧间的间隙中径D2/(mm) ≤5>5~10 >10~18 >18~30 >30~50 >50~80 >80~120 >120~150间隙c/(mm) 0.6 1 2 3 4 5 6 78) 进行弹簧的结构设计。
如对拉伸弹簧确定其钩环类型等,并按表<普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式>计算出全部有关尺寸。
9) 绘制弹簧工作图。
例题设计一普通圆柱螺旋拉伸弹簧。
已知该弹簧在-定载荷条件下工作,并要求中径D2≈18mm,外径D≤22mm。
当弹簧拉伸变形量λ1=7.5mm时,拉力P1=180N,拉伸变形量λ2=17mm时,拉力P2=340N。
[解]1.根据工作条件选择材料并确定其许用应力因弹簧在一般载荷条件下工作,可以按第Ⅲ类弹簧考虑。
现选用Ⅲ组碳素弹簧钢丝。
并根据D-D2≤22-18 mm=4 mm,估取弹簧钢丝直径为3.0mm。
由表<弹簧钢丝的拉伸强度极限>暂选σB=1275MPa,则根据表16-2可知[τ]=0.5σB=0.5×1275 MPa=637.5 MPa。
2.根据强度条件计算弹簧钢丝直径现选取旋绕比C=6,则得于是有改取d=3.2mm。
查得σB=1177MPa,[τ]=0.5σB=588.5MPa,取D2=18,C=18/3.2=5.625,计算得 K=1.253,于是上值与原估取值相近,取弹簧钢丝标准直径d=3.2mm(与计算值3.22mm仅差0.6%,可用)。
此时D2=18mm,为标准值,则D=D2+d=18+3.2 mm =21.2 mm<22 mm所得尺寸与题中的限制条件相符,合适。
3.根据刚度条件,计算弹簧圈数n.弹簧刚度为由表<弹簧常用材料及其许用应力>取G=79000MPa,弹簧圈数n为取n=11圈;此时弹簧刚度为kp=10.56×16.8/11 N/mm =16.12 N/mm4.验算1)弹簧初拉力P0=P1-kPλ1=180-16.12×7.5 N=59.1 N初应力τ0',得当C=5.62时,可查得初应力τ0'的推茬值为65~150MPa,故此初应力值合适。