车床精度对零件加工精度的影响
- 格式:docx
- 大小:17.13 KB
- 文档页数:3
机械加工精度影响及措施发布时间:2021-07-09T01:30:20.874Z 来源:《防护工程》2021年9期作者:吴涛[导读] 机械加工时精度会受到各方面因素影响,需要做好针对性控制措施,提高机械设备加工质量。
身份证号码:37010419760117xxxx 山东省 250000摘要:机械加工时精度会受到各方面因素影响,需要做好针对性控制措施,提高机械设备加工质量。
文中分析机械加工时的影响因素,结合实际情况给出控制措施,提高机械加工质量,为类似研究提供借鉴,推动我国机械加工质量与水平的提升。
关键词:机械加工;精度影响;控制措施机械制造中合理运用数控技术,提高机械制造质量与效率,因此在实际中得到广泛应用。
机械制造领域广泛运用数控技术,实际操作时有很多问题需要注意。
通过分析数控技术优势,总结影响到数控技术应用质量的因素,给出针对性的控制措施,切实发挥数控技术的作用。
1、机械加工精度的影响因素分析1.1 内在因素机械加工工艺对零部件加工精度影响的一大因素就是内在因素,主要包括:加工系统出现几何精度误差;机械设备操作不规范,这些因素对加工精度罂粟较大,且无法彻底消除。
如机械设备存在几何精度误差时,造成生产出来的零部件出现误差,影响到设备使用。
第一,对金属零件加工时,如果使用道具的精度本身就不够,容易对最终的精度造成影响。
在加工过程中刀具与零件之间会摩擦,从而造成道具的磨损,这种磨损程度随着使用频率的提升会越来越严重,最终影响零件的加工精度。
第二,机床本身对金属零件加工时,处于高速运转状态,在不断的运行过程中,机床的回旋误差也会累加,最终造成偏离问题,影响加工精度。
1.2 车床因素数控加工技术主要是在计算机编写的程序下进行生产,因此程序本身对于加工生产的效率和质量起着决定性的因素。
计算机的控制也是生产质量的保障。
因此在程序的编写过程中,需要保证科学性、合理性。
但在实际工作中编程过程中,也会出现不同程度的差错,导致对设备的功能控制水平不高,严重影响设备价值的发挥。
数控车床加工精度的影响因素及对策探讨一、数控车床的性能对加工精度的影响1. 机床的刚性数控车床的刚性对加工精度有着直接的影响。
如果机床的刚性不足,容易出现振动和变形,从而导致加工精度下降。
提高机床的刚性是提高加工精度的重要因素之一。
对策:采用高刚性的机床结构设计,选择优质材料制造机床,增加机床的重量和稳定性,提高机床的抗振能力。
2. 伺服系统性能伺服系统是数控车床的核心部件,影响着机床的定位精度和运动平稳性。
伺服系统性能的好坏直接关系着数控车床的加工精度。
对策:选择优质的伺服系统,增加伺服系统的分辨率,提高伺服系统的控制精度,减小伺服系统的滞后和误差。
对策:优化数控系统的控制算法,提高数控系统的控制精度,采用高性能的控制器和编程软件,保证数控车床的加工精度。
二、刀具对加工精度的影响1. 刀具的质量和几何参数刀具的质量和几何参数直接决定了加工表面的光洁度和形状精度。
如果刀具的质量差或者几何参数不合适,会直接影响到加工精度。
对策:选择优质的刀具材料,采用合理的刀具几何参数设计,保证刀具的稳定性和精度。
2. 刀具的磨损和断裂刀具的磨损和断裂也是影响数控车床加工精度的重要因素。
一旦刀具磨损过大或者断裂,会导致加工表面粗糙,形状失真甚至加工中断。
对策:建立科学的刀具管理制度,定期对刀具进行检查和维护,及时更换磨损严重的刀具,避免刀具断裂造成损失。
三、刀路设计对加工精度的影响1. 切削参数的选择切削参数的选择直接关系着加工表面的精度和光洁度。
如果切削参数选择不当,容易造成加工表面粗糙、振动和变形,从而影响加工精度。
对策:根据工件材料、加工情况和刀具性能选择合适的切削参数,保证切削过程的稳定性和加工精度。
2. 刀具路径设计刀具路径设计直接影响着加工表面的形状精度和轮廓精度。
如果刀具路径设计不合理,容易出现残余槽痕、振动和留痕等问题,影响加工精度。
对策:优化刀具路径设计,采用高效的刀具路径生成软件,减小刀具路径长度和交叉次数,减少振动和残余槽痕,保证加工精度。
机床误差对加工精度的影响机床误差是机床的制造、安装误差和使用中的磨损形成的。
在机床的各类误差中,对工件加工精度影响较大的主要是主轴回转误差和导轨误差。
主轴回转误差:机床主轴是带动工件或刀具回转以产生主要切削运动的重要零件。
其回转运动精度是机床主要精度指标之一,主要影响零件加工表面的几何形状精度、位置精度和表面粗糙度。
主轴回转误差主要包括其径向圆跳动、轴向窜动和摆动。
造成主轴径向圆跳动的主要原因是轴径与轴承孔圆度不高、轴承滚道的形状误差、轴与孔安装后不同轴以及滚动体误差等。
主轴径向圆跳动将造成工件的形状误差。
造成主轴轴向窜动的主要原因有推力轴承端面滚道的跳动、轴承间隙等。
以车床为例,主轴轴向窜动将造成车削端面与轴心线的垂直度误差。
主轴前后轴颈的不同轴以及前后轴承、轴承孔的不同轴会造成主轴出现摆动现象。
摆动不仅会造成工件尺寸误差,而且还会造成工件的形状误差。
导轨误差:导轨是确定机床主要部件相对位置的基准件,也是运动的基准,它的各项误差直接影响着工件的精度。
以数控车床为例,当床身导轨在水平面内出现弯曲(前凸)时,工件上产生腰鼓形误差,如图2—97a 所示;当床身导轨与主轴轴心线在垂直面内不平行时,工件上会产生鞍形误差,如图2一97b所示;而当床身导轨与主轴轴心线在水平面内不平行时,工件上会产生锥形误差,如图2—97c 所示。
事实上,数控车床导轨在水平面和垂直面内的几何误差对加工精度的影响程度是不一样的。
影响最大的是导轨在水平面内的弯曲或与主轴轴心线的平行度,而导轨在垂直面内的弯曲或与主轴轴心线的平行度对加工精度的影响则很小,甚至可以忽略。
如图2—98所示,当导轨在水平面和垂直面内都有一个误差△时,前者造成的半径方向的加工误差△R =△,而后者△R ≈△2/d ,完全可以忽略不计。
因此,对于几何误差所引起的刀具与工件间的相对位移,如果该误差产生在加工表面的法线方向,则对加工精度构成直接影响,即为误差敏感方向;若位移产生在加工表面的切线方向,则不会对加工精度构成直接影响,即为误差非敏感方向。
车床精度对加工精度的影响车床性能的主要考核指标是加工精度和生产率。
这二者取决于机床的静态特性(如机床静态的儿何精度和刚度)和机床的动态特性(即运动精度,包括主轴回转精度、刀架、溜板沿床身导轨的直线运动精度和运动的均匀性、稳定性)以及机床的抗振性能(加工过程的稳定性)。
主轴回转精度和刀具运动的直线性,决定着被加工零件的形状精度和尺寸分散度。
刀具低速运动的等速性和刀具与工件之间的相对振幅,决定着被加工零件表面的粗糙度。
零件的尺寸精度是在加匸过程中对刀具进行调整而达到的,而零件的形状精度和位置精度主要取决于机床本身所具有的精度。
对具体的加工零件而言,其加工精度要求高,则机床的精度也应相应地咼。
一、主轴的回转精度主轴部件的回转精度直接影响工件的儿何形状(圆度、端面平面度…)误差、尺寸误差和表面粗糙度。
实际上主轴部件的回转精度还应包含它的刚度和抗振性能。
这些性能的组合,方能保证车床主运动的回转精度。
1.1主轴精度:指主轴的各档支承轴颈、安装齿轮、卡盘表面的精度,通常是测量主轴前后支承轴颈及其它各有关回转轴颈、轴肩的径向圆跳动和端面圆跳动,根据机床精度的要求,将其控制在一定的数值范围之内。
对于主轴上安装轴承的前后支承轴颈的径向圆跳动,一般允许为加工零件公差的1/3左右。
1.2主轴轴承对主轴回转精度的影响:一般希望山于主轴前后轴承的径向圆跳动而引起的主轴前端的径向圆跳动不超过主轴的总的允许径向跳动量的l/3o前轴承径向圆跳动量对主轴回转精度的影响很大,而后轴承径向圆跳动量的影响相对较小。
所以一般在选用主轴的滚动轴承时,常使前轴承的精度比后轴承的精度高一级。
1.3主轴部件的刚度:在动态时,曲于切削力、传动力的作用将引起主轴部件变形。
这是由于主轴上各组成环节(如轴承等元件)的接触变形和主轴的弯曲变形而产生的,通常以主轴前端的变形量来度量。
二、床身导轨的精度床身导轨面是测量车床的各项儿何精度和反映加工精度的基准面。
数控机床加工精度的影响因素及提高方法数控机床加工精度是衡量机床性能和加工质量的重要指标之一。
机床加工精度的高低直接影响到加工零件的尺寸精度和表面质量。
正确理解数控机床加工精度的影响因素及提高方法,可以有效提高机床加工精度,满足不同的加工要求。
一、影响因素1. 机床本身的精度:机床加工精度的高低取决于机床本身精度的高低。
包括机床的机械结构精度、控制系统精度以及加工刀具等。
2. 工件加工材料的性质:工件的材料的硬度、韧性、温度等都会影响加工时的切削力、振动、温度变化等,从而影响机床加工精度。
3. 切削工艺参数:如切削速度、进给量、切削深度和切削方向等,都会对零件的尺寸和形状精度产生影响。
4. 加工环境:加工环境的湿度、温度、气压等也会对机床加工精度产生影响。
特别是在高温、潮湿的环境中长时间工作,会导致机床部件热膨胀和受潮,进而影响机床加工精度。
二、提高方法1. 优化机床结构:通过提高机床的机械结构精度,例如采用高刚性材料,优化结构设计,优化装配工艺等,以提高机床加工精度和稳定性。
2. 提高控制系统精度:控制系统是数控机床的重要组成部分。
通过对机床控制系统进行优化,提高控制精度、数据传输速率和控制方式等。
例如采用高精度伺服电机、编码器、传感器等辅助检测设备,提高机床的动态响应能力和精度。
3. 优化加工工艺:根据工件材料的特性,优化加工刀具的选型、切削工艺参数等,以确保加工过程中的稳定性和精度。
4. 控制加工环境:通过控制加工环境的温度、湿度、气压等条件,提高机床加工精度和稳定性。
综上所述,数控机床加工精度的影响因素和提高方法是相互关联的。
只有综合考虑机床结构、控制系统、加工工艺和加工环境等各个方面因素,才能最大限度的提高机床加工精度和稳定性,从而满足不同的加工要求。
1 、数控车床加工精度的影响因素数控车床实际工作的过程中,往往会承受着多种因素的影响,这就使其加工精度受到了严重的影响,因此需要积极的关注相关因素的处理,为加工效果提供相对于可靠的保障。
数控车床作为重要的设备,应该得到相对于可靠的维护,在具体的维护过程中,应该重视一些细节问题的存在,保证其可以发挥出正常的利用价值。
1.1 伺服驱动系统在基本的数控车床之中,伺服驱动系统扮演着非常重要的角色,其能够保证零件加工工作更为顺畅的开展。
主要是借助于滚珠丝杠完成有效的定位,之后借助于伺服电机进行合理的驱动控制,这样能够保证滚珠丝杠的基本精确度。
一般来说,在数控车床中,应用较为广泛的是半闭环型伺服系统,在开展相应的加工活动时,电机呈现出反方向的运行状态时,会产生较为明显的空隙空运转情况,这样便会导致相应的间隙类型存在着较为明显的误差。
在数控车床转动机构和运动机构的综合外力作用下,会表现出极为明显的弹性变形情况,加工的位置以及其他的区域位置则会彰显出基本的差异,这就使得一些弹性间隙产生,直接的威胁到加工的精度。
在进行误差分析的过程中,需要重视方向间隙的存在,同时还需要考虑正向运转中存在的误差叠加情况。
上述提及的问题都会导致相应的精度呈现出降低的趋势,无法达到较为理想的管理控制标准,难以迎合基本的控制要求。
1.2 车刀参数的影响通常来讲,在数控车床的加工实践中,往往是借助于编程控制的基本手段落实车刀的调整,保证可以更加顺畅的开展零部件的切削工作,由此让其基本的形状符合相应的要求。
在车削加工的基本环节之中,车刀一般会反映出主偏角以及刀尖圆弧半径的基本数值,在对棒料进行适当的加工时,轴向的尺寸还是很容易产生一些误差问题,面对这样的情况应该做出合理的分析,判断这类误差和主偏角往往是呈现出一种反比的关系,当不断地增加相应的主偏角之后,相应的误差可以适当的降低,但是对比于刀尖圆弧半径来看,两者之间还是存在着正比的关联。
如果在具体加工的过程中车刀的参数发生了较为显著的变化,会使得相应的精度受到较为直接的影响。
数控车床轴类零件加工的精确度控制数控车床是一种高效的机械加工设备,可用于高精度的零件加工。
在数控车床上加工轴类零件时,精确度控制是非常重要的。
该文档将探讨数控车床轴类零件加工的精确度控制。
本文将从以下方面进行介绍:1. 数控车床轴类零件加工的基本要求2. 数控车床中影响精确度的因素3. 如何控制数控车床轴类零件的精度1. 数控车床轴类零件加工的基本要求在数控车床上加工轴类零件需要符合一些基本的要求。
首先,加工出的轴应该具有高精度和高质量。
其次,加工出的轴应该符合所需的尺寸和形状。
最后,加工过程应该具有高效性和节省时间。
2. 数控车床中影响精确度的因素在数控车床上加工轴类零件时,有许多因素会影响精度。
其中包括以下几个重要方面:1. 材料:轴材料必须具有一定的强度和稳定性,这样才能保证加工时的精度。
另外,当材料硬度较高时,可能会影响加工的精度。
2. 刀具:刀具是数控车床上非常重要的一个因素。
刀具类型、使用寿命等属性会影响加工的精度。
3. 机床参数:机床参数对加工精度也有很大影响。
例如,床身的刚性、主轴的精度、导轨的质量等等都会对整个加工精度产生影响。
4. 程序编程:数控车床需要通过程序实现精确的加工过程,因此程序编程的合理性对精度控制至关重要。
如果程序有错误,则可能导致加工不准确。
5. 环境因素:数控车床加工的环境因素,如温度和湿度,也会影响加工精度。
3. 如何控制数控车床轴类零件的精度为了控制数控车床轴类零件的精度,我们需要采取以下措施:1. 优化切削条件:切削参数包括刀具的选择、加工速度、进给率、切削深度等。
为了使加工达到最佳效果,应尽可能优化切削条件。
2. 优化加工技术:在加工过程中,应使用最先进的加工技术。
例如,应该尽可能使用工艺小切削,避免轴类零件受到过多的削除力。
3. 优化程序设计:程序设计应该尽可能合理化,尽可能减少加工中学习模式的重复。
4. 优化材料选择:在选择轴材料时,应尽量选择稳定性高的材料,以确保加工效果的一致性。
DOI:10.16661/ki.1672-3791.2017.31.085数控车床加工精度的影响因素及措施①钟新元(东莞市凯安机械配件有限公司 广东东莞 523705)摘 要:加工产品的质量和精度由数控车床机械部件加工过程决定。
因此从这个方面看,数控车床是机械部件生产加工的核心。
本文基于数控车床的工作原理、组成和特点,分析了加工精度的影响因素,提出了控制和提高加工精度的有效方法。
关键词:数控车床 加工精度 影响因素中图分类号:TG519 文献标识码:A 文章编号:1672-3791(2017)11(a)-0085-02①作者简介:钟新元(1969,4—),男,汉族,广东梅州人,大专,初级工程师,研究方向:机械加工及机械工艺。
数控车床是很先进的加工设备,对社会经济效益都非常好。
车床加工水平、产品生产控制水平的准确性具有非常重要的影响,随着生产水平的提高,相应的数控车床加工有更高的要求,车床生产的加工精度,取决于车床精度及编程精度。
还有很多方面的影响,整体精度的好坏可能由于加工中的每一步对错导致。
零件的加工精度的好坏有很多原因,怎么提升数控车床精度,不仅要思考很多因素,并且需要讨论一些技巧来解决问题,加工精度才能更好的提升。
1 数控机床设备的组成及特点1.1 数控机床设备的组成(1)主机:主机是数控车床的主体,包括床、主轴、立柱、进给机构等机械部件,还可用于完成各种切削机械零件。
(2)数控装置:数控车床的核心为数控装置,包括软件和硬件设备(印刷电路板等),数字部件加工程序的输入和存储就依靠它,为实现各种控制功能可以处理和更改数据。
(3)驱动装置:驱动装置是数控车床执行器的驱动部分,有主轴驱动单元、主轴电机、进给电机、进给单元等,可以使用电动液压伺服系统。
在数控装置的控制下,实现主轴驱动和进给驱动。
同时将几个进给联动,可以促成工件的定位和各种直曲线等空间曲线的加工。
(4)加工辅助装置:辅助设备数控机床在运行中的一些必要设施,确保数控机床正常运行,其功能包括冷却,除屑、润滑等,包括液压装置、切屑清除装置、数控转盘及监控装置。
数控车床加工精度的影响因素与提高策略数控车床是一种高精度加工设备,其加工精度不仅取决于设备本身的性能,还与材料、工具、切削参数等多个因素相关。
本文将介绍数控车床加工精度的影响因素及提高策略。
1. 加工材料:材料的不同硬度、强度等物理性质会对加工精度产生重要影响。
例如,硬度较高的材料难以加工,容易导致工件表面粗糙或者变形;密度差异大的材料易出现工序失衡,导致加工精度下降。
2. 工件形状:工件的形状特征对加工精度的影响比较复杂。
较为复杂的形状难以进行一次定位加工,会导致加工误差累积。
同时,不同形状特征的工件所需要的切削角度、刀具尺寸等参数也会对加工精度产生影响。
3. 切削参数:切削参数包括刀具的切削速度、喂进速度、刀具尺寸、切削深度等。
不同材料、形状的工件所需要的切削参数不同,选择不当会导致加工误差。
4. 原始精度:数控车床的原始精度是指在无外部干扰,只考虑设备本身的情况下,加工精度的最高水平。
如果设备本身的精度不高,那么即使其余加工环节完美,最终的加工效果也无法得到保证。
1. 加强设备保养:设备的精度会随着长时间使用而下降,加强设备保养,定期更换磨损的部件可以有效提高设备的原始精度。
2. 选择合适的材料:根据加工需求选择合适的材料,避免在加工过程中产生过大的物理变形。
3. 合理选用切削参数:结合工件的形状、材料特性等,合理选用切削参数。
在每个加工工序中精细调整,避免误差累积。
4. 使用合适的加工技术:选择合适的加工技术能够有效提高加工精度。
例如,使用喷雾冷却、选择刀具尺寸配合等技术均可提升加工精度。
5. 提高自动化程度:自动化程度越高的数控车床,其加工效率和精度也越高。
因此,在实践中应尽量提高设备的自动化程度。
6. 定期检测设备质量:定期对设备采取全面、系统的检测,能够及时发现设备质量方面的问题,有利于制定及时的提升策略。
以上就是数控车床加工精度的影响因素与提高策略,加强设备保养、合理材料、切削参数、加工技术选择、自动化程度和定期检测设备质量等措施都能够对数控车床加工精度的提升产生积极影响。
数控车床加工精度的影响因素及提高措施摘要:时代不断进步,机械制造行业发展突飞猛进,数控技术得到了广泛的应用,借助于数控机床能够极大地提升零件加工精度,使得数控机床工作质量得到切实保障。
然而,现阶段由于我国机械生产加工中存在各种外来因素的干扰,各国行业对于零件加工精度要求不断提升,使得数控车床加工难度不断增大,甚至存在诸多不良因素,严重制约数控车床的长远发展。
故此,本文针对数控车床加工精度的影响因素展开讨论,并提出相关的提高措施。
关键词:数控车床;加工精度;影响因素;提高策略在机械制造领域中,数控车床的出现不仅提升了机械加工的整体效率,并且促进了工业的生产加工发展,带来了经济效益与社会效益等。
在利用数控车床进行机械作业的过程中,应该加强产品的精度控制,确保产品的质量。
然而,随着自动化技术的高速发展,数控车床的加工精度越来越高,因此机械工程单位应该加强数控车床加工精度影响因素的探究,如程序编写精度、伺服精度等,并加强对材料差异、安装技术的控制,确保数控车床加工精度的有效提升。
1.分析数控车床设备的基本特征与过去的普通车床相比较,数控车床具备一些特有的特征:其一,加工技艺更精湛。
数控车床的精度有很大提升,使得产品加工质量有了保障;其二,数控车床的科技设备更先进。
例如完善了多坐标联动机制,使得复杂机械工件加工成为现实,并且提升了加工能力;其三,提升了加工效率。
假若需要处理的机械工件较为复杂,传统型的加工手段往往需要借助于多个设备,但是利用数控车床只需要借助于一些程序修改即可精简加工流程,极大地提升了加工效率;其四,就整体层面来说,加工效率的提升使得生产时间有所增加,按照相关市场调查数据显示,我国数控车床的生产效率比传统型车床提升了2-4倍;其五,就车床设备机制层面来说,数控车床自动化模式更加优化,不仅节省了人力资源,减少劳动力需求,并且极大地缓解了机械工作人员的工作压力;其六,加工工艺更加精密化,操作人员能够掌握更加专业的技能,使得生产出来的产品质量更高。
机床主轴的回转误差对加工精度的影响【关键词】机床主轴的回转误差径向圆跳动轴向窜动纯角度摆动措施【摘要】工艺系统的几何误差是指机床、夹具、刀具和工件的原始误差(机床、夹具、刀具的制造误差以及工件毛坯和半成品所存在的误差等)。
这些误差在加工中会或多或少地反映到工件上去,造成加工误差。
随着机床、夹具、刀具在使用过程中逐渐磨损,工艺系统的几何误差将进一步扩大,工件的加工精度也就相应的降低。
而机床的几何误差包括了:机床的制造精度、安装误差和磨损引起的误差。
在加工过程中也会将这些误差会反映到工件上去,影响加工精度。
一.机床主轴回转误差的概念主轴回转误差是指主轴各瞬间的实际回转轴线相对其平均回转轴线的变动量。
产生主轴径向回转误差的主要原因有:主轴几段轴颈的同轴度误差、轴承本身的各种误差、轴承之间的同轴度误差、主轴绕度等。
因为机床的主轴传递着主要的加工运动,故其回转误差将在很大的程度上决定工件的加工质量。
衡量机床主轴回转误差的主要指标是主轴回转误差的指标是主轴前端的径向圆跳动和轴向窜动。
生产中主要用图1所示的方法来测量这种误差,不同类型和精度的机床,对跳动量有不同的要求,例如:对于普通的中型车床,标准规定,在靠近主轴端面处径向圆跳动允许差值为0.01mm,距第一测点300mm处允许值为0.02mm,轴向窜动允许为0.01mm.图1结论:主轴的实际回转轴线对其理想回转轴线(一般用平均回转轴线来代替)产生的偏移量。
而主轴的回转误差实际上是其基本形式:径向圆跳动、轴向窜动和纯角度摆动三种误差的合成。
由于主轴实际的回转轴线在空间的位置是在不断的变化的,也就是上述的三种运动所产生的位移(误差)是一个瞬时值。
二.主轴回转运动误差对加工精度的影响一般情况下,只能用一定精度的机床加工出一定精度的工件。
尽管各类机床的精度标准各不同,但归纳起来,车间的所有机床,我们分为:1.主轴误差1)工件回转类车床车床加工(工件回转,刀具移动)误差敏感方向不变即是在加工轴类零件时通过刀刃外(内)圆表面的法线方向。
导轨对机床精度的影响班级:姓名:摘要:介绍机床床身导轨的精度对机床精度有决定性影响, 它直接影响被加工零件的尺寸、形状和位置误差值; 导轨的磨损是造成机床床身导轨精度下降的根本原因, 并以不同的形式对被加工零件的误差产生影响; 导轨的磨损包括磨粒磨损、粘着磨损和腐蚀磨损等.关键词:导轨精度磨损误差0.序言机床作为工作母机,其动态特性将直接影响加工精度和品质。
机床导轨是机床各主要部件相对位置和运动的基准,它的精度直接影响机床成形运动之间的相互位置关系。
因此,它是产生工件形状误差和位置误差的主要因素之一。
1.机床床身导轨精度及其对机床精度的影响1. 1 机床床身导轨精度床身导轨的精度包括导轨的导向精度、刚度等。
(1) 导轨的导向精度主要是指导轨运动轨迹的精确度。
影响导向精度的因素包括导轨的几何精度和接触精度、导轨的结构形式、导轨及其支承件的刚度和热变形、静(动)压导轨副之间的油膜厚度及其刚度等。
(2)导轨的刚度包括导轨的自身刚度和接触刚度, 它表示导轨受载后抵抗变形的能力, 是导轨工作质量的重要指标。
若导轨变形过大, 则刚度很差, 这不仅严重破坏导轨的导向精度和影响各部件之间的相对位置, 还会使工作条件恶化, 导轨上的比压分布不均, 加剧导轨的磨损。
(3)导轨的接触刚度受耐磨度的影响很大, 导轨的耐磨度是指导轨在工作过程中抵抗磨损的能力, 它对导轨的精确保持度有重要影响。
导轨的精确保持度是指导轨在工作过程中各种精度保持不变的程度,主要由导轨的耐磨性和抗振性决定, 并与导轨的材料、导轨副的摩擦性质、导轨上的比压及其分布规律有关。
尤其在机床低速运行时, 则伴随有振动出现, 此时还要求导轨要有良好的阻尼特性, 以抑制和衰减振动, 减少被加工表面的波纹度和振纹。
1. 2 导轨精度对机床精度的影响床身导轨是装在机床床身上的, 床身导轨面是测量机床各项几何精度和反映加工精度的基准面。
无论是空载或是承受切削载荷时, 这个基准面都应保证刀具运动的直线性( 导向)精度, 使刀具获得均匀而平稳的直线送进。
零件加工精度的影响因素及工艺优化设计【摘要】零件加工精度是制造过程中非常重要的一个指标,直接影响着产品的质量和性能。
本文旨在分析零件加工精度的影响因素,并提出了三种工艺优化设计方法,包括工艺参数的调整、工艺路线的优化以及加工设备的改善。
通过实验验证,验证了这些方法的有效性。
在总结了本文的研究成果,并展望了未来的研究方向。
本文的创新点在于提出了多种工艺优化设计方法,为提高零件加工精度提供了新的思路和方法。
通过本文的研究,可以为制造业提高零件加工精度提供一定的参考和指导。
【关键词】零件加工精度、影响因素、工艺优化设计、实验验证、引言、背景介绍、研究意义、研究目的、正文、工艺优化设计方法一、工艺优化设计方法二、工艺优化设计方法三、总结、展望、创新点。
1. 引言1.1 背景介绍零件加工精度是衡量零件质量和工艺水平的重要指标,对于提高产品质量、降低成本具有至关重要的作用。
随着工业技术的不断发展和进步,零件加工精度的要求也越来越高,尤其是对一些高精度零部件的加工更是如此。
在传统的机械加工过程中,零件加工精度受到多种因素的影响,包括材料性能、加工工艺、设备精度等。
随着数控技术、CAD/CAM技术的广泛应用,工艺优化设计成为提高零件加工精度的重要手段。
通过优化设计工艺流程、选择合适的加工参数和工艺路线,可以有效提高零件加工精度,降低加工成本,提高生产效率。
深入研究零件加工精度的影响因素及工艺优化设计方法具有重要的理论和实际意义。
本文将从零件加工精度的影响因素、工艺优化设计方法和实验验证等方面展开研究,旨在为提高零件加工精度提供理论支持和工程实践指导。
1.2 研究意义零件加工精度的研究在工程和制造领域具有重要的意义。
零件加工精度直接影响着产品的质量和性能。
只有提高零件的加工精度,才能保证产品的稳定性和可靠性。
随着现代工业的发展,对零件加工精度的要求越来越高。
在一些高端领域,如航空航天、汽车制造、医疗器械等,对零件加工精度的要求更是严苛。
数控车床加工精度的影响因素与提高策略数控车床是一种高精度加工设备,广泛应用于制造业各个领域。
在使用数控车床进行加工时,精度是其中最为关键的因素之一,影响着零件尺寸和几何形状的精度。
本文将介绍数控车床加工精度的影响因素与提高策略。
一、影响因素1.机床自身精度数控车床本身的结构、精度、刚性等特性对加工精度有重要影响。
其中,导轨的平直度、导向精度、摆动精度等对加工精度影响较大。
2.切削力在加工过程中,切削力会对机床产生变形,导致工件位置和工具位置发生偏差,进而影响加工精度。
3.加工材料不同的加工材料具有不同的硬度和韧性,会对加工过程中刀具的磨损和刀具切削形成的切屑大小产生影响,从而影响加工精度。
4.刀具磨损刀具在加工过程中会产生磨损,导致刀具的几何形状发生变化,进而影响加工精度。
因此,及时更换刀具并且进行正确的刀具磨损补偿是提高加工精度的关键步骤之一。
5.机床环境机床的温度、湿度和振动等环境因素会对机床的性能和加工精度产生影响。
因此,应通过加强机床的保护、使用防振、防静电等辅助措施,保证机床处于一个稳定的工作环境中。
二、提高策略1. 选用高精度的数控车床机床自身的精度是影响加工精度的重要因素之一。
选择高精度的数控车床,可以保证机床自身精度尽可能地达到最优值,从而最小化加工误差。
2. 制定有效的工艺方案在加工过程中,通过设计合理的刀具选择、切削参数(如切削速度、切削深度、进给速度等),并根据加工材料的特性和工件的加工要求制定出一套有效的工艺方案。
通过在实际加工过程中不断调整和优化工艺参数,逐步提高加工精度。
3. 选用合适的刀具在加工过程中,刀具的选择和使用也是提高加工精度的关键因素之一。
应选择合适的刀具,合理确定刀具的加工参数,以保证切削效果优化,从而达到较高的加工精度。
4. 维护机床在使用机床过程中,要经常检查机床各部位的运行情况,包括导轨、传动装置、切削润滑系统等,及时维护机床,保持其在一个良好的状态,从而提高加工精度。
浅析数控车床的加工精度摘要:数控车床作为一种重要的加工设备,其加工精度直接影响到工件的质量和精度要求。
本文通过对数控车床的加工精度进行浅析,探讨了影响加工精度的因素,并提出了提高加工精度的方法与措施。
旨在为数控车床的加工精度提升提供一定的理论支持和实践指导。
关键词:数控车床;加工精度随着制造业的发展,数控车床作为一种高效、精确的加工设备,被广泛应用于各个领域。
而加工精度作为衡量数控车床性能的重要指标,对于满足工件的精度要求具有关键意义。
一、数控车床的加工精度概述数控车床加工精度是指在数控车床上进行加工过程中,工件达到的尺寸、形状和位置的精确程度。
它是衡量数控车床加工质量的重要指标之一。
随着工业技术的不断发展,数控车床在各个领域得到了广泛应用,而加工精度的提高也成为了人们关注的焦点。
首先,尺寸精度是数控车床加工中的一个重要方面。
在工件加工过程中,尺寸精度的高低直接影响着工件能否符合设计要求。
要提高尺寸精度,可以通过控制切削量、刀具和刀具夹持方式、工件夹紧方式等来实现。
只有确保这些因素的合理选择和控制,才能保证工件加工后的尺寸与设计要求之间的偏差尽可能小。
其次,形状精度也是数控车床加工中不可忽视的一点。
在实际应用中,工件的形状往往要求具备一定的几何精度,例如平面度、圆度、圆柱度等。
为了提高形状精度,可以采取优化工艺参数、选择合适的刀具和夹具、控制加工温度等措施。
通过这些方式,能够有效减小工件加工后形状与设计要求之间的偏差,确保工件的几何形状达到精确的要求。
此外,位置精度也是影响数控车床加工精度的重要因素之一。
位置精度主要指工件上各个特定点之间的相对位置精度,例如平行度、垂直度、同轴度等。
要提高位置精度,可以通过优化工艺参数、提高机床刚性、加强夹紧与定位等来实现。
只有确保工件在加工过程中的稳定性和精度,才能保证位置精度的提升。
最后,表面粗糙度也是数控车床加工精度的重要方面之一。
工件表面的光洁程度对于某些特定工件的功能和装配要求有着重要影响。
基于数控车床加工精度的影响因素及提高对策探析摘要:数控机床加工零部件方便快捷,节省人力并且更为高效。
影响零部件的质量因素有很多,除了工艺因素、操作技巧之外更主要的是数控机床的加工精度。
想要提高数控机床加工的精度就要对影响精度的因素给予控制,本文对影响数控车床精度的因素进行了分析,并提出了一些方法和措施为提高数控车床的加工精度起到了一定的指导作用。
关键词:数控车床加工精度因素分析0.前言在机械制造的发展过程中,数控车床的出现无疑是最让人欣喜的事情。
数控车床一出现就得到了制造业的广泛关注同时也被广泛的使用。
作为先进的制作加工仪器,数控车床不仅是为机械制造业提供了便利,节约了大量的人力劳动;还同时创造出了更为丰富的社会、经济价值。
数控车床在加工制作零件的过程中,对加工精度的要求和控制直接关系到生产出的产品质量。
制造业的不断前进和发展推动着产品制作的自动化进程,也不断提升着对制作产品的品质新要求,要想保证产品质量就必须相应提高数控车床制造加工的精度。
数控车床在制造加工零部件时的加工精度主要是由车床的精度、编程精度、伺服精度以及插补精度等因素共同来决定。
除了这些主要的影响因素以外,数控车床制作加工的精度还要受到很多外界环境因素的影响,比如说材料质地、制造过程、安装水平、检测技术、控制手段、环境等。
不管是内部因素还是外部环境影响,每一个小小因素差异或是控制不到位都会是造成数控车床制造加工出现误差的原因。
因此,要想保证生产的零件加工质量就必须对数控车床加工过程给予合理控制,对能够影响车床加工精度的影响因素进行综合分析,找出能够影响车床精度的主要影响因素。
除了要加强对影响因素的分析控制之外还要掌握一些数控车床加工操作中的技巧和方法有效的避免精度误差的出现。
1.影响数控车床加工精度的因素分析影响数控车床制作加工的因素有很多,不仅仅只有机床的内部因素还包括了一些外部影响因素。
数控车床出现精度偏差主要影响制作零部件本身的尺寸和形状。
车床精度对加工精度的影响
车床性能的主要考核指标是加工精度和生产率。
这二者取决于机床的静态特性(如机床静态的几何精度和刚度)和机床的动态特性(即运动精度,包括主轴回转精度、刀架、溜板沿床身导轨的直线运动精度和运动的均匀性、稳定性)以及机床的抗振性能(加工过程的稳定性)。
主轴回转精度和刀具运动的直线性,决定着被加工零件的形状精度和尺寸分散度。
刀具低速运动的等速性和刀具与工件之间的相对振幅,决定着被加工零件表面的粗糙度。
零件的尺寸精度是在加工过程中对刀具进行调整而达到的,而零件的形状精度和位置精度主要取决于机床本身所具有的精度。
对具体的加工零件而言,其加工精度要求高,则机床的精度也应相应地高。
一、主轴的回转精度
主轴部件的回转精度直接影响工件的几何形状(圆度、端面平面度…)误差、尺寸误差和表面粗糙度。
实际上主轴部件的回转精度还应包含它的刚度和抗振性能。
这些性能的组合,方能保证车床主运动的回转精度。
1.1主轴精度:指主轴的各档支承轴颈、安装齿轮、卡盘表面的精度,通常是测量主轴前后支承轴颈及其它各有关回转轴颈、轴肩的径向圆跳动和端面圆跳动,根据机床精度的要求,将其控制在一定的数值范围之内。
对于主轴上安装轴承的前后支承轴颈的径向圆跳动,一般允许为加工零件公差的1/3左右。
1.2主轴轴承对主轴回转精度的影响:一般希望由于主轴前后轴承的径向圆跳动而引起的主轴前端的径向圆跳动不超过主轴的总的允许径向跳动量的1/3。
前轴承径向圆跳动量对主轴回转精度的影响很大,而后轴承径向圆跳动量的影响相对较小。
所以一般在选用主轴的滚动轴承时,常使前轴承的精度比后轴承的精度高一级。
1.3主轴部件的刚度:在动态时,由于切削力、传动力的作用将引起主轴部件变形。
这是由于主轴上各组成环节(如轴承等元件)的接触变形和主轴的弯曲变形而产生的,通常以主轴前端的变形量来度量。
二、床身导轨的精度
床身导轨面是测量车床的各项几何精度和反映加工精度的基准面。
这个基准面无论在空载或承受切削载荷时,都应保证溜板(刀具)运动的直线性(导向)精度,使刀具获得均匀而平稳的直线送进。
同时还应保证其它各项有关运动(如尾座移动;丝杠、光杠的进给传动等)及有关安装表面(如主轴箱、进给箱、齿条、托架等安装表面〕同溜板(溜板箱)运动保持相互位置的准确性。
由于床身导轨暴露在外面、防屑、防尘条件较差,长期使用后会产生磨损。
当磨损严重时,就不能保证溜板运动的直线性精度,从而造成溜板运动与主轴、丝杠、光杠等部件的相对位置不能保持平行,传动精度受到影响。
如果溜板运动精度不准确,必然影响工件的尺寸误差、形状误差和位置误差,以
及表面粗糙度。
2.1造成床身导轨面磨损的原因很多,归纳起来大致有以下几种:
a.溜板在床身导轨面上移动时,两表面之间产生相对滑动,由于细微的铁屑落入滑动表面之间,产生“磨料磨损”。
b.在承受较大的切削载荷时;导轨表面发生粘着之后又被剪断而造成“粘着磨损”。
c.采用带酸性或腐蚀性成分的润滑剂、切削液或工作环境腐蚀气氛的作用,引起“腐蚀磨损”。
d.导轨面被重物撞击,引起“局部损伤”。
2.2因为导轨表面的磨损受到影响,不能满足工作要求的几何精度项目有下列几个方面:
a.溜板移动在垂直平面内及水平面内的直线度精度。
b.溜板移动对主轴箱主轴轴线的平行度精度。
c.长丝杠(包括光杠)对床身导轨的平行度精度。
d.溜板(溜板箱)与进给箱、托架的相对位置发生变化,传动不稳定。
2.3在普通车床的加工精度方面,通常反映出来的加工零件误差大部分也是和床身导轨几何精度不良有关。
在一般使用条件下,床身的V形导轨比平导轨的磨损量要大,溜板的导轨前端比后端磨损严重,使溜板(包括溜板箱)倾斜下沉,造成溜板箱中的纵向进给小齿轮与齿条之间在垂直与水平面内分别倾斜。
这样,小齿轮与齿条不是在齿面全宽上啮合,从而加快了零件的磨损。
并由于接触刚度的降低而产生振动,影响了加工零件的表面粗糙度。
另外,由于溜板和溜板箱的倾斜下沉,还会引起丝杠,光杠、操纵杆的三个支承不同轴,以及三孔不在同一平面上,造成丝杠弯曲,转动憋劲(卡阻现象),丝杠与开合螺母啮合不良,溜板运动时产生爬行、晃动,以及移动溜板的力量加大,影响工件的表面粗糙度或使螺纹表面产生波纹等。
2.4导轨磨损后对工件加工误差的影响,可从三个方面进行分析:
a.导轨在水平面内的直线度超差:在导轨面全长上不均匀地磨损后,加工轴类零件时,直线度误差直接影响工件直径的误差。
b.V形导轨和平导轨的磨损量不相等使溜板移动时产生倾斜误差,造成偏离工件的误差。
c.导轨在垂直平面内的直线度超差:由于导轨在全长上的磨损不均匀而产生垂直平面内的直线度误差时,将使溜板运动出现升、沉,刀具的高度位置就发生变化,
有些车床,由于车床导轨面的角度不对称,承受的切削载荷不同,又因在导轨全长上不是均匀的使用,所以各导轨面的磨损也不相同,一般接近尾座一端的导轨磨损量较小。
因为各导轨间的磨损量是综合反映给工件的,所以导轨磨损后对工件会产生误差。
2.5从现场情况分析中可以看出:
a.各导轨面磨损后,在精加工长轴类零件时,以溜板移动在水平面内的直线度误差对加工精度的影响最大。
b.导轨表面的磨损量对圆柱工件精度的影响最大,使用单位可根据不同加工直径、长度和精度要求,规定该机床的极限磨损值。
c.可根据不同工件的工艺要求,结合机床的技术状况,判定机床的可用程度,并以此作为大修理的依据。
三、刀架导轨的精度
刀架移动的直线性以及在垂直平面内与主轴轴线的平行度,要影响加工圆锥体母线的直线度。
有时会使锥孔的母线不是直线,而是变成抛物线。
在实际工作中,往往采用调整刀架的回转角度位置,以改善零件圆锥面的接触情况来解决。