第六章_复合命题及其推理(下)上课
- 格式:ppt
- 大小:514.50 KB
- 文档页数:53
练习答案第一章形式逻辑的对象和意义(P13-14)一、1、逻辑学;客观规律。
2、思维规律。
3、客观规律。
4、某种理论、观点、看法。
二、1、(b)。
2、(b)第二章概念(P43-49)二.(1)单独、集合;(2)普遍、非集合;(3)普遍、集合;(4)普遍、非集合;(5)普遍、非集合;(6)普遍、集合。
三.字母ABCD分别表示先后出现的概念(见下页)六.全部错误。
理由:1、使用了否定;2、循环定义;3、定义过窄;4、循环定义;5、隐喻;6、定义过宽;7、定义过窄;8、定义过宽。
1、2、3、4、5、6、7、8、orA BBDDCABCDAABCCABBCDACBAB CAA BC七、全部错误。
理由:1、是分解;2、混淆根据、子项相容;3、不是划分;4、子项相容、划分不全、混淆根据;5、混淆根据、子项相容;6、是分解;7、多出子项;8、划分不全。
九、1、内涵、外延。
2、交叉、反对。
3、不相容(全异)、同一。
4、(略)。
5、定义过窄。
6、真包含(同一)、不相容(全异)。
7、限制、概括。
8、多出子项、划分不全。
十、a c d d(c) c d a c第三章简单命题及其推理(上)(P77-81)一、(3)、(5)直接表达判断。
二、A A A E O I A(a) E三、1、不能,能。
2、能,能。
3、(略)六、(3)正确。
七、1、SOP。
2、真包含于。
3、全同、真包含于。
4、真假不定。
5、特称、肯定。
6、SI P 真。
八、c d d d c d九、de de bc bc十、SIP、SOP取值为真,SIP可换位:SIP PIS。
十一、推导一:ABC三句话分别是性质命题SAP、SaP、SEP,a与E是反对关系,必有一假,所以根据题意SAP必真,所有学生懂计算机,班长必然懂计算机。
推导二:A句与C句是反对关系,不可同真,必有一假,所以B句真,B句真则C句假,所以A句亦真,所有学生懂计算机,班长必然懂计算机。
十二、推导:SIP与SOP是下反对关系,不能同假,必有一真,所以POS必假,P真包含于S或与S全同,即S真包含P或与P全同,而前者使AB两句话均真,不合题意,所以S 与P全同。
《形式逻辑》课后习题参考答案第六章复合命题及其推理(下)一、填空题(1)如果做坏事那么就应受到惩罚。
(2)如果被录取那么就通过了考试;并非没有通过考试并且被录取。
(3)假;真(4)假;真(5)假(6)小王不是大学生或者不是运动员;如果小王是大学生,那么他就不是运动员;如果小王是运动员,那么他就不是大学生。
(7)真;真(8)他不去(9)﹁(p∧q)(或者﹁p∨﹁q,因为﹁(p∧q)=﹁p∨﹁q)二、单选(1)d (2)d (3)a (4)c (5)d三、双选(1)de (2)ad (3)ad (4)be (5)bc四、多选(1)abcde (2)acde (3)abe (4)bcd五、真值表解题(1)a)p q p∧q p∨q1 1 1 11 0 0 10 1 0 10 0 0 0由表可见,p∧q与p∨q不等值。
b)p q ﹁p ﹁p∨q p→q1 1 0 1 11 0 0 0 00 1 1 1 10 0 1 1 1由表可以看出,﹁p∨q与p→q是等值的。
c)p q ﹁p ﹁q p→q﹁p←﹁q1 1 0 0 1 11 0 0 1 0 00 1 1 0 1 10 0 1 1 1 1由表可以见得,p→q与﹁p←﹁q是等值的。
d)p q ﹁p ﹁q p→q﹁q→﹁p1 1 0 0 1 11 0 0 1 0 00 1 1 0 1 10 0 1 1 1 1由表可见,p→q与﹁q→﹁p是等值的。
(2)A B A→Bp q p→q p↔q (p→q)→(p↔q)1 1 1 1 11 0 0 0 10 1 1 0 00 0 1 1 1可见,A不是B的充分条件。
(3)p q ﹁q p→q p↔﹁q p∧q p∨q1 1 0 1 0 1 11 0 1 0 1 0 10 1 0 1 1 0 10 0 1 1 0 0 0由表可见,当p→q和p↔﹁q都真时,p∧q为假,p∨q为真。
(4)设甲去北京为p,乙去北京为q,则A:p←qB:p→qC:﹁p∨﹁qp q ﹁p ﹁q p←q p→q﹁p∨﹁q1 1 0 0 1 1 01 0 0 1 1 0 10 1 1 0 0 1 10 0 1 1 1 1 1可见,当A、B和C均真时,甲和乙都不去北京。