11.2与三角形有关的角第3课时 三角形的外角
- 格式:ppt
- 大小:401.50 KB
- 文档页数:16
11.2与三角形相关的角:1.三角形的内角和等于180°任何一个三角形中,至少有两个锐角,最多有3个锐角,最多有一个钝角,最多有一个直角。
2.直角三角形的两个锐角互余。
3.三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
三角形的一个外角等于与它不相邻的两个内角之和。
探索研究三角形内角和等于180°。
jCB AC B A C B A法一:通过减拼的方法,验证三角形的内角和等于180°。
法二: 法三:法四: 法五:例1:如图,在ΔABC 中,∠BAC=40°,∠B=75°,AD 是⊿ABC 的角平分线,求∠ADB 的度数。
DCBA例2:如图,A,B,C,三岛的平面图,C 岛在A 岛的北偏东50°,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向。
从B 岛看A,C 两岛的视角∠ABC 是多少度?从C 岛看A,B 两岛的视角∠ACB 呢?CBA直角三角形的两个锐角互余,反过来,有两个角互余的三角形是直角三角形。
1.在ΔABC 中,∠C=90°,则∠A+∠B=90°。
则直角三角形用符号Rt Δ表示,直角三角形ABC 表示成“Rt ΔABC ”。
例3.如图,∠C=∠D=90°,AD ,BC 相交于点E ,∠CAE 与∠DBE 有什么关系?为什么? DE B A C三角形的外角=与它不相邻的两个内角之和。
1.已知ΔABC ,∠ACD 是ΔABC 的外角,求证:∠ACD=∠A+∠B 。
DCB A例4:如图,∠BAE,∠CBF,∠ACD 是ΔABC 的三个外角,它们的和是多少?DC BEA三角形内角和一、选择题1、一个三角形中,有一个角是65°,另外的两个角可能是( )A.95°,20°B.45°,80°C.45°,60°2、一个等腰三角形,顶角是100°,一个底角是( )。
新人教版八年级数学上册《11.2三角形的外角》说课稿各位领导、老师们,上午好!今天我将要为大家讲的课题是三角形的外角,首先,我对本节教材进行一些简单分析一、教材结构与内容简析“三角形的外角”是第二节内容。
“三角形的外角”是三角形的一个重要性质,是“空间与图形”领域的重要内容之一,学好它有助于学生理解三角形外角与内角的关系,也是进一步学习几何的基础。
经过上一节课学习,学生已经具备一定的关于三角形的认识的直接经验,已具备了一些相应的三角形知识的技能,这为感受、理解、抽象“三角形的外角”的概念,打下了坚实的基础。
为方便教师领会教材编写的意图与理念,开展有效的教学,更好的发展学生的空间观念,培养学生的各种能力,让学生通过探索、实验、发现、讨论、交流获得。
从而让学生在动手操作,积极探索的活动过程中掌握知识,积累教学活动经验,发展空间观念和推理能力,不断提高自己的思维水平。
基于对教材以上的认识及课程标准的要求,我拟定本节课的教学目标为:1、知识目标:①了解三角形的外角;毛②探索并了解三角形的一个外角等于与它不相邻的两个内角的和;2、能力目标:①学会运用简单的说理来计算三角形相关的角;②培养学生的实践能力和观察总结能力,体验主动探究的成功和快乐.3、情感目标:①让学生在探索活动中产生对数学的好奇心,发展学生的空间观念;②体验探索的乐趣和成功的快乐,增强学好数学的信心。
教学重点:三角形的外角性质。
教学难点:运用三角形外角性质进行有关计算能准确地表达推理的过程和方法。
二、说教法新课程标准的基本理念就是要让学生“人人学有价值的数学”。
强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参加和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法,学习水平和情感态度,促使学生向着预定的目标发展的作用”。
11.2 与三角形有关的角知识要点:1.三角形内角和定理:三角形三个内角的和等于180︒.(1)三角形内角和定理适用于任意三角形.(2)任何一个三角形中,至少有两个锐角,最多有一个钝角或直角.2.直角三角形的性质与判定(1)性质:直角三角形的两个锐角互余.在Rt ABC∠=︒,则90∠+∠=︒.A B△中,90C(2)判定:有两个角互余的三角形是直角三角形.3.三角形的外角三角形内角的一边与另一边的反向延长线组成的角,叫做三角形的外角.4.三角形外角的性质(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于与它不相邻的任意一个内角.一、单选题1.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°【答案】D【解析】解:∵AB∵CD,∵∵A=∵FDE=45°,又∵∵C=30°.∵∵1=∵FDE﹣∵C=45°﹣30°=15°,故选:D.2.如图,直线a∠b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为()A.20°B.25°C.30°D.35°【答案】B解:由三角形的外角性质可得,∵3=∵1+∵B=65°,∵a∵b,∵DCB=90°,∵∵2=180°﹣∵3﹣90°=180°﹣65°﹣90°=25°.故选:B.3.已知∠ABC中,∠A=30°,则下列结论正确的是()A.0°<∠B<60°B.90°<∠B<150C.0°<∠B<60°或90°<∠B<150°D.以上都不对【答案】D解:∵∵A+∵B+∵C=180°,∵A=30°,∵∵B+∵C=150°,∵0°<∵B<150°,故选:D.4.若一个三角形三个内角度数的比为1:3:4,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】A设三个内角度数分别为:x、3x、4x由三角形内角和定理得,x+3x+4x=180°解得, x=22.5°则3x=67.5°、4x=90°∵这个三角形是直角三角形故选:A5.在ABC △中,如果1126A B C ∠=∠=∠,则这个三角形一定是( ). A .直角三角形B .等腰三角形C .锐角三角形D .钝角三角形 【答案】D∵在∵ABC 中,∵A =12∵B =16∵C ,∵A+∵B+∵C=180°, ∵16∵C+13∵C+∵C=180°, ∵∵C=120°,∵∵A=20°,∵B=40°,所以此三角形是钝角三角形.故选:D .6.如图,在∠ABC 中,∠BAC=56°,∠ABC=74°,BP 、CP 分别平分∠ABC 和∠ACB ,则∠BPC=( )A .102°B .112°C .115°D .118°【答案】D 解:∵在∵ABC 中,∵BAC=56°,∵ABC=74°,∵∵ACB=180°-∵BAC -∵ABC=50°,∵BP、CP分别平分∵ABC和∵ACB,∵∵PBC=37°,∵PCB=25°,∵∵BCP中,∵P=180°-∵PBC-∵PCB=118°,故选:D.7.如图,小丽画了一个三角形,不小心被墨水污染了,只剩下一个角(锐角). 小丽画的三角形可能是()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【答案】D∵此三角形只知道一个角为锐角,其它角可能有钝角或直角也可能是都是锐角,∵三角形可能为:锐角三角形、直角三角形、钝角三角形都有可能.故选:D.8.如图,∠A=32°,∠B=45°,∠C=38°,则∠DFE等于()A.105°B.120°C.110°D.115°【答案】D由三角形的外角的性质可知:∵ADB=∵B+∵C=45°+38°=83°,∵DFE=∵ADB+∵A=83°+32°=115°,故选D.9.如图,把∠ABC纸片沿着DE折叠,当点A落在四边形BCED内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【答案】B解:∵把∵ABC纸片沿着DE折叠,点A落在四边形BCED内部,∵∵1+∵2=180°−∵ADA′+180°−∵AEA′=180°−2∵ADE+180°−2∵AED=360°−2(∵ADE+∵AED)=360°−2(180°−∵A)=2∵A.故选:B.10.∠ABC中,∠A=50°,∠B=60°,则∠C=()A.50°B.60°C.70°D.90°【答案】C解:∵C=180°-50°-60°=70°,故选:C.11.如图,已知AB∠DE,∠ABC=75°,∠CDE=155°,则∠BCD的值为()A.50°B.40°C.30°D.20°【答案】A解:延长ED交BC于F,如图所示:∵AB∵DE,∵ABC=75°,∵∵MFC=∵B=75°,∵∵CDE=155°,∵∵FDC=180°-155°=25°,∵∵C=∵MFC-∵MDC=75°-25°=50°,故选:A.12.已知直线l1∠l2,一块含30°角的直角三角板如图所示放置,∠1=22°,则∠2等于()A.30°B.38°C.28°D.48°【答案】B解:∵∵3是∵ADG 的外角,∵∵3=∵A+∵1=30°+22°=52°,∵l 1∵l 2,∵∵3=∵4=52°,∵∵4+∵EFC=90°,∵∵EFC=90°-52°=38°,∵∵2=38°.故选:B .二、填空题13.如图所示,请将12A ∠∠∠、、用“>”排列__________________.【答案】21A ∠∠∠>>解:根据三角形的外角的性质得,∵2>∵1,∵1>∵A∵∵2>∵1>∵A ,故答案为:∵2>∵1>∵A .14.在∠ABC 中,∠B =40°,过点A 的直线将这个三角形分成两个等腰三角形,则∠C 的度数为______________.【答案】20°或50°或80°解:应分四种情况进行讨论:当AD=AC,AD=BD时,如图∵所示,∵BAD=∵B=40°,∵C=∵ADC.∵∵BAD+∵B+∵ADB=180°,∵∵ADB=180°-2×40°=100°,∵∵ADC=180°-∵ADB=80°,∵∵C=80°;当AC=DC,BD=AD时,如图∵所示,∵DAC=∵ADC=180°-∵ADB=∵B+∵BAD=80°,∵∵C=180°-∵ADC-∵DAC=20°;当AD=DC,AB=AD时,如图∵所示,∵C=∵DAC,∵ADB=∵B=40°.∵∵ADC=180°-∵ADB=140°,∵∵C=12(180°-∵ADC)=20°;当AD=BD,AD=CD时,如图∵所示,∵BAD=∵B=40°,∵ADC=180°-∵ADB=∵B+∵BAD=80°,∵C=∵DAC=12(180°-∵ADC)=12×(180°-80°)=50°.综上所述,∵C的度数为80°或20°或50°.15.如图,在∠ABC中,CD、BE分别是AB、AC边上的高,并且CD、BE交于点P,若∠A= 050,则∠BPC=_______.【答案】130°∵CD,BE分别是AB,AC边上的高,∵∵BDC=∵AEB=90°,∵∵ABE=90°-50°=40°,∵∵BPC=∵ABE+∵BDP=40°+90°=130°.故答案为:130°.16.将一副直角三角板如图放置,使两直角重合,则∠1=_____°.【答案】165°如图,根据题意知∵2=45°,∵3=60°,∵∵4=360°-90°-∵2-∵3=165°,∵∵1=∵4=165°17.如图所示,∠1=50°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为________【答案】260°.解:如图,∵D+∵F=∵2,∵A+∵E=∵3,∵∵A+∵D+∵E+∵F=∵2+∵3,∵∵1=50°,∵∵2+∵3=180°-50°=130°,∵4=50°,∵∵B+∵C=180°-50°=130°,∵∵A+∵B+∵C+∵D+∵E+∵F=260°.故答案为260°.18.已知∠A与∠B的两边一边平行,另一边垂直,∠A=x°,那么∠B等于_____.【答案】(90-x)°或(90+x)°.如图,∵DF∵AM,∵∵BDC=∵A=x.∵BC∵AN,∵∵BCA=90°,∵∵EBF=∵DBC=90°-∵BDC=90°-x°,∵FBC=90°+∵BDC=90°+x°.故答案为:(90-x)°或(90+x)°.19.一个正三角形和一副三角板(分别含30°和45°)摆放成如图所示的位置,且AB∠CD.则∠1+∠2=__________.【答案】75°解:连接AC,∵AB∵CD,∵∵BAC+∵ACD=180°,∵∵BAG=30°,∵ECD=60°,∵∵EAC+∵ACE=180°-30°-60°=90°,∵∵CED=60°,∵∵GEF=180°-90°-60°=30°,同理∵EGF=180°-∵1-90°=90°-∵1,∵GFE=180°-45°-∵2=135°-∵2,∵∵GEF+∵EGF+∵GFE=180°,即30°+90°-∵1+135°-∵2=180°,解得∵1+∵2=75°.故答案为:75°.三、解答题20.如图,在∠ABC中,D是BC上一点,∠1=∠2,∠3=∠4,∠BAC=60°,求∠DAC的度数.【答案】20°解:设∵1=∵2=x,则∵3=∵4=2x因为∵BAC=60°所以∵2 +∵4=120°即x+2x=120°所以x=40°所以∵3=∵4=80°,∵DAC=180°-∵3-∵4=20°21.如图,在∠ABC中,AD∠BC于点D,BE是∠ABC的平分线,已知∠ABC=040,求∠AOB 的度数。