数学北师大版八年级下册等腰三角形(第三课时)
- 格式:doc
- 大小:33.50 KB
- 文档页数:3
北师大版八年级下册数学《1.1 第3课时等腰三角形的判定与反证法》教案一. 教材分析《1.1 第3课时等腰三角形的判定与反证法》这一课时,是在学生已经掌握了三角形的基本概念、三角形的分类、三角形性质等知识的基础上进行学习的。
本课时主要让学生学习等腰三角形的判定方法,以及运用反证法证明等腰三角形的性质。
通过这一课时的学习,使学生进一步理解三角形的性质,提高解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的几何知识,对三角形有了一定的认识。
但是,对于等腰三角形的判定和反证法的运用,可能还存在一定的困难。
因此,在教学过程中,要注重引导学生,激发他们的思考,帮助他们理解和掌握等腰三角形的判定方法和反证法的运用。
三. 教学目标1.知识与技能:使学生掌握等腰三角形的判定方法,能够运用反证法证明等腰三角形的性质。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的观察能力、思考能力和创新能力。
四. 教学重难点1.教学重点:等腰三角形的判定方法,反证法的运用。
2.教学难点:反证法的运用,等腰三角形性质的证明。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生观察、思考、交流,激发学生的学习兴趣。
2.探究式教学法:引导学生主动探究等腰三角形的性质,培养学生的探究能力。
3.小组合作学习法:学生进行小组讨论,培养学生的合作意识,提高他们的交流能力。
六. 教学准备1.准备等腰三角形的模型或图片,用于引导学生观察和操作。
2.准备反证法的相关案例,用于讲解和练习。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示等腰三角形的图片,引导学生观察等腰三角形的特征,激发学生的学习兴趣。
提问:你们知道等腰三角形有什么特点吗?2.呈现(10分钟)呈现等腰三角形的判定方法,引导学生思考和交流,总结出等腰三角形的判定方法。
第一章三角形的证明等边三角形的判定1.知识目标理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。
2.能力目标①经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.②经历实际操作,探索含有30º角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;③在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的能力。
3.情感与价值观要求①积极参与数学学习活动,对数学有好奇心和求知欲.②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点①等边三角形判定定理的发现与证明.②含30°角的直角三角形的性质定理的发现与证明.4.教学难点①含30°角的直角三角形性质定理的探索与证明.②引导学生全面、周到地思考问题.二、教学过程学具准备:两个带30度角的三角板。
本节课设计了六个教学环节:第一环节:提问问题,引入新课;第二环节:自主探索;第三环节:实际操作提出问题;第四环节:变式训练巩固新知;第五环节:畅谈收获课时小结;第六环节:布置作业。
第一环节:提问问题,引入新课活动内容:教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等边三角形呢?从而引入新课。
一个三角形满足什么条件时便成为等边三角形?你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.(教师应给学生自主探索、思考的时间,然后让其展示)第二环节:自主探索活动内容:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件。
对于等腰三角形中有一个角为60度的两种情况,教师可以进一步提出要求:能否用更简捷的语言描述这个结论吗?从而引导学生得出:有一个角是60°的等腰三角形是等边三角形。
北师大版八年级数学下册精编教案系列等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求探索等腰三角形的判定定理,进一步体验轴对称的特征,发展空间观念.(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
教学难点等腰三角形的判定与性质的区别。
教具准备作图工具和多媒体课件。
教学方法引导探索法;情景教学法教学过程Ⅰ.提出问题,创设情境[师]上节课我们学习了等腰三角形的性质,现在大家来回忆一下,等腰三角形有些什么性质呢?[生甲]等腰三角形的两底角相等.[生乙]等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合.[师]同学们回答得很好,我们已经知道了等腰三角形的性质,那么满足了什么样的条件就能说一个三角形是等腰三角形呢?这就是我们这节课要研究的问题.Ⅱ.导入新课[师]同学们看下面的问题并讨论:思考:如图,位于在海上A、B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地点(不考虑风浪因素)?在一般的三角形中,如果有两个角相等,那么它们所对的边有什么关系?[生甲]应该能同时赶到出事地点.因为两艘救生船的速度相同,同时出发,•在相同的时间内走过的路程应该相同,也就是OA=OB ,所以两船能同时赶到出事地点.[生乙]我认为能同时赶到O 点的位置很重要,也就是∠A 如果不等于∠B ,•那么同时以同样的速度就不一定能同时赶到出事地点.[师]现在我们把这个问题一般化,在一般的三角形中,如果有两个角相等,•那么它们所对的边有什么关系?[生丙]我想它们所对的边应该相等.[师]为什么它们所对的边相等呢?同学们思考一下,给出一个简单的证明. [生丁]我是运用三角形全等来证明的. (投影仪演示了同学证明过程)[例1]已知:在△ABC 中,∠B=∠C (如图). 求证:AB=AC .证明:作∠BAC 的平分线AD . 在△BAD 和△CAD 中12,,,B C AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAD (AAS ). ∴AB=AC .提问:你还有不同的证明方法吗? (演示课件)等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).[师]下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用. (演示课件)[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.[师]这个题是文字叙述的证明题,•我们首先得将文字语言转化成相应的数学语言,再根据题意画出相应的几何图形.21D CA21EDA已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图). 求证:AB=AC .[师]同学们先思考,再分析.[生]要证明AB=AC ,可先证明∠B=∠C .[师]这位同学首先想到我们这节课的重点内容,很好! [生]接下来,可以找∠B 、∠C 与∠1、∠2的关系. [师]我们共同证明,注意每一步证明的理论根据. (演示课件,括号内部分由学生来填) 证明:∵AD ∥BC ,∴∠1=∠B (两直线平行,同位角相等), ∠2=∠C (两直线平行,内错角相等). 又∵∠1=∠2, ∴∠B=∠C ,∴AB=AC (等角对等边).[师]看大屏幕,同学们试着完成这个题. (课件演示)已知:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .(投影仪演示学生证明过程) 证明:∵AD ∥BC ,∴∠ADB=∠DBC (两直线平行,内错角相等). 又∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABD=∠ADB , ∴AB=AD (等角对等边). [师]下面来看另一个例题. (演示课件)[例3]如图(1),标杆AB 的高为5米,为了将它固定,需要由它的中点C•向地面上与点B 距离相等的D 、E 两点拉两条绳子,使得D 、B 、E 在一条直线上,量得DE=4米,•绳子CD 和CE 要多长?DCABCA[师]这是一个与实际生活相关的问题,解决这类型问题,需要将实际问题抽象为数学模型.本题是在等腰三角形中已知等腰三角形的底边和底边上的高,求腰长的问题.解:选取比例尺为1:100(即为1cm代表1m).(1)作线段DE=4cm;(2)作线段DE的垂直平分线MN,与DE交于点B;(3)在MN上截取BC=2.5cm;(4)连接CD、CE,△CDE就是所求的等腰三角形,量出CD的长,•就可以算出要求的绳长.[师]同学们按以上步骤来做一做,看结果是多少.Ⅲ.随堂练习(一)课本1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1、∠2的度数,•并说明图中有哪些等腰三角形。