高中数学第一册(上)二项式定理--1定理
- 格式:doc
- 大小:46.00 KB
- 文档页数:2
高中数学二项式定理知识点总结二项式定理是高中数学中的重要知识点,它是代数中的一个基本定理,也是数学中的一个重要定理。
二项式定理在数学中有着广泛的应用,不仅在数学理论中有着重要的地位,而且在实际问题中也有着重要的应用价值。
本文将对高中数学二项式定理的知识点进行总结,希望能够帮助大家更好地理解和掌握这一重要的数学知识点。
一、二项式定理的基本概念。
二项式定理是指对于任意实数a、b和非负整数n,都有以下公式成立:\((a+b)^n = C_n^0a^n b^0 + C_n^1a^{n-1} b^1 + C_n^2a^{n-2} b^2 + ... +C_n^na^0 b^n\)。
其中,\(C_n^k\)表示组合数,即从n个不同元素中取出k个元素的组合数,它的计算公式是:\(C_n^k = \frac{n!}{k!(n-k)!}\)。
二项式定理的基本概念就是利用组合数的性质,将二项式展开成多项式的形式,从而方便进行计算和运用。
二、二项式定理的应用。
1. 多项式展开。
二项式定理可以方便地将一个二项式展开成多项式的形式,从而简化计算。
例如,对于(a+b)²和(a+b)³,可以利用二项式定理将其展开成多项式的形式,从而方便进行计算。
2. 组合数的计算。
二项式定理中的组合数\(C_n^k\)在实际问题中有着重要的应用,例如在概率论、统计学等领域中,经常需要计算从n个不同元素中取出k个元素的组合数,而二项式定理提供了一种方便快捷的计算方法。
3. 概率计算。
二项式定理在概率计算中有着重要的应用,例如在二项分布中,就涉及到了二项式定理的应用。
通过二项式定理,可以方便地计算出在n次独立重复试验中成功次数为k的概率。
三、二项式定理的推广。
除了普通的二项式定理外,还有二项式定理的推广形式,如多项式定理、负指数幂的二项式定理等。
这些推广形式在数学理论和实际问题中都有着重要的应用价值,可以进一步丰富和拓展二项式定理的应用领域。
二项式系数的性质(1)【教学目标】1.理解和掌握二项式系数的性质,并会简单的应用; 2.初步了解用赋值法是解决二项式系数问题;3.能用函数的观点分析处理二项式系数的性质,提高分析问题和解决问题的能力.【教学重点】二项式系数的性质及其对性质的理解和应用. 【教学难点】二项式系数的性质及其对性质的理解和应用. 【教学过程】 一、复习引入:1.二项式定理及其特例:(1)01()()n n n r n r r n n n nn n a b C a C a b C a b C b n N -*+=+++++∈; (2)1(1)1n r rn nn x C x C x x +=+++++; 2.二项展开式的通项公式:1r n r r r n T C a b -+=. 3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性二、讲解新课:1.二项式系数表(杨辉三角)()n a b +展开式的二项式系数,当n 依次取1,2,3…时,二项式系数表,表中每行两端都是1,除1以外的每一个数都等于它肩上两个数的和.2.二项式系数的性质:()n a b +展开式的二项式系数是0n C ,1n C ,2n C ,…,n n C .r n C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n ,例当6n =时,其图象是7个孤立的点(如图)(1)对称性.与首末两端“等距离”的两个二项式系数相等 (∵m n m n n C C -=).直线2nr =是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!kk n n n n n n k n k C C k k----+-+==⋅, ∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<, 当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2n nC 取得最大值;当n 是奇数时,中间两项12n nC-,12n nC+取得最大值.(3)各二项式系数和:∵1(1)1n r r n nn x C x C x x +=+++++,令1x =,则0122n r nn n n n n C C C C C =++++++.三、讲解范例:例1.()n a b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和证明:在展开式01()()n n nr n r rn nn nn n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n n n n n n n C C C C C -=-+-++-,即02130()()n n nn C C C C =++-++,∴0213n n n n C C C C ++=++,即在()n a b +的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.说明:由性质(3)及例1知021312n n n n n C C C C -++=++=.例2.已知7270127(12)x a a x a x a x -=++++,求:(1)127a a a +++; (2)1357a a a a +++; (3)017||||||a a a +++.解:(1)当1x =时,77(12)(12)1x -=-=-,展开式右边为0127a a a a ++++∴0127a a a a ++++1=-,当0x =时,01a =,∴127112a a a +++=--=-,(2)令1x =, 0127a a a a ++++1=- ① 令1x =-,7012345673a a a a a a a a -+-+-+-= ②①-② 得:713572()13a a a a +++=--,∴ 1357a a a a +++=7132+-.(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+② 得:702462()13a a a a +++=-+,∴70246132a a a a -++++=,∴017||||||a a a +++=01234567a a a a a a a a -+-+-+-702461357()()3a a a a a a a a =+++-+++=.例3.求(1+x)+(1+x)2+…+(1+x)10展开式中x 3的系数.解:)x 1(1])x 1(1)[x 1(x 1)x 1()x 1(10102+-+-+=+++++)( =xx x )1()1(11+-+,∴原式中3x 实为这分子中的4x ,则所求系数为711C .例4.在(x 2+3x+2)5的展开式中,求x 的系数解:∵5552)2x ()1x ()2x 3x (++=++,∴在(x+1)5展开式中,常数项为1,含x 的项为x 5C 15=,在(2+x)5展开式中,常数项为25=32,含x 的项为x 80x 2C 415=∴展开式中含x 的项为 x 240)32(x 5)x 80(1=+⋅,∴此展开式中x 的系数为240.例5.已知n2)x 2x (-的展开式中,第五项与第三项的二项式系数之比为14;3,求展开式的常数项解:依题意2n 4n 2n 4n C 14C 33:14C :C =⇒=,∴3n(n -1)(n-2)(n-3)/4!=4n(n-1)/2!⇒n=10. 设第r+1项为常数项,又 2r 510r 10r r 2r10r101r x C )2()x2()x (C T --+-=-=令2r 02r 510=⇒=-,.180)2(C T 221012=-=∴+此所求常数项为180.四、课堂练习:(1)()2025x y -的展开式中二项式系数的和为 ,各项系数的和为 ,二项式系数最大的项为第 项;(2)1)n x的展开式中只有第六项的二项式系数最大,则第四项为 .(3)0n C +12n C +24n C ++2n n n C 729=,则123nn n n n C C C C ++++=( )A .63 B.64 C.31 D.32(4)已知:5025001250(2)a a x a x a x =++++,求:2202501349()()a a a a a a +++-+++的值 答案:(1)202,203,11;(2)展开式中只有第六项的二项式系数最大,∴10n =, 3734101()T C x==(3)A . 五、小结 :1.性质1是组合数公式r n r n n C C -=的再现,性质2是从函数的角度研究的二项式系数的单调性,性质3是利用赋值法得出的二项展开式中所有二项式系数的和;2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法六、课后作业:七、板书设计(略)八、教学后记:求60.998的近似值,使误差小于0.001.解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-, 展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a较小时(1)1n+≈+.a na。
高中数学二项式定理知识点总结
一. 二项式定理
二项式定理是一个数学定理,它是指给定的任意非负整数n和任意实数a,则杨辉三角中的第n行和第m项中的元素之和为:
(a+b)^n = ΣC(n,m)a^(n-m)b^m,m=0,1,...,n
二. 特点
1. 如果a=1和b=1,可以理解为杨辉三角公式,
C(n,m)=(n,m)=(n!)/(m!(n-m)!),C(n,m)是组合数;
2. 当n=m时,它可以被称为勒贝格定理;
3. 二项式定律的作用是可以用来计算出多项式的值,和实现多项式的数学推导;
三. 应用
1. 二项式定理可以用来求解二次函数y=x^2+ax+b在满足a^2-4b<0时,其极值与极点,同时还能应用于多项式的展开和逻辑判断;
2. 应用于光度学问题,二项式函数可以用来表达连续发射物质的浓度与位置之间的关系;
3. 在概率论和数论中,二项式定理用于求解有限次试验概率等问题;
4. 在图论中,二项式定理可被用来求解连通图的极大或极小的有向圈
数量;
5. 在微积分中,可以利用它求解一系列数学问题。
二项式定理高中数学二项式定理这玩意儿,听起来好像很吓人,啥“展开式”啊,“系数”啊,搞得好像要开个数学大会一样。
其实它并没有那么可怕。
咱们说白了,二项式定理就是一种用来展开(或者说拆开)像“(a+b)”这种式子的神奇工具。
你可能会问了,什么叫展开呢?简单来说就是把里面的东西拆开、整理得清清楚楚,告诉你它到底能长成什么样子。
打个比方,就像拆快递一样,把里面的东西一个个拿出来看清楚,哎哟,原来是个手机,不是个耳机,哈哈,是不是明白了?我们先从最基础的开始说,二项式定理就是帮助我们把像(a+b)的形式进行展开,看看它能变成什么模样。
比如说,你有(a+b)²,这个式子很常见吧?它到底是啥意思呢?你不妨先想想,(a+b)²就是(a+b)×(a+b),哎,就是这两个一模一样的东西相乘,咋弄呢?就拿“乘法分配律”那招吧,把a和b分别和另一个(a+b)里面的a和b都乘一遍。
你会得到:a×a + a×b + b×a + b×b,结果就是a² + 2ab + b²。
你瞧,这就是二项式定理的展开结果,超简单,完全可以照搬。
说实话,刚开始学的时候大家可能都会觉得这个很神秘,甚至会觉得有点蒙。
但其实呢,原来它的本质就是按部就班地去拆开它,明明白白地拿出来。
不过说到这里,你可能又在想了,怎么总是看到这类展开式里面的系数?是不是很复杂?别急,我们来聊聊这事儿。
其实啊,二项式定理里面的系数可不难搞。
你以为这系数是随便来的,其实它们是有规律的,这个规律叫“二项式系数”,它们可以通过一个叫做“杨辉三角”的东西来找。
这个东西可能看起来很复杂,但一旦你熟悉了它,便能像老朋友一样对它了如指掌。
我们从三角形的第一行开始数,开始算。
每一行的数都是通过上一行的数来加的,你就能找出这些系数,哦,这就是展开式里每一项前面的那个数。
举个例子哈,你如果有(a+b)³,那就等于(a+b)×(a+b)×(a+b)。
高中数学二项式定理知识点总结一、二项式定理的概念和公式二项式定理是指两个数的整数次幂之和在展开时,任意一个数都可以拆开成两个数相乘的形式。
根据二项式定理,可以得到以下的公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²(a+b)³ = a³ + 3a²b + 3ab² + b³(a-b)³ = a³ - 3a²b + 3ab² - b³对于一般情况下的二项式展开,可以根据组合数的知识得出下列公式:(a+b)ⁿ = C(n,0) * aⁿ+ C(n,1) * aⁿ⁻¹b + C(n,2) * aⁿ⁻²b² + ... + C(n,n) * bⁿ其中,C(n,m)表示从n个元素中取m个元素的组合数。
二、二项式定理的应用1. 计算二项式的展开式利用二项式定理,可以将任意形式的二项式展开成为多项式,从而方便进行计算。
例如,对于 (x+2)³的展开式,根据二项式定理可以得到:(x+2)³ = x³ + 3x²*2 + 3x*2² + 2³= x³ + 6x² + 12x + 82. 求解组合数在概率论、统计学等领域中,经常需要计算组合数。
而组合数实际上就是二项式展开中的系数。
因此,通过二项式定理可以方便地求解组合数。
3. 计算二项式的特定项有时候并不需要将整个二项式展开,只需求解其中的某一项。
例如,对于(x+2)⁵ 的展开式,如果只需要求解其中x⁴ 的系数,可以直接利用二项式定理计算得出,而无需展开整个式子。
4. 解决数学问题在数学建模、求解等问题中,二项式定理也可以被广泛应用。
通过利用二项式定理,可以简化问题的表达和计算,从而更加方便地求解问题。
高中数学中的二项式定理及其应用在高中数学中,二项式定理是不可避免的一个重要话题。
二项式定理是指将一个二元式(a+b)的n次幂展开后,各项的系数满足一定规律。
这个定理的重要性不仅在于它本身的理论意义,更在于它的广泛应用。
本文将从二项式定理的基本概念开始,探讨它的应用。
一、二项式定理首先,我们来看一下二项式定理的公式:(a+b)ⁿ = C(n,0)aⁿb⁰ + C(n,1)aⁿ⁻¹b¹ + … + C(n,r)aⁿ⁻ʳbr + … +C(n,n)a⁰bⁿ其中,C(n,r)是组合数,它表示从n个元素中取r个元素的方案数,也可以用以下公式表示:C(n,r) = n!/(r!(n-r)!)例如,C(4,2) = 4!/(2!2!) = 6,表示从{1,2,3,4}这4个元素中取出2个元素的所有方案数为6个。
二项式定理告诉我们,将二元式(a+b)的n次幂展开后,每一项的系数都可以用组合数来表示。
这个规律具有很强的普适性,不论a、b是什么数,n是什么值,都能套用这个定理。
二、二项式系数的性质在实际应用中,二项式系数的性质也是我们需要掌握的。
这里列举几个常见的性质:1.对称性:C(n,r) = C(n,n-r)即从n个元素中取出r个元素的方案数等于从n个元素中取出n-r个元素的方案数。
这个性质的证明比较简单,可以通过对组合公式的变形来完成。
2.递推关系:C(n,r) = C(n-1,r-1) + C(n-1,r)即从n个元素中取出r个元素的方案数等于从n-1个元素中取出r-1个元素的方案数加上从n-1个元素中取出r个元素的方案数。
这个递推关系非常有用,可以应用于组合恒等式的证明,也可以结合递归算法来解决一些实际问题。
3.二项式系数的对数性质:∑C(n,r) = 2ⁿ即二项式系数C(n,0) + C(n,1) + … + C(n,n)的和等于2的n次幂。
这个性质的证明也比较简单,可以利用二项式定理将(a+b)ⁿ展开来证明。
二项式定理--1定理
一、 复习填空:
1. 在n=1,2,3,4时,研究(a+b)n 的展开式.
(a+b)1= ,
(a+b)2= ,
(a+b)3= ,
(a+b)4= .
2. 列出上述各展开式的系数:
3.这些系数中每一个可看作由它肩上的两个数字 得到.你能写出第五行的数字吗?(a+b)5= .
4.计算:0
4C = ,14C = ,24C = ,34C = ,44C = .用这些组合数表示(a+b)4的展
开式是:(a+b)4= .
二、定理:
(a+b) n = (n N ∈),这个公式表示的定理叫做二项式定理,公式右边的多项式叫做 (a+b) n 的 ,其中r
n C (r=0,1,2,……,n )
叫做 , 叫做二项展开式的通项,通项是指展开式的第 项,展开式共有 个项.
例题:1.展开4)x 1x (+; 2. 展开6)x
1x 2(-.
小结:求展开式中的指定项一般用通项公式,当指数n 不是很大时,也可用定理展开,
再找指定项.
3.计算:(1)(0.997)3 的近似值(精确到0.001)
(2)(1.002)6的近视值(精确到0.001).
三 、课后检测
1.求(2a+3b )6的展开式的第3项.
2.求(3b+2a )6的展开式的第3项.
3.写出n 33)x 21
x (-的展开式的第r+1项.
4.求(x 3+2x )7的展开式的第4项的二项式系数,并求第4项的系数.
5.用二项式定理展开:
(1)93)b a (+; (2)7)x 22x (
-.
6.化简:
(1)55)x 1()x 1(-++; (2)4212142121)x 3x 2()x
3x 2(----+。