4.1平面向量的加法减法运算
- 格式:ppt
- 大小:1.62 MB
- 文档页数:28
平面向量的加法与减法在数学中,平面向量是用来描述平面上的位移和力的工具。
平面向量具有大小和方向两个特征,可以通过数学运算来完成加法和减法操作。
本文将详细介绍平面向量的加法和减法运算,并探讨其应用。
一、平面向量的表示方法平面向量通常用字母加箭头来表示,如AB→表示从点A到点B的位移向量。
平面向量还可以用坐标表示,如向量→AB的坐标表示为(ABx , ABy)。
其中,ABx表示向量在x轴上的分量,ABy表示向量在y轴上的分量。
二、平面向量的加法两个平面向量的加法是指将两个向量的对应分量相加的操作。
设有两个向量→AB和→CD,其坐标分别为(ABx , ABy)和(CDx , CDy)。
那么,向量→AB与→CD的和为→AB + →CD,其坐标为(ABx + CDx , ABy + CDy),即两个向量的横坐标分量相加得到新向量的横坐标,纵坐标分量相加得到新向量的纵坐标。
三、平面向量的减法平面向量的减法是指将一个向量减去另一个向量的操作。
设有两个向量→AB和→CD,其坐标分别为(ABx , ABy)和(CDx , CDy)。
那么,向量→AB减去向量→CD的差为→AB - →CD,其坐标为(ABx - CDx , ABy - CDy),即两个向量的横坐标分量相减得到新向量的横坐标,纵坐标分量相减得到新向量的纵坐标。
四、平面向量的应用平面向量的加法与减法在数学中有广泛的应用。
以下列举几个常见的应用场景:1. 位移问题:平面向量的加法可用于求解物体在空间中的位移问题。
通过将各个位移向量进行加法运算,可以得到物体的总位移向量。
2. 力的合成:力的合成是指多个力的作用下,合成后产生的力。
通过将各个力向量进行加法运算,可以得到合成力的大小和方向。
3. 航空航天:在航空航天领域中,平面向量的加法与减法被广泛运用于导航和控制系统中,用以计算飞行器的位置和速度。
4. 平面几何:平面向量的加法与减法在平面几何中也有重要应用。
向量的加法口诀: 首尾相连,首连尾,方向指向末向量。
以第一个向量的起点为起点,以第二个向量的终点为终点的向量是两向量的和向量。
二、向量的减法两向量做减法运算,图像如下图所示:向量的减法口诀: 首首相连,尾连尾,方向指向被减向量。
以第一个向量的终点为起点,以第二个向量的终点为终点的向量是两向量的差向量。
向量的学习是高一数学必修四第二章的内容,要求同学们会向量的基本运算,其中就包括加法、减法、数乘。
要求大家能根据运算法则解决基本的向量运算,学会运用图像解决向量加减法,向量的数乘等问题。
向量的相关题目难度也不是很大,只要大家认真学习,认真做好笔记,认真做做题目,总结做题规律,那么当我们遇到类似题目时就会似曾相识,做起来也很顺手,再细心点的话,得满分也没有问题。
学习方法很多,重要的事找到适合自己的方法,当然适合自己方法就是最好的方法。
附一;三角形定则解决向量加减的方法将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。
注:两个向量相减,则表示两个向量起点的字母必须相同;差向量的终点指向被减向量的终点。
平行四边形定则解决向量加法的方法实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩.当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的λ∣倍.数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb).向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b.② 如果a≠0且λa=μa,那么λ=μ 3、向量的的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a·b.若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣.向量的数量积的坐标表示:a·b=x·x'+y·y'.向量的数量积的运算律a·b=b·a(交换律);(λa)·b=λ(a·b)(关于数乘法的结合律);(a+b)·c=a·c+b·c(分配律);向量的数量积的性质a·a=|a|的平方.a⊥b 〈=〉a·b=0.|a·b|≤|a|·|b|.向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2.2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c.3、|a·b|≠|a|·|b|4、由 |a|=|b| ,推不出 a=b或a=-b.4、向量的向量积定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b.若a、b不共线,则a×b的模是:∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系.若a、b共线,则a×b=0.向量的向量积性质:∣a×b∣是以a和b为边的平行四边形面积.。
平面向量加法
两个向量做加法运算就是向量的加法,是一种向量的运算。
向量的加法口诀:首尾相连,首连尾,方向指向末向量。
向量的减法口诀:首首相连,尾连尾,方向指向被减向量。
平面向量是在二维平面内既有方向(direction)又有大小(magnitude)的量,物理学中也称作矢量,与之相对的是只有大小、没有方向的数量(标量)。
平面向量用a,b,c上面加一个小箭头表示,也可以用表示向量的有向线段的起点和终点字母表示。
向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0,AB-AC=CB. 即“共同起点,指向被减”,a=(x,y) b=(x',y') 则 a-b=(x-x',y-y')。
平面向量的基本概念与运算法则平面向量是在平面中具有大小和方向的量,由有序数对表示。
在数学中,平面向量是研究平面几何和代数的基础。
本文将介绍平面向量的基本概念和运算法则,以帮助读者更好地理解和应用平面向量。
一、平面向量的基本概念平面向量通常用有向线段表示,其中起点和终点之间的位置表示向量的方向。
一个平面向量可由其终点的坐标减去起点的坐标得到。
例如,向量AB可以表示为向量a = (x2-x1, y2-y1),其中A(x1, y1)和B(x2, y2)是向量的起点和终点。
平面向量的大小通常用向量的长度来表示,也称为向量的模。
向量a = (x, y)的长度表示为|a|或||a||,可以通过勾股定理计算得到:|a| =√(x^2+y^2)。
向量的长度是一个非负数。
二、平面向量的运算法则1. 加法运算平面向量的加法运算定义为将两个向量的对应分量相加。
例如,对于向量a = (x1, y1)和向量b = (x2, y2),它们的和可以表示为向量c = (x1+x2, y1+y2)。
2. 减法运算平面向量的减法运算定义为将两个向量的对应分量相减。
例如,对于向量a = (x1, y1)和向量b = (x2, y2),它们的差可以表示为向量c =(x1-x2, y1-y2)。
3. 数乘运算平面向量的数乘运算定义为将向量的每个分量与一个标量相乘。
例如,对于向量a = (x, y)和标量k,它们的数乘可以表示为向量b = (kx, ky)。
4. 乘法运算平面向量的乘法运算有两种形式:数量积和向量积。
4.1 数量积数量积(又称点积或内积)定义为两个向量的对应分量相乘后再相加。
数量积的结果是一个标量。
对于向量a = (x1, y1)和向量b = (x2,y2),它们的数量积表示为a · b = x1x2 + y1y2。
4.2 向量积向量积(又称叉积或外积)定义为两个向量的乘积是一个新的向量,它垂直于原来两个向量组成的平面,并且方向遵循右手法则。
平面向量的加法与减法在平面向量的运算中,加法和减法是两个基本且重要的运算操作。
通过合适的方法进行向量相加或相减,可以获得新的向量,进而帮助我们解决实际问题和优化计算过程。
本文将重点探讨平面向量的加法和减法,并介绍它们的性质和运算规则。
一、向量的表示平面上的向量可以用有序数对表示,我们通常以大写字母加箭头(→)来表示向量,例如向量A可以表示为A→ = (x,y)。
其中,x和y分别表示向量在x轴和y轴上的分量。
二、向量的加法向量的加法是指将两个向量相加,得到一个新的向量。
向量的加法满足以下几个性质:1. 交换律:对于任意向量A和B,有A + B = B + A。
2. 结合律:对于任意向量A、B和C,有(A + B) + C = A + (B + C)。
3. 零向量:零向量的表示为O→ = (0,0),对于任意向量A,有A +O→ = A。
根据以上性质,我们可以通过向量的对应分量相加的方式来进行向量的加法运算。
例如,向量A→ = (x1,y1)和向量B→ = (x2,y2),它们的和A→ + B→ = (x1+x2,y1+y2)。
三、向量的减法向量的减法是指将一个向量减去另一个向量,得到一个新的向量。
向量的减法同样满足交换律和结合律,减法的规则可以通过相应的加法来表示。
对于向量A和向量B,向量的减法可以表示为A→ - B→ = A→ + (-B→),其中-A→表示向量B→的反向量。
向量的反向量的表示为-A→ = (-x,-y),即将向量的每个分量取反。
根据向量的加法运算规则,我们可以将向量的减法转化为相应的加法运算。
例如,向量A→ = (x1,y1)和向量B→ = (x2,y2),它们的差A→ - B→ = A→ + (-B→) = (x1,y1) + (-x2,-y2) = (x1-x2,y1-y2)。
四、几何意义向量的加法和减法在平面几何中具有重要的几何意义。
对于向量的加法,可以将两个向量的起点放在同一个位置,然后将终点相连,所得的新向量即为其和向量。
平面向量的加减法运算教学设计以平面向量的加减法运算为主题的教学设计第一节:引入引导学生回顾平面向量的定义和性质,强调向量的表示方法和运算规则。
简要介绍平面向量的加法和减法运算,以及它们的几何意义。
第二节:平面向量的加法运算1.1 向量的加法定义向量的加法是指将两个向量的对应分量相加得到一个新的向量。
引导学生根据定义进行向量的加法运算。
1.2 加法运算的性质向量的加法满足交换律、结合律和零向量的存在性。
通过示例和练习题让学生理解和应用这些性质。
1.3 加法运算的几何意义向量的加法可以用平行四边形法则来解释,即将两个向量的起点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和终点。
第三节:平面向量的减法运算2.1 向量的减法定义向量的减法是指将第二个向量取负后与第一个向量进行加法运算。
引导学生根据定义进行向量的减法运算。
2.2 减法运算的性质向量的减法满足减去一个向量等于加上其相反向量,即a-b=a+(-b)。
通过示例和练习题让学生理解和应用这个性质。
2.3 减法运算的几何意义向量的减法可以用平行四边形法则来解释,即将第二个向量的起点与第一个向量的终点相连,得到一个新的向量,它的起点和终点分别为原向量的起点和第二个向量的终点。
第四节:应用练习通过一些实际问题和练习题,让学生应用所学的平面向量的加减法运算解决几何和物理问题。
可以设计一些场景,如力的合成、位移的计算等。
第五节:总结与拓展对平面向量的加减法运算进行总结,强调运算的规则和性质,以及几何意义。
鼓励学生进一步拓展应用平面向量的知识,如向量的数量积和向量的夹角等。
通过以上教学设计,可以帮助学生系统掌握平面向量的加减法运算,理解其几何意义,并能够应用于实际问题的求解。
同时,通过练习和拓展,培养学生的问题解决能力和数学思维。
向量公式汇总平面向量1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:已知两个非零向量a,b。
作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。
若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。