浙江省温州市实验中学九年级第一次适应性检测(一模)数学试卷(含答案)
- 格式:doc
- 大小:549.00 KB
- 文档页数:7
浙江省温州市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 2.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( ) A .686×104 B .68.6×105 C .6.86×106 D .6.86×1053.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A .9πB .10πC .11πD .12π4.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定5.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π-B .2233πC .233πD 233π 6.在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则A ∠的正弦值是()n n n nA .55B .510C .255D .127.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( )A .513B .512C .1213D .1258.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( )A .(1,1)B .(2,2)C .(1,3)D .(1,2)9.在函数y =1x x -中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠110.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m 1.将78000000用科学记数法表示应为( )A .780×105B .78×106C .7.8×107D .0.78×10811.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°12.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的一元二次方程220--=x x k 有两个相等的实数根,则k =________.14.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.15.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.16.若2x+y=2,则4x+1+2y的值是_______.17.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.18.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.20.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.21.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.22.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.23.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?24.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式34x+b>kx的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.25.(10分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).(1)该同学从5 个项目中任选一个,恰好是田赛项目的概率P 为;(2)该同学从5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.26.(12分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM 相似?若存在,求出点P的坐标;若不存在,请说明理由.27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.2.D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=6.86×105,故选:D.3.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.4.C【解析】【分析】根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选:C.【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.5.B【解析】【分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=33AC=2, ∴阴影部分的面积=23×2÷2−2602360π⨯=23−23π. 故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 6.A【解析】【分析】由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,2OC =,4AC =,由勾股定理得,2225AO AC OC =+=,5OC sinA OA ∴==. 故选:A .【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.B【解析】如图,等腰△ABC 中,AB=AC=13,BC=24,过A 作AD ⊥BC 于D ,则BD=12,在Rt △ABD 中,AB=13,BD=12,则,5 =,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.8.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)<2,因此点在圆内,B选项) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) >2,因此点在圆外D选项(1) 因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.9.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.10.C【解析】【分析】科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:78000000= 7.8×107.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.11.D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.12.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1.【解析】【分析】根据根的判别式计算即可.【详解】解:依题意得:∵关于x的一元二次方程220x x k有两个相等的实数根,--=b-=4-4⨯1⨯(-k)=4+4k=0∴n=24ac解得,k=-1.故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当n =24ac b ->0时,方程有两个不相等的实数根;当n =24ac b -=0时,方程有两个相等的实数根;当n =24ac b -<0时,方程无实数根.14.1【解析】析:本题需先根据已知条件列出关于m 的等式,即可求出m 的值.解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根∴△=b 2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为115.113407, 北京市近两年的专利授权量平均每年增加6458.5件.【解析】【分析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【详解】 解:∵北京市近两年的专利授权量平均每年增加:106948940316458.52-=(件), ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.【点睛】此题考查统计图的意义,解题的关键在于看懂图中数据.16.1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案.详解:原式=2(2x+y)+1=2×2+1=1. 点睛:本题主要考查的是整体思想求解,属于基础题型.找到整体是解题的关键.17.50°【解析】【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图所示:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).18.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC=+=,∵AO=OC,∴152BO AC==,∵AO=OC,AM=MD=4,∴132OM CD==,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.20.(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】【分析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP=,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式OC ODDP DC=,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式DG PG DPDF EF DE==求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标. 【详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴10{3b cc-+==-,解得2{3bc=-=-,故抛物线的函数解析式为y=x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP , 解得DP=3, 过点P 作PG ⊥y 轴于点G , 则DG PG DP DF EF DE ==,即31DG PG ==解得DG=1,PG=13,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣13,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(13,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴OC ODDP DC=,即3DP=10,解得DP=310,过点P作PG⊥y轴于点G,则DG PG DPDF EF DE==,即3103110DG PG==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题. 21.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 22.S 1,S 3,S 4,S 5,1【解析】【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S 矩形ABCD =S 1+S 1+S 3=1,S 4=S 1,S 5=S 3,S 6=S 4+S 5,S 阴影面积=S 1+S 6=S 1+S 1+S 3=1.故答案为S 1,S 3,S 4,S 5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题. 23. (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人【解析】【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m 值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6 (2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.24.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.(1)25;(1)35;(3)310;【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.26.【小题1】设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、D(0,3)代入,得…………………………………………2分即所求抛物线的解析式为:……………………………3分【小题2】如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得∴点E坐标为(-2,3)………………………………………………………………4分又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、D(0,3),所以顶点C(-1,4)∴抛物线的对称轴直线PQ为:直线x=-1,[中国教#&~@育出%版网]∴点D与点E关于PQ对称,GD=GE……………………………………………②分别将点A(1,0)、点E(-2,3)代入y=kx+b,得:解得:过A、E两点的一次函数解析式为:y=-x+1∴当x=0时,y=1∴点F坐标为(0,1)……………………5分∴=2………………………………………③又∵点F与点I关于x轴对称,∴点I坐标为(0,-1)∴……………………………………④又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可……………………………………6分由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(-2,3)、I(0,-1)两点的函数解析式为:,分别将点E(-2,3)、点I(0,-1)代入,得:解得:过I、E两点的一次函数解析式为:y=-2x-1∴当x=-1时,y=1;当y=0时,x=-;∴点G坐标为(-1,1),点H坐标为(-,0)∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=∴四边形DFHG的周长最小为. …………………………………………7分【小题3】如图⑤,由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:解得:,过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);由图可知,△AOM为直角三角形,且,………………8分要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论;……………………………………………………………………………9分①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分【解析】(1)直接利用三点式求出二次函数的解析式;(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,由图形的对称性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小,即,DF+EI=即边形DFHG的周长最小为.(3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)27.(1)证明见解析;(2)BC=;.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.。
2024年浙江省温州市瓯海区初中毕业生第一次适应性考试数学模拟试卷一、单选题(★) 1. 据报道,2024年4月26日05时04分,在轨执行任务的神舟十七号航天员乘组打开舱门,迎接神舟十八号航天员乘组入驻距离地表约米的中国空间站——“天宫”.数用科学记数法表示为()A.B.C.D.(★★) 2. 青溪龙砚起源于宋代,已有一千余年的历史,是浙江一项传统的石雕工艺,被列入浙江省级非物质文化遗产项目.如图是一款龙砚的示意图,其俯视图是()A.B.C.D.(★★) 3. 下列整式计算正确的是()A.B.C.D.(★★) 4. 小明去商场购物,购买完后商家有一个抽奖答谢活动,有m张奖券,其中含奖项的奖券有n张,每名已购物的顾客只能抽取一次,小明抽之前有名顾客已经抽过奖券,中奖的有3人,则小明中奖的概率为()A.B.C.D.(★★) 5. 随着“绿色出行,低碳生活”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某公司计划购进A,B两种型号的新能源汽车共3台,据了解,2辆A型和1辆B型汽车的进价共计55万元,2辆B型和1辆A型汽车的进价共计50万元,若设每辆A型汽车的价格为x万元,每辆B型汽车的价格为y万元,则可列二元一次方程组为()A.B.C.D.(★★) 6. 如图,是的外接圆,是直径,平分,,则的半径为()A.2B.1C.D.(★★) 7. 如图,在离地面高度为1.5米的A处放风筝,风筝线长8米,用测倾仪测得风筝线与水平面的夹角为θ,则风筝线一端的高度为()A.米B.米C.米D.米(★★) 8. 如图1是我国传统的计重工具—秤,当秤钩处挂上物品,移动秤砣使得秤杆处于水平位置时即可称出物品的重量,这用到了杠杆原理(如图2杠杆平衡时,动力动力臂阻力阻力臂).已知一杆秤的秤砣重,秤钮和秤钩的水平距离为,当秤杆处于水平位置时,已知秤砣到秤钮的水平距离为,秤钩所挂物品重为,则关于的函数关系图象是()A.B.C.D.(★★★) 9. 已知二次函数(为常数,)的最小值分别为,()A.若,则B.若,则C.若,则D.若,则(★★) 10. 如图,E,F两点分别在正方形的边上,,沿折叠,沿折叠,使得B,D两点重合于点G .且E,G,F在同一条直线上,则的值为()A.B.C.D.二、填空题(★) 11. 分解因式:2 x2﹣8= _______(★★) 12. 4月15日是全民国家安全教育日,某校组织全体学生参加相关内容的知识问答,从中随机抽取了100名学生的成绩x(百分制),根据数据(成绩)绘制了如图所示的统计图.若该校有1000名学生,估计成绩不低于90分的人数为 ____________ 名.(★★★) 13. 不等式组的解集是 _____ .(★★) 14. 马面裙(图1),又名“马面褶裙”,是我国古代女子穿着的主要裙式之一,将图1中的马面裙抽象成数学图形如图2中的阴影部分所示,和所在圆的圆心均为点O,且点A在上,点D在上,若,,则该马面裙裙面(图2中阴影部分)的面积为 ________ .(结果保留)(★★) 15. 如图,在平面直角坐标系中,点P在反比例函数的图象上,其纵坐标为4,过点P作轴,交x轴于点Q,将线段绕点Q顺时针旋转得到线段.若点M也在该反比例函数的图象上,则k的值为_______ .(★★★★) 16. 如图1的一汤碗,其截面为轴对称图形,碗体ECDF呈半圆形状(碗体厚度不计),直径cm,碗底cm,,.(1)如图1,当汤碗平放在桌面上时,碗的高度是 _________ cm.(2)如图2,将碗放在桌面上,绕点B缓缓倾斜倒出部分汤,当碗内汤的深度最小时,tan 的值是 _________ .三、解答题(★) 17. (1)计算:;(2)化简:.(★★) 18. 以下是小张同学解分式方程的过程,请认真阅读并完成相应的任务.解:………………………………第一步…………………………………第二步………………………………………第三步经检验,是原方程的根……………第四步任务一:填空:以上解方程的过程中,第______步开始出现错误;任务二:请你帮他写出正确的解答过程.(★★★) 19. 如图,在菱形中,是的中点,连接并延长,交的延长线于点.(1)求证:;(2)连接,若,求的长.(★★) 20. 某学校随机抽取部分学生,调查每个月的零花钱消费额,数据整理成如下的统计表和统计图.已知图1中,A,E两组对应的小长方形高度之比为.请回答以下问题(1)本次调查样本的容量是__________;(2)补全频数分布直方图,并标明各组的频数;(3)若该校有2500名学生,试估计月消费零花钱不少于300元的学生的数量.(★★) 21. 如图,某社区有一块四边形空地,,,.从点A修了一条垂直的小路(垂足为E),E恰好是的中点,且.(1)求边的长;(2)连接,判断的形状;(3)求这块空地的面积.(★★★) 22. 钱塘江绿道是浙江首个完全贯通的城市主要水系绿道,也是全国目前已建成的最长沿江(河)连续绿道,圆圆和方方在笔直的绿道上分别从相聚m米的甲,乙两地同时出发,匀速相向而行,已知圆圆的速度大于方方的速度,两人相遇停留n分钟后,各自按原速度原方向继续前行,分别到达乙地,甲地后原地休息,若两人之间的距离y(米)与时间x(分钟)之间的函数关系如图所示:(1)根据图像信息,请求出m,n的值;(2)求圆圆和方方的速度;(单位:米/分钟)(3)求线段所在直线的函数解析式.(★★) 23. 综合与实践实践基地有一长为12米的墙,研究小组想利用墙和长为40米的篱笆,在前面的空地围出一个面积最大的矩形种植园.假设矩形一边,矩形种植园的面积为.要探究面积的最大值,首先应将另一边用含的代数式表示,从而得到关于的函数表达式,同时求出自变量的取值范围,再结合函数性质求出最值.思考一:将墙的一部分用来替代篱笆按图1的方案围成矩形种植园(边为墙的一部分).思考二:将墙的全部用来替代篱笆按图2的方案围成矩形种植园(墙为边的一部分).(1)根据分析,分别求出两种方案中的的最大值;比较并判断矩形种植园的面积最大值为多少.(2)若“情境”中篱笆长为20米,其余条件不变,请(★★★★) 24. 如图,内接于,连接并延长交弦于点E,交于点D,且,连接,.(1)若,求的度数;(2)求证:;(3)若,求 (用含k的式子表示).。
2023年中考数学第一次模拟考试卷(温州卷)数学·参考答案一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)12345678910A A C C C C C CB A二、填空题(本大题共6小题,每小题5分,共30分)11.3(m+2)(m﹣2).12..13..14.14.15.60.16.69;15.三、解答题(本大题共8小题,共80分.解答时应写出文字说明、证明过程或演算步骤)17.(10分)(1)计算:(﹣1)3+|﹣6|×2﹣1﹣;(2)解不等式:x<,并把解集在数轴上表示出来.【详解】(1)原式=﹣1+6×﹣3,=﹣1+3﹣3,=﹣1;(2)去分母,得:6x﹣3(x+2)<2(2﹣x),去括号,得:6x﹣3x﹣6<4﹣2x,移项,得:6x﹣3x+2x<4+6,合并同类项,得:5x<10,系数化为1,得:x<2.在数轴上表示不等式的解集,如图所示:18(8分).如图,在7×7的方格纸中,△ABC的顶点均在格点上.请按照以下要求画图.(1)在图1中画格点△BCP,使△BCP与△ABC关于某条直线对称.(2)在图2中画格点△BCQ,使△BCQ的面积为△ABC面积的2倍.【详解】(1)如图,△BCP即为所求;(2)如图,△BCQ即为所求.19.(8分)某中学九年级学生进行了五次体育模拟测试,甲同学的测试成绩如表(一),乙同学的测试成绩折线统计图如图所示.表(一)次数一二三四五分数4647484950(1)请根据甲、乙两同学五次体育模拟测试的成绩填写下表:中位数平均数方差甲 48 48 2乙 48 48 (2)甲、乙两位同学在这五次体育模拟测试中,谁的成绩较为稳定?请说明理由.【详解】(1)由题意可得,甲同学的中位数为48,平均数为,乙同学的成绩由低到高为47,47,48,49,49,中位数为48,方差为S2=+(47﹣48)2+(48﹣48)2+(49﹣48)2+(49﹣48)2]=.故答案为:48,48,48,;(2)乙的成绩较为稳定.因为乙的方差小于甲的方差,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.20.(8分)如图,A,E,F,B在同一条直线上,CE⊥AB,DF⊥AB,垂足分别为E,F,AE=BF,∠A=∠B.(1)求证:△ADF≌△BCE.(2)当BC⊥AD时,,OA=3时,求OD的长.【解答】(1)证明:∵CE⊥AB,DF⊥AB,∴∠AFD=∠BEC=90°,∵AE=BF,∴AE+EF=BF+EF,即AF=BE,在△ADF和△BCE中,,∴△ADF≌△BCE(ASA);(2)解:∵BC⊥AD,∠A=∠B,∴∠A=∠B=45°,∴OA=OB=3,,∵,∴,∴,∴,∴OD=AD﹣OA=4﹣3=1.21.(10分)已知函数y=+b(a,b为常数且a≠0).已知当x=2时,y=4;当x=﹣1时,y=1.请对该函数及图象进行如下探究:(1)求该函数的解析式,并直接写出该函数自变量x的取值范围;(2)请在下列直角坐标系中画出该函数的图象;(3)请你在上方直角坐标系中画出函数y=2x的图象,结合上述函数的图象,写出不等式+2≤2x的解集.【详解】(1)把x=2时,y=4;x=﹣1时,y=1代入y=+b得,解得,∴该函数的解析式为y=+2(x≠1);(2)该函数的图象如图所示;(3)如图2:y=+2与y=2x的交点为(0,0),(2,4),结合函数图象+2≤2x的解集为x≥2或0≤x<1;22.(10分)如图,▱ABCD中,连接AC,点E是AB中点,点F是AC的中点,连接EF,过E作EG∥AF交DA的延长线于点G.(1)求证:四边形AGEF是平行四边形;(2)若sin∠G=,AC=10,BC=12,连接GF,求GF的长.【解答】(1)证明:∵点E是AB中点,点F是AC的中点,∴EF是△ABC的中位线,∴EF∥BC,EF=BC,在平行四边形ABCD中,AD∥BC,∴EF∥AD,∵EG∥AF,∴四边形AGEF是平行四边形;(2)过点F作FH⊥AD于点H,如图所示:∵EG∥AF,∴∠HAF=∠AGE,∵sin∠G=,∴sin∠HAF==,∵AC=10,F是AC的中点,∴AF=5,∴HF=3,在Rt△AHF中,根据勾股定理,得AH=4,∵BC=12,∴EF=6,∵四边形AGEF是平行四边形,∴AG=EF=6,∴GH=6+4=10,在Rt△HGF中,根据勾股定理,得GF=.23.(12分)某产家在甲、乙工厂生产同一商品,并将其分几天运往A地240吨,B地260吨,表1是两个工厂的商品记录,表2为该商品的运费标准(m,n为常数).表1时间甲工厂商品记录乙工厂商品记录甲、乙两工厂总运费第1天生产商品200吨生产商品300吨\第2天运往A地30吨运往A地10吨,运往B地20吨1230元第3天运往B地20吨运往B地40吨1460元表2甲、乙两厂往A,B地运输该商品的运费标准(单位:元/吨)目的地工厂A B甲2025乙m n(1)求m,n的值.(2)若运费标准不变,要使剩余商品按要求运往A,B两地,且总运费最少,请给出剩余商品的运输方案.(3)若从第4天开始,运输公司将甲工厂往B地的运费提高a元/吨,乙工厂往B地的运费降低a元/吨,其中a为正整数,若可用不超过7150元的费用按要求完成剩余商品的运输,求a的最小值.【详解】(1)由题意得:,解得:,∴m,n的值分别为15和24;(2)第4天开始,甲厂剩余150吨商品,乙厂剩余230吨商品,A地还需要200吨商品,B地还需要180吨商品,设甲厂再往A地运x吨商品,则运往B地(150﹣x)吨商品,乙厂运往A地(200﹣x)吨商品,运往B地(30+x)吨商品,设总运费为y元,由题意得:y=20x+25(150﹣x)+15(200﹣x)+24(30+x)=4x+7470,∴当x=0时,y最小,∴运输方案为:甲厂再往A地运0吨商品,则运往B地150吨商品,乙厂运往A地200吨商品,运往B地30吨商品;(3)∵甲工厂往B地的运费提高a元/吨,乙工厂往B地的运费降低a元/吨,设甲厂再往A地运x吨商品,设总运费为y元,由题意得:∴y=4x+7470+(150﹣x)a﹣(30+x)a=(4﹣2a)x+7470+120a,∵a为正整数,∴当4﹣2a≥0时,y≥7470+120a>7150,不符合题意,∴4﹣2a<0,即a>2,此时,y随x的增大而减小,∴当x=150时,y最小,此时y=8070﹣180a,∵总费用不超过7150元,∴8070﹣180a≤7150,解得:a≥,∴a的最小值为6.24.(14分)如图,在▱ABCD中,连结BD,以BD为直径的⊙O交AB于点G,交DC于点E,交AD于点F,连结EF交BD于点H,连结GF,BE,∠A=∠AGF.(1)求证:AF=DF.(2)若AB=6,DH:BH=1:4,求sin∠DBE的值与BC的长.(3)在(2)的条件下,连结BF,若P,Q分别是四边形FBCD相邻两条边上的点,当P,Q,H,F四个点组成的四边形为平行四边形时(PF<QF),求所有满足条件的FP的长.【解答】(1)证明:如图1,连接BF,∵BD是⊙O的直径,∴∠BFD=90°,∵四边形GBDF是⊙O的内接四边形,∴∠AGF=∠ADB,∵∠A=∠AGF,∴∠A=∠ADB,∴BD=AB,∴AF=DF;(2)解:如图2,连接AC,FH,∵四边形ABCD是平行四边形,∴OA=OC,由(1得,AF=DF,BD=AB=6,∴FH∥CD,∴△HDE∽△HOF,∴=,设DH=a,则BH=4a,∴BD=DH+BH=5a,∴OD=OF=a,∴OH=OD﹣DH=﹣a=,∴===,∴=,∴DE=a,∵BD是⊙O的直径,∴∠DEB=90°,∴sin∠DBE===∵四边形ABCD是平行四边形,∴CD=AB,∵BD=AB=6,∴CD=BD=6,∵=,∴DE=BD=2,∴CE=CD﹣DE=6﹣2=4,BE2=BD2﹣DE2=62﹣22=32,∴BC===4.(3)解:如图3,由(2)知:BC=4,△HDE∽△HOF,∴AD=BC=4,==,∴DF=,EH=FH,∵=,∴∠BFE=∠BDE,∵∠FHB=∠DHE,∴△BHF∽△EHD,∴=,∴EH•FH=DH•BH,∴=×,∴FH=,∵∠BFD=90°,∴BF===2,当P在BF上,Q点在BC上时,∵四边形PQDF是平行四边形,∴FH∥PQ,∴∠BPQ=∠BFE,∵四边形ABCD是平行四边形,∴DF∥BC,∴∠FBC=180°﹣∠BFD=180°﹣90°=90°,∵∠PBQ=∠DEB=90°,∴∠BDE+∠DBE=90°,∠BPQ+∠BQP=90°,∠BPQ=∠BFE,∠BFE=∠BDE,∴∠BQP=∠DBE,∴BP=PQ•sin∠BQP=×=,∴PF=BF﹣BP=2﹣=,如图4,当P在DF上,点Q在CD上时,由上知:FH=,∴EH=FH=,∴EF=FH+EH=2,∵PQ∥EF,∴△DPQ∽△DFE,∴===,∴PD==×=,∴PF=DF﹣PD=,如图5,作HQ⊥DF于Q,作HP⊥BF于P,∵∠BFDC=90°,∴四边形PFQH是矩形,∴HQ∥BF,∴△DHQ∽△DBF,∴,∴=,∴HQ=,∴PF=HQ=,综上所述:PF=或或.。
浙江省温州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个2.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .3.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为( )A .512B .1213C .513D .13124.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o5.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 6.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。
问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。
问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )A .5210258x y x y +=⎧⎨+=⎩B .52107718x y x y +=⎧⎨+=⎩C .7718258x y x y +=⎧⎨+=⎩D .5282510x y x y +=⎧⎨+=⎩7.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米 B .30sinα米 C .30tanα米 D .30cosα米8.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A .16B .13C .12D .239.如图,在底边BC 为3,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+3B .2+23C .4D .3310.若30m n +-=,则222426m mn n ++-的值为( ) A .12B .2C .3D .011.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A 、B 、C 、D ,则图中的相似三角形有( )A .4 对B .5 对C .6 对D .7 对12.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠A=70°,∠B=50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为______.14.如图所示,直线y=x+b 交x 轴A 点,交y 轴于B 点,交双曲线8(0)y x x=>于P 点,连OP ,则OP 2﹣OA 2=__.15.如图,在半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为_____.16.分解因式8x 2y ﹣2y =_____. 17.计算:(1)(23b a)2=_____;(2)210ab c 54ac÷=_____. 18.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.20.(6分)如图①,一次函数y=12x ﹣2的图象交x 轴于点A ,交y 轴于点B ,二次函数y=12-x 2+bx+c 的图象经过A 、B 两点,与x 轴交于另一点C . (1)求二次函数的关系式及点C 的坐标;(2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD+PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB=∠ACB ,求出所有满足条件的点M 的坐标.21.(6分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .小明所求作的直线DE 是线段AB的 ;联结AD,AD =7,sin ∠DAC =,BC =9,求AC 的长.22.(8分)先化简,再求值:2221()4244a aa a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 23.(8分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为12.求 x 和 y 的值.24.(10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元. (1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 25.(10分)(1)解方程:x 2﹣5x ﹣6=0;(2)解不等式组:43(2)123x x x x +≤+⎧⎪-⎨<⎪⎩.26.(12分)解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.27.(12分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C-,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④.故选:C.【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.2.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,22=10m,13050∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.4.A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 5.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABEV-S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴2,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD矩形−S ABEV −S EBF扇形=1×2−12245(2)3-24π⨯π故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式6.D【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组5282510x yx y+=⎧⎨+=⎩错误,故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.7.C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.8.D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:4263=,故选D.9.B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可. 详解:∵DE垂直平分AB,∴BE=AE,∴,∴△ACE 的周长 故选B .点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等. 10.A 【解析】 【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键. 11.C 【解析】由题意,AQ ∥NP ,MN ∥BQ ,∴△ACM ∽△DCN ,△CDN ∽△BDP ,△BPD ∽△BQA ,△ACM ∽△ABQ ,△DCN ∽△ABQ ,△ACM ∽△DBP ,所以图中共有六对相似三角形. 故选C . 12.C 【解析】 【分析】根据∠DBC=∠A ,∠C=∠C ,判定△BCD ∽△ACB=代入求值即可. 【详解】∵∠DBC=∠A ,∠C=∠C , ∴△BCD ∽△ACB , ∴CD BCBC AC=,∴636=,∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.110°或50°.【解析】【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC ﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.14.1【解析】解:∵直线y=x+b与双曲线8yx=(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.15.﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.16.2y(2x+1)(2x﹣1)【解析】【分析】首先提取公因式2y,再利用平方差公式分解因式得出答案.【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案为2y(2x+1)(2x-1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17.429b a8b c【解析】 【分析】(1)直接利用分式乘方运算法则计算得出答案; (2)直接利用分式除法运算法则计算得出答案. 【详解】(1)(23b a )2=429b a ;故答案为429b a;(2)210ab c 54a c ÷=21045ab c c a ⨯=8bc . 故答案为8bc.【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键. 18.3n+1 【解析】 【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律. 【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n 个图案中共有“”为:4+3(n ﹣1)=3n+1故答案为:3n+1. 【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1) 14;(2)112. 【解析】 【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解. 【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14; (2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.20.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,21.【解析】 【分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论; (2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD+PE =3PE ,然后配方即可得到结论.(3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论. 【详解】 解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点,∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==,∴二次函数的关系式为y =215222x x -+-.令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0).(2)∵PD ∥x 轴,PE ∥y 轴, ∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -).∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+.∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1. ∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2,∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=,解得:y=12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2. ∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1,∴DM 2,∴点M 的坐标为(52,2-).综上所述:点M 的坐标为(52,12)或(52,.点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.21.(1)线段AB的垂直平分线(或中垂线);(2)AC=5.【解析】【分析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF=.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题. 22.13. 【解析】 【分析】先计算括号里面的,再利用除法化简原式, 【详解】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ , =()()()()222222a a a a a a-++⋅+- ,=2222a a a a a --+⋅- ,=222a a a a -+⋅-, =2a a+,由a 2+a ﹣6=0,得a=﹣3或a=2, ∵a ﹣2≠0, ∴a≠2, ∴a=﹣3, 当a=﹣3时,原式=32133-+=-. 【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算. 23.x=15,y=1 【解析】 【分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102xx yxx y⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1.【详解】依题意得,38101102xx yxx y⎧=⎪+⎪⎨+⎪=⎪++⎩,化简得,53010x yx y-=⎧⎨-=-⎩,解得,1525xy=⎧⎨=⎩.,检验当x=15,y=1时,0x y+≠,100x y++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.24.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82123=;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】 请在此输入详解!25.(1)x 1=6,x 2=﹣1;(2)﹣1≤x <1. 【解析】 【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)先求出不等式的解集,再求出不等式组的解集即可. 【详解】(1)x 2﹣5x ﹣6=0, (x ﹣6)(x+1)=0, x ﹣6=0,x+1=0, x 1=6,x 2=﹣1;(2)()432x 1x23x x ⎧+≤+⎪⎨-<⎪⎩①② ∵解不等式①得:x≥﹣1, 解不等式②得:x <1,∴不等式组的解集为﹣1≤x <1. 【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键. 26.则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析. 【解析】 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1, 解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3, 不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.27.(1)223y x x =--;(2)P 点坐标为315,24⎛⎫- ⎪⎝⎭, 758;(3)Q 317⎛-+ ⎝⎭或317⎛-- ⎝⎭或()1,2或()1,4-.【解析】【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)首先设出Q 点的坐标,则可表示出QB 2、QC 2和BC 2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.【详解】解:(1)∵A(-1,0),()0,3C -在2y x bx c =++上,103b c c -+=⎧∴⎨=-⎩,解得23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令0y =可得2023x x -=-,解得3x =或1x =-,()3,0B ∴,且()0,3C -,∴经过B 、C 两点的直线为3y x =-,设点P 的坐标为()223x x x --,,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,ABC BCP ABPC S S S ∆∆=+Q 四边形()211433322x x =⨯⨯+-⨯239622x x =-++23375228x ⎛⎫=-+ ⎪⎝⎭, ∴当32x =时,四边形ABPC 的面积最大,此时P 点坐标为315,24⎛⎫- ⎪⎝⎭, ∴四边形ABPC 的最大面积为758; (3)()222314y x x x =--=--Q ,∴对称轴为1x =,∴可设Q 点坐标为()1,t ,()3,0B Q ,()0,3C -,()2222134BQ t t ∴=-+=+,()222213610CQ t t t =++=++,218BC =, QBC ∆Q 为直角三角形,∴有90BQC ∠=︒、90CBQ ∠=︒和90BCQ ∠=︒三种情况,①当90BQC ∠=︒时,则有222BQ CQ BC +=,即22461018t t t ++++=,解得317t -+=或3172t -=,此时Q 点坐标为3171,2⎛-+ ⎝⎭或3171,2⎛-- ⎝⎭; ②当90CBQ ∠=︒时,则有222BC BQ CQ +=,即22418610t t t ++=++,解得2t =,此时Q 点坐标为()1,2;③当90BCQ ∠=︒时,则有222BCCQ BQ +=,即22186104t t t +++=+,解得4t =-,此时Q 点坐标为()1,4-; 综上可知Q 点的坐标为317⎛-+ ⎝⎭或317⎛-- ⎝⎭或()1,2或()1,4-. 【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:如果,则“”表示的数应是()A. B.3 C. D.试题2:计算-a+4a的结果为 ( )A.3 B. 3a C.4a D.5a试题3:某市2014年参加中考的考生人数约为85000人,将85000用科学记数法表示为()A.B. C. D.试题4:如图,直线∥,直线与,相交,∠1=55°,则∠2=()A.55° B.35° C.125° D.65°试题5:若△ABC∽△A′B′C′且,△ABC的周长为15㎝,则△A′B′C′的周长()A.18B.20C.D.试题6:不等式组的解集是()A. B. C. D.试题7:如图,AB是⊙O的直径,∠AOC=1100,则∠D=( )A. 250B. 350C. 550D. 700试题8:某展览大厅有3个入口和2个出口,其示意图如下,参观者从任意一个入口进入,参观结束后从任意一个出口离开.小明从入口1进入并从出口A离开的概率是( )A. B. C. D .试题9:如图是二次函数的部分图象,由图象可知当>时,的范围是()A . B. C .D.试题10:如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是()A.3 B.C.D.4试题11:分解因式:.试题12:二次函数的对称轴是.试题13:PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物。
某市某天的五个监测点监测到PM2.5的值分别为82μg/m³、91μg/m³、89μg/m³、95μg/m³、73μg/m³.则五个监测点的PM2.5的平均值是μg/m³。
2021年浙江省温州实验中学等三校联考中考数学一模试卷一、选择题(共10小题).1.数1,0,﹣,﹣2中最大的是()A.﹣2B.C.0D.12.如图所示的几何体,它的俯视图是()A.B.C.D.3.下列计算正确的是()A.2a+3a=6a B.3a﹣a=3C.a3+2a3=3a3D.a3﹣a2=a4.从分别写有1,2,3,4,5的五张卡片中任抽一张,卡片上的数是奇数的概率是()A.B.C.D.5.如图,△A′B′C′和△ABC是位似三角形,位似中心为点O,AA′=2A′O,则△A′B′C′和△ABC的位似比为()A.B.C.D.6.某停车场入口的栏杆如图所示,栏杆从水平位置AB绕点O旋转到CD的位置.已知AO =4米,若栏杆的旋转角∠AOD=31°,则栏杆端点A上升的垂直距离为()A.4sin31°米B.4cos31°米C.4tan31°米D.米7.如图,⊙O的两条弦AB⊥CD,已知∠ADC=35°,则∠BAD的度数为()A.55°B.70°C.110°D.130°8.某汽车的油箱一次加满汽油50升,可行驶y千米(假设汽油能行驶至油用完),设该汽车行驶每100千米耗油x升,则y关于x的函数表达式为()A.y=2x B.y=C.y=5000x D.y=9.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值如表所示,点A(﹣4,y1),B(﹣2,y2),C(4,y3)在该抛物线上,则y1,y2,y3的大小关系为()x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…A.y1=y3<y2B.y3<y1<y2C.y1<y2<y3D.y1<y3<y2 10.在欧几里得时代,人们就已经知道了勾股定理的一些拓展.小博在学习完勾股定理后,根据课本上的阅读材料进行改编与研究.如图,在Rt△ABC中,∠BAC=90°,tan∠ABC =,现分别以AB,AC,BC为直角边作三个等腰直角三角形:△ABD,△ACE,△BCF,其中∠DBA=∠BCF=∠ACE=90°,BF与AD交于点G,CF与AE交于点H,记△DBG 的面积为S1,△CEH的面积为S2,则S1:S2为()A.9:1B.9:2C.9:4D.4:1二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:3x2﹣6x=.12.不等式组的解为.13.若扇形圆心角为36°,半径为3,则该扇形的弧长为.14.某校抽查部分九年级学生1分钟垫球测试成绩(单位:个),将测试成绩分成4组,得到如图不完整的频数直方图(每一组含前一个边界值,不含后一个边界值),已知在120﹣150组别的人数占抽测总人数的40%,则1分钟垫球少于90个的有人.15.如图,半圆的直径AB=6,C为半圆上一点,连接AC,BC,D为BC上一点,连接OD,交BC于点E,连接AE,若四边形ACDE为平行四边形,则AE的长为.16.某游乐园有一圆形喷水池(如图),中心立柱AM上有一喷水头A,其喷出的水柱距池中心3米处达到最高,最远落点到中心M的距离为9米,距立柱4米处地面上有一射灯C,现将喷水头A向上移动1.5米至点B(其余条件均不变),若此时水柱最高处D与A,C在同一直线上,则水柱最远落点到中心M的距离增加了米.三、解答题(本题有8小题,共80分)17.(1)计算:2×(﹣4)+(﹣1)2﹣+20210;(2)化简:(3+x)(3﹣x)+3(x﹣3).18.如图,在正方形ABCD中,AC,BD相交于点O,E,F分别在OA,OD上,∠ABE=∠DCF.(1)求证:△ABE≌△DCF.(2)若BC=4,AE=3,求BE的长.19.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,2),B(5,2),请在所给网格区域(不含边界)上按要求画整点四边形.(1)在图1中画一个以A,B,C,D为顶点的平行四边形,使AO=CO.(2)在图2中画一个以A,B,C,D为顶点的平行四边形,使点C的横坐标与纵坐标的和等于点A的纵坐标的3倍.20.温州市初中毕业生体育学业考试在即,某校体育老师对91班30名学生的体育学业模拟考试成绩统计如下,39分及以上属于优秀.成绩(分)40393837363534 91班人数10575201(人)(1)求91班学生体育学业模拟考试成绩的平均数、中位数和优秀率.(2)92班30名学生的体育学业模拟考试成绩的平均数为38分,中位数为38.5分,优秀率为60%,请结合平均数、中位数、优秀率等统计量进行分析,并衡量两个班级的体育学业模拟考试成绩的水平.21.已知抛物线y=ax2﹣6ax+1(a>0).(1)若抛物线顶点在x轴上,求该抛物线的表达式.(2)若点A(m,y1),B(m+4,y2)在抛物线上,且y1<y2,求m的取值范围.22.AB是⊙O的直径,弦CD⊥AB于点E,连接AC,过点D作DF∥AC交⊙O于点F,连接AF,CF,过点A作AG⊥DF延长线于点G.(1)求证:CA=CF.(2)若tan∠ACF=,CF﹣GF=9,求△ACF的面积.23.在新冠肺炎疫情发生后,某企业引进A,B两条生产线生产防护服.已知A生产线比B 生产线每小时多生产4套防护服,且A生产线生产160套防护服和B生产线生产120套防护服所用时间相等.(1)求两条生产线每小时各生产防护服多少套?(2)因疫情期间,防护服的需求量急增,企业又引进C生产线.已知C生产线每小时生产24套防护服,三条生产线一天共运行了25小时,设A生产线运行a小时,B生产线运行b小时,a,b为正整数且不超过12.①该企业防护服的日产量(用a,b的代数式表示).②若该企业防护服日产量不少于440套,求C生产线运行时间的最小值.24.如图1,在菱形ABCD中,∠A为锐角,点P,H分别在边AD,CB上,且AP=CH.在CD边上取点M,N(点M在CM之间),使DM=4CN.当P从点A匀速运动到点D 时,点Q恰好从点M匀速运动到点N.连接PQ,PH分别交对角线BD于点E,F,记QN=x,AP=y,已知y=﹣2x+10.(1)①请判断FP与FH的大小关系,并说明理由.②求AD,CN的长.(2)如图2,连接QH,QF.当四边形BFQH中有两边平行时,求DE:EF的值.(3)若tan A=,则△PFQ面积的最小值为.(直接写出答案)参考答案一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选错选,均不给分)1.数1,0,﹣,﹣2中最大的是()A.﹣2B.C.0D.1解:因为||=,|﹣2|=2,而,所以,所以数1,0,﹣,﹣2中最大的是1.故选:D.2.如图所示的几何体,它的俯视图是()A.B.C.D.解:从上面可看到从左往右二列小正方形的个数为:1,2,左面的小正方形在上面.故选:A.3.下列计算正确的是()A.2a+3a=6a B.3a﹣a=3C.a3+2a3=3a3D.a3﹣a2=a解:A、2a+3a=5a,故本选项不合题意;B、3a﹣a=2a,故本选项不合题意;C、a3+2a3=3a3,故本选项符合题意;D、a3与﹣a2不是同类项,所以不能合并,故本选项不合题意;故选:C.4.从分别写有1,2,3,4,5的五张卡片中任抽一张,卡片上的数是奇数的概率是()A.B.C.D.解:∵5张大小相同的卡片上分别标有数字1,2,3,4,5,其中有1、3、5共3张是奇数,∴从中随机抽取一张,卡片上的数字是奇数的概率为,故选:C.5.如图,△A′B′C′和△ABC是位似三角形,位似中心为点O,AA′=2A′O,则△A′B′C′和△ABC的位似比为()A.B.C.D.解:∵AA′=2A′O,∴OA′:OA=1:3,∵△A′B′C′和△ABC是位似三角形,位似中心为点O,∴△A′B′C′和△ABC的位似比为OA′:OA=1:3.故选:B.6.某停车场入口的栏杆如图所示,栏杆从水平位置AB绕点O旋转到CD的位置.已知AO =4米,若栏杆的旋转角∠AOD=31°,则栏杆端点A上升的垂直距离为()A.4sin31°米B.4cos31°米C.4tan31°米D.米解:过点D作DF⊥AB于点F,则∠DFO=90°,由题意可知:DO=AO=4米,∠AOD=31°,∵sin∠AOD=,∴DF=4sin31°(米),故选:A.7.如图,⊙O的两条弦AB⊥CD,已知∠ADC=35°,则∠BAD的度数为()A.55°B.70°C.110°D.130°解:如图,设AB交CD于K.∵AB⊥CD,∴∠AKD=90°,∵∠ADC=35°,∴∠BAD=90°﹣35°=55°,故选:A.8.某汽车的油箱一次加满汽油50升,可行驶y千米(假设汽油能行驶至油用完),设该汽车行驶每100千米耗油x升,则y关于x的函数表达式为()A.y=2x B.y=C.y=5000x D.y=解:∵该汽车行驶每100千米耗油x升,∴1升汽油可走千米,∴y=50×=,∴y关于x的函数表达式为y=,故选:D.9.二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)对应值如表所示,点A(﹣4,y1),B(﹣2,y2),C(4,y3)在该抛物线上,则y1,y2,y3的大小关系为()x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…A.y1=y3<y2B.y3<y1<y2C.y1<y2<y3D.y1<y3<y2解:由表格可得,该函数的对称轴是直线x==﹣2,当x>﹣2时,y随x的增大而减小,当x<﹣2时,y随x的增大而增大,∵点A(﹣4,y1),B(﹣2,y2),C(4,y3)在该抛物线上,﹣2﹣(﹣4)=2,4﹣(﹣2)=6,∴y3<y1<y2,故选:B.10.在欧几里得时代,人们就已经知道了勾股定理的一些拓展.小博在学习完勾股定理后,根据课本上的阅读材料进行改编与研究.如图,在Rt△ABC中,∠BAC=90°,tan∠ABC =,现分别以AB,AC,BC为直角边作三个等腰直角三角形:△ABD,△ACE,△BCF,其中∠DBA=∠BCF=∠ACE=90°,BF与AD交于点G,CF与AE交于点H,记△DBG 的面积为S1,△CEH的面积为S2,则S1:S2为()A.9:1B.9:2C.9:4D.4:1解:如图,连接EF,∵△ACE,△BCF都是等腰直角三角形,∴CA=CE,CB=CF,∠FCB=∠ACE=90°,∴∠BCA+∠ACF=∠ACF+∠FCE,∴∠BCA=∠FCE,在△BCA和△FCE中,,∴△BCA≌△FCE(SAS),∴FE=BA,∠FEC=∠BAC=90°,∵∠ACE=∠BAC=90°,∴AB∥CE,∵BD⊥BA,FE⊥CE,AB∥CE,∴BD∥EF,∴∠BDG=∠FEG,∠DBG=∠EFG,∵FE=BA,BA=BD,∴FE=BD,在△BDG和△FEG中,,∴△BDG≌△FEG(ASA),∴DG=EG,设AC=a,∵∠BAC=90°,tan∠ABC=,∴AB==2a,∴BD=2a,CE=a,AD=AB=2a,AE=AC=a,∴DG=DE=(DA+AE)=a,∵∠BDG=∠GFA=45°,∠DGB=∠FGH,∴△BDG∽△HFG,∵∠GFH=∠HEC=45°,∠FHG=∠EHC,∴△HFG∽△HEC,∴△BDG∽△HEC,∴S1:S2===.故选:B.二、填空题(本题有6小题,每小题5分,共30分)11.分解因式:3x2﹣6x=3x(x﹣2).解:3x2﹣6x=3x(x﹣2).故答案为:3x(x﹣2).12.不等式组的解为x<1.解:解不等式2x<3﹣x,得:x<1,解不等式≤1,得:x≤2,则不等式组的解集为x<1,故答案为:x<1.13.若扇形圆心角为36°,半径为3,则该扇形的弧长为.解:该扇形的弧长==.故答案为:.14.某校抽查部分九年级学生1分钟垫球测试成绩(单位:个),将测试成绩分成4组,得到如图不完整的频数直方图(每一组含前一个边界值,不含后一个边界值),已知在120﹣150组别的人数占抽测总人数的40%,则1分钟垫球少于90个的有15人.解:由题意可得,本次抽取的学生有:40÷40%=100(人),故1分钟垫球少于90个的有:100﹣20﹣40﹣25=15(人),故答案为:15.15.如图,半圆的直径AB=6,C为半圆上一点,连接AC,BC,D为BC上一点,连接OD,交BC于点E,连接AE,若四边形ACDE为平行四边形,则AE的长为2.解:如图,连接OC.∵AB是直径,∴∠ACB=90°,∵四边形ACDE是平行四边形,∴AC=DE,CD=AE,AC∥DE,∴∠ACE=∠DEC=90°,∴OD⊥BC,∴EC=EB,∵OA=OB,∴AC=2OE=DE,∵OD=OC=3,∴OE=1,DE=2,∴CE2=OC2﹣OE2=CD2﹣DE2,∴32﹣12=CD2﹣22,∴CD=2或﹣2(舍弃).故答案为:2.16.某游乐园有一圆形喷水池(如图),中心立柱AM上有一喷水头A,其喷出的水柱距池中心3米处达到最高,最远落点到中心M的距离为9米,距立柱4米处地面上有一射灯C,现将喷水头A向上移动1.5米至点B(其余条件均不变),若此时水柱最高处D与A,C在同一直线上,则水柱最远落点到中心M的距离增加了(﹣6)米.解:如图,过点D作DF⊥x轴,交移动前水柱于点E,交x轴与点F,∵AM⊥x轴,∴AM∥DF,∴△ACM∽△DCF,∴,其中CM=4,CF=CM+MF=4+3=7,设当x>0时,抛物线解析式为:y=a(x﹣3)2+h,当x=0时,y=9a+h,∴点A的坐标为(0,9a+h),∴AM=9a+h当x=3时,y=h,∴点E(3,h),∴EF=h,DF=h+1.5,∴=∴21a+h=2 ①,又最远落点到中心M的距离为9米,∴x=9时,y=0,即36a+h=0 ②,联立①和②,可得:a=,h=,∴当x>0时,抛物线解析式为:y=(x﹣3)2+,将抛物线向上平移1.5m,∴当x>0时,新的抛物线解析式y'=(x﹣3)2+6.3,此时当y=0时,x=3+(已舍弃负值),则水柱水柱最远落点到中心M的距离增加了(﹣6)米,故答案为:(﹣6).三、解答题(本题有8小题,共80分)17.(1)计算:2×(﹣4)+(﹣1)2﹣+20210;(2)化简:(3+x)(3﹣x)+3(x﹣3).解:(1)原式=﹣8+1﹣3+1=﹣9;(2)原式=9﹣x2+3x﹣9=﹣x2+3x.18.如图,在正方形ABCD中,AC,BD相交于点O,E,F分别在OA,OD上,∠ABE=∠DCF.(1)求证:△ABE≌△DCF.(2)若BC=4,AE=3,求BE的长.【解答】证明:(1)∵四边形ABCD是正方形,∴AB=CD,∠BAE=∠CDF=45°,∵∠ABE=∠DCF,在△ABE与△DCF中,,∴△ABE≌△DCF(ASA);(2)∵四边形ABCD是正方形,∴AB=BC,OA=OB=OC=OD,∠ABC=∠AOB=90°,∵BC=4,∴AB=4,∴AC=,∴OA=OB=4,∵AE=3,∴OE=OA﹣AE=4﹣3=1,在Rt△BOE中,BE=.19.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,2),B(5,2),请在所给网格区域(不含边界)上按要求画整点四边形.(1)在图1中画一个以A,B,C,D为顶点的平行四边形,使AO=CO.(2)在图2中画一个以A,B,C,D为顶点的平行四边形,使点C的横坐标与纵坐标的和等于点A的纵坐标的3倍.解:(1)如图,四边形ACBD或四边形ABD′C即为所求作.(2)如图,四边形ACBD或四边形ABC′D′即为所求作.20.温州市初中毕业生体育学业考试在即,某校体育老师对91班30名学生的体育学业模拟考试成绩统计如下,39分及以上属于优秀.成绩(分)40393837363534 91班人数10575201(人)(1)求91班学生体育学业模拟考试成绩的平均数、中位数和优秀率.(2)92班30名学生的体育学业模拟考试成绩的平均数为38分,中位数为38.5分,优秀率为60%,请结合平均数、中位数、优秀率等统计量进行分析,并衡量两个班级的体育学业模拟考试成绩的水平.解:(1)91班学生平均数为(40×10+39×5+38×7+37×5+36×2+34)÷30=38.4(分),中位数为=38.5(分),优秀率(10+5)÷30×100%=50%;(2)从平均数、中位数、优秀率进行分析,91班学生平均数高于92班学生平均数,中位数相等,91班学生优秀率低于92班学生优秀率,可知91班学生体育学业模拟考试成绩整体情况较好,92班学生体育学业模拟考试成绩优秀的较多.21.已知抛物线y=ax2﹣6ax+1(a>0).(1)若抛物线顶点在x轴上,求该抛物线的表达式.(2)若点A(m,y1),B(m+4,y2)在抛物线上,且y1<y2,求m的取值范围.解:(1)根据题意得△=(﹣6a)2﹣4a=0,解得a1=0,a2=,∵a>0,∴a=,∴抛物线解析式为y=x2﹣x+1;(2)抛物线开口向上,抛物线的对称轴为直线x=﹣=3,当点A、点B都在对称轴的右边时,y1<y2,此时m≥3;当点A、点B在对称轴的两侧时,即m<3<m+4,y1<y2,则3﹣m<m+4﹣3,解得m>1,此时m的范围为1<m<3,综上所述,m的范围为m>1.22.AB是⊙O的直径,弦CD⊥AB于点E,连接AC,过点D作DF∥AC交⊙O于点F,连接AF,CF,过点A作AG⊥DF延长线于点G.(1)求证:CA=CF.(2)若tan∠ACF=,CF﹣GF=9,求△ACF的面积.【解答】(1)证明:连接AD.∵AB是直径,AB⊥CD,∴EC=ED,∴AC=AD,∵AC∥DF,∴∠ACF=∠FCD,∴=,∴=,∴AD=CF,∴AC=CF.(2)解:过点A作AH⊥CF于H.∵∠AFG+∠AFD=180°,∠AFD+∠ACD=180°,∴∠AFG=∠ACD,∵AC=AD,∴∠ACD=∠ADC,∵∠ADC=∠AFC,∴∠AFG=∠AFH,∵AG⊥FG,AH⊥FH,∴∠G=∠AHF=90°,∵AF=AF,∴△AFG≌△AFH(AAS),∴FG=FH,∵CF﹣FG=CF﹣FH=CH=9,tan∠ACH==,∴AH=6,∴AC=AF===3,∴S△ACF=•CF•AH=×3×6=9.23.在新冠肺炎疫情发生后,某企业引进A,B两条生产线生产防护服.已知A生产线比B 生产线每小时多生产4套防护服,且A生产线生产160套防护服和B生产线生产120套防护服所用时间相等.(1)求两条生产线每小时各生产防护服多少套?(2)因疫情期间,防护服的需求量急增,企业又引进C生产线.已知C生产线每小时生产24套防护服,三条生产线一天共运行了25小时,设A生产线运行a小时,B生产线运行b小时,a,b为正整数且不超过12.①该企业防护服的日产量(用a,b的代数式表示).②若该企业防护服日产量不少于440套,求C生产线运行时间的最小值.解:(1)设B生产线每小时生产防护服x套,则A生产线每小时生产防护服(x+4)套,依题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+4=16.答:A生产线每小时生产防护服16套,B生产线每小时生产防护服12套.(2)①设A生产线运行a小时,B生产线运行b小时,则C生产线运行(25﹣a﹣b)小时,依题意得:该企业防护服的日产量=16a+12b+24(25﹣a﹣b)=(600﹣8a﹣12b)套.②∵该企业防护服日产量不少于440套,∴600﹣8a﹣12b≥440,∴2a+3b≤40.设k=a+b,则2k+b≤40,∴b值越小,k值越大.∵a,b为正整数且不超过12,∴当a=12时,b≤,b可取的最大值为5,此时k的最大值为17,25﹣a﹣b=25﹣k =8;当a=11时,b≤6,b可取的最大值为6,此时k的最大值为17,25﹣a﹣b=25﹣k=8;当a=10时,b≤,b可取的最大值为6,此时k的最大值为16,25﹣a﹣b=25﹣k=9;当a=9时,b≤,b可取的最大值为7,此时k的最大值为16,25﹣a﹣b=25﹣k=9.∴C生产线运行时间的最小值为8小时.24.如图1,在菱形ABCD中,∠A为锐角,点P,H分别在边AD,CB上,且AP=CH.在CD边上取点M,N(点M在CM之间),使DM=4CN.当P从点A匀速运动到点D 时,点Q恰好从点M匀速运动到点N.连接PQ,PH分别交对角线BD于点E,F,记QN=x,AP=y,已知y=﹣2x+10.(1)①请判断FP与FH的大小关系,并说明理由.②求AD,CN的长.(2)如图2,连接QH,QF.当四边形BFQH中有两边平行时,求DE:EF的值.(3)若tan A=,则△PFQ面积的最小值为.(直接写出答案)解:(1)①FP=FH,理由如下:∵四边形ABCD是菱形,AD=DC,∴AD∥BC,AD=BC,∵AP=CH,∴∠PDF=∠HBF,∠DPF=∠BHF,PD=BH,在△PDF和△HBF中,,∴△PDF≌△HBF(ASA),∴FP=FH;②当x=0时,y=10,则AD=10,即CD=10,当y=0时,0=﹣2x+10,得x=5,则QN=5,∴DM+CN=DC﹣QN=10﹣5=5,∵DM=4CN,∴CN=1,即AD=10,CN=1;(2)当四边形BFQH中有两边平行时,分两种情况:①当BF∥QH时,∵BF∥QH,∴△CQH∽△CDB,∵CD=BC,∴CQ=CH,DQ=BH,∵CQ=1+x,CH=AP=y,∴1+x=﹣2x+10,解得:x=3,y=4,即QN=3,AP=4,∴DP=DQ=6,由(1)中△PDF≌△HBF,∴BF=DF,∴点F为对角线BD的中点,∵平行四边形ABCD的对角线互相平分,∴点F为AC的中点,即A、F、C共线,连接AC,∵四边形ABCD是菱形,∴∠PDF=QDF,AC⊥BD,AD∥BC,∴PE⊥BD,∴PE∥AC,即PE∥AF,∴DE:EF=DP:AP=6:4=3:2;②当FQ∥BH时,∵BF=DF,∴QF=DQ=CQ=5,即QN=x=4,∴AP=y=2,PD=8,∵AD∥BC,即PD∥QF,∴DE:EF=PD:QF=8:5;综上,DE:EF=3:2或8:5;(3)在图2中,过点B作BT⊥AD于T,延长PQ交BC延长线于K,∵tan A=,∴sin A=,∵AB=10,∴BT=AB•sin A=8,设△PDQ的底边的高为a,∵PD∥CK,∴△PDQ∽△KCQ,∴,∴a=,则S△PFQ=S△ACD﹣S△PDQ﹣S△FAP﹣S△CQF=×10×8﹣×(10﹣y)×()﹣×4y﹣×4(1+x)==(x﹣)+,∴当x=时,S△PFQ有最小值,最小值为.故答案为:.。
2020年浙江省温州实验中学中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.给出四个实数√8,2,0,−1,其中无理数是()A. √8B. 2C. 0D. −12.下列字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.3.1光年大约是9050000000000km,用科学记数法表示为()kmA. 905×1010B. 90.5×1011C. 9.05×1012D. 0.95×10134.下列运算正确的是()A. (−a2)3=−a5B. a3⋅a5=a15C. (−a2b3)2=a4b6D. 3a2−2a2=15.若一组数据为:10,11,9,8,10,9,11,9,则这组数据的众数和中位数分别是()A. 9,9B. 10,9C. 9,9.5D.11,106.如图,直线AB//CD,点E是BC上一点,连接AE,若∠DCB=35°,∠EAB=23°,则∠AEC的度数是()A. 58°B. 45°C. 23°D. 60°7.已知点M(1−2m,m−1)在第四象限,则m的取值范围是( )A. m<12B. m>1 C. 1>m>12D. −1<m<−128.如图,在矩形纸片ABCD中,点E在边BC上,且AE=EC.若将纸片沿AE折叠,点B恰好落在AC上,则∠ACB等于()A. 20°B. 25°C. 28°D. 30°9.如图,直线y=−43x+4与x轴、y轴分别交于A、B两点,△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B的对应点B′坐标为()A. (3,4)B. (7,4)C. (7,3)D. (3,7)10. 如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为S 1,正八边形外侧八个扇形(阴影部分)面积之和为S 2,则S 1S 2=( ) A. 34 B. 35 C. 23 D. 1二、填空题(本大题共6小题,共30.0分)11. 因式分解:a 2+ab = ______ .12. 若分式3x−9x−2的值为零,则x =________.13. 一个扇形的圆心角是120°,它的半径是3cm ,则扇形的弧长为______cm .14. 一人沿笔直的公路行走,每4分钟迎面开过一辆公交车,每12分钟身后开过一辆公交车.若公路的两端各有一个公交车发车点,每过一段时间同时发车,且公交车和人的速度都保持不变,则公交车的发车间隔是______分钟.15. 如图,矩形OABC 的顶点A ,C 分别在y 轴、x 轴的正半轴上,D 为AB 的中点,反比例函数y =k x (k >0)的图象经过点D ,且与BC 交于点E ,连接OD ,OE ,DE ,若△ODE 的面积为3,则k 的值为______.16. 如图,△ABC 中,∠ACB =90°,AB =2,BC =AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是______.三、解答题(本大题共8小题,共80.0分)17. (1)计算:3sin30°+√32−20190(2)化简:(2a +1)2−a(4a +2)18.一个不透明盒子中放有三张除所标数字不同外其余均相同的卡片,卡片上分别标有数字1,2,3.从盒子中随机抽取一张卡片,记下数字后放回,再次随机抽取一张一记下数字,请用画树状图(或列表)的方法,求第二次抽取的数字大于第一次抽取的数字的概率.19.在如图所示的4×4的网格中,每个小正方形的边长都为1,点A在格点(小正方形的顶点)上.试在各网格中画出各顶点在格点上,有一边长为√5,且分别符合以下条件的图形.20.如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3经过A(−3,0),B(1,0)两点,其顶点为D,连接AD,点P是线段AD上一个动点(不与AD重合).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如图1,过点P作PE⊥y轴于点E.求△PAE面积S的最大值;(3)如图2,抛物线上是否存在一点Q,使得四边形OAPQ为平行四边形?若存在求出Q点坐标,若不存在请说明理由.22.已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E为弧BF上一点,且BE=CF,(1)求证:AE是⊙O的直径;(2)若∠ABC=∠EAC,AE=8,求AC的长.23.已知:在矩形ABCD中,AB=8,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.(1)如图1,当四边形EFGH为正方形时,求△GFC的面积;(2)如图2,当四边形EFGH为菱形时,设BF=x,△GFC的面积为S,求S关于x的函数关系式,并写出函数的定义域.24.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA那交于点Q.(1)求证△BPE∽△CEQ;(2)当BP=2,CQ=9时,求BC的长;-------- 答案与解析 --------1.答案:A解析:解:A、√8=2√2,是无理数,故本选项符合题意;B、,2是有理数,不是无理数,故本选项不符合题意;C、0是有理数,不是无理数,故本选项不符合题意;D、−1是有理数,不是无理数,故本选项不符合题意;故选:A.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√6,0.8080080008…(每两个8之间依次多1个0)等形式.2.答案:A解析:【分析】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:A.3.答案:C解析:【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9050000000000km用科学记数法表示为9.05×1012km,故选:C.4.答案:C解析:解:A、(−a2)3=−a6,故此选项错误;B、a3⋅a5=a8,故此选项错误;C、(−a2b3)2=a4b6,正确;D、3a2−2a2=a2,故此选项错误;故选:C.直接利用积的乘方运算法则以及同底数幂的乘法运算法则、合并同类项法则分别计算得出答案.此题主要考查了积的乘方运算以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则是解题关键.5.答案:C解析:【分析】本题为统计题,考查众数与中位数的定义,属于基础题.根据众数和中位数的概念求解可得.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;一组数据中出现次数最多的数值,叫做这组数据的众数.【解答】将数据重新排列为8,9,9,9,10,10,11,11,=9.5.∴这组数据的众数为9,中位数为9+102故选:C.6.答案:A解析:【分析】本题考查了平行线的性质,三角形的内角和定理等知识,熟练掌握平行线的性质是解题的关键.根据平行线的性质和三角形内角和定理及邻补角即可得到结论.【解答】解:∵AB//CD,∴∠B=∠DCB=35°,∵∠EAB=23°,∴∠AEC=180°−∠AEB=∠EAB+∠B=58°,故选A.7.答案:A解析:【分析】本题考查的是坐标系内坐标的符号确定和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.根据第四象限点的横坐标为正、纵坐标为负列出关于m的不等式组,解之可得.【解答】解:根据题意可得{1−2m>0①m−1<0②,解不等式①,得:m<12,解不等式②,得:m<1,∴不等式组的解集为m<12.故选A.8.答案:D解析:【分析】本题主要考查矩形的性质,折叠的性质以及三角形内角和定理等知识点.根据题意得到∠ACB=∠EAC=∠BAE,设∠ACB=x,则x+x+x=90°,解出x即可.【解答】解:∵AE=EC,∴∠ACB=∠EAC,∵将纸片沿AE折叠,点B恰好落在AC上,∴∠BAE=∠EAC,∴∠ACB=∠EAC=∠BAE,设∠ACB=x,则x+x+x=90°,解得x=30°.故选D.9.答案:C解析:解:当x=0时,y=−43x+4=4,则B点坐标为(0,4);当y=0时,−43x+4=0,解得x=3,则A点坐标为(3,0),则OA=3,OB=4,∵△AOB绕点A顺时针旋转90°后得到△AO′B′,∴∠OAO′=90°,∠AO′B′=∠AOB=90°,AO′=AO=3,O′B′=OB=4,即AO′⊥x轴,O′B′//x轴,∴点B′坐标为(7,3).故选:C.先根据坐标轴上点的坐标特征求出B点坐标为(0,4),A点坐标为(3,0),则OA=3,OB=4,再根据旋转的性质得∠OAO′=90°,∠AO′B′=∠AOB=90°,AO′=AO=3,O′B′=OB=4,然后根据点的坐标的确定方法即可得到点B′坐标.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了一次函数图象上点的坐标特征.10.答案:B解析:【分析】本题考查了扇形面积的计算,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.先根据正多边形的内角和公式可求正八边形的内角和,根据周角的定义可求正八边形外侧八个扇形(阴影部分)的内角和,再根据半径相等的扇形面积与圆周角成正比即可求解.【解答】解:∵正八边形的内角和为(8−2)×180°=6×180°=1080°,正八边形外侧八个扇形(阴影部分)的内角和为360°×8−1080°=2880°−1080°=1800°,∴S1S2=1080°1800∘=35,故选B.11.答案:a(a+b)解析:【分析】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.直接把公因式a提出来即可.【解答】解:a2+ab=a(a+b).故答案为a(a+b).12.答案:3解析:【分析】本题考查了分式的值为零的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得3x−9=0且x−2≠0,由3x−9=0,解得x=3,故答案为3.13.答案:2π=2π,解析:解:根据题意,扇形的弧长为120π×3180故答案为:2π.根据弧长公式可得结论.本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.14.答案:6解析:解:设公交车的速度为x米/分钟,人步行的速度为y米/分钟,依题意,得:4(x+y)=12(x−y),∴x=2y,=6.∴公交车的发车间隔时间为4(x+y)x故答案为:6.设公交车的速度为x米/分钟,人步行的速度为y米/分钟,根据路程=速度×时间结合两辆公交车间的距离相等,即可得出关于x,y的二元一次方程,解之可得出x=2y,再利用发车的间隔时间=二者的速度之和×4÷公交车的速度,即可求出结论.本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15.答案:4解析:解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),则E的坐标为E(a,ka),∵D为AB的中点,∴D(12a,b)∵D、E在反比例函数的图象上,∴12ab=k,∵S△ODE=S矩形OCBA −S△AOD−S△OCE−S△BDE=ab−12k−12k−12⋅12a⋅(b−ka)=3,∴ab−12k−12k−14ab+14k=3,解得:k=4,故答案为:4.根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,然后即可求出反比例函数的比例系数.本题考查反比例函数系数k的几何意义,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式,本题属于中等题型.16.答案:√2解析:解:连接CD,DG,作DM⊥AC于M,DN⊥EF于N.∵CA=CB,∠ACB=90°,BD=AD,∴CD=BD=AD,∠DCA=∠B=45°由翻折的性质可知:DB=DF,BE=EF,∠B=∠F=45°,∴∠F=∠DCM,∵DF=DC,∠DNF=∠DMC,∴△DNF≌△DMC(AAS),∴CM=FN,DM=DN,∵DG=DG,∠DMG=∠DNG=90°,∴Rt△DGN≌Rt△DGM(HL),∴GM=GN,∴GF=CG,∵△ECG的周长=EG+CG+EC=EG+FG+EC=EF+EC=BE+EC=BC,在Rt△ABC中,∵AB=2,BC=CA,∴BC=√2,∴△GCE的周长为√2,(方法二:连接CF,利用等角对等边可证CG=FG,可以证明△GCE的周长=BC的长)故答案为√2.连接CD,DG,作DM⊥AC于M,DN⊥EF于N.只要证明CG=GF,即可推出△ECG的周长=EG+ CG+EC=EG+FG+EC=EF+EC=BE+EC=BC;本题考查翻折变换,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17.答案:解:(1)原式=3×12+4√2−1=4√2−12;(2)原式=4a2+4a+1−4a2−2a=2a+1.解析:(1)直接利用零指数幂的性质以及特殊角的三角函数值和二次根式的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案.此题主要考查了实数运算以及整式的混合运算,正确化简各数是解题关键.18.答案:解:画树状图得:∵共有9种等可能的结果,其中第二次抽取的数字大于第一次抽取的数字的有3种结果,∴第二次抽取的数字大于第一次抽取的数字的概率为39=13.解析:画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.19.答案:解:如图所示:解析:本题考查作图−应用与设计,三角形的面积,直角三角形和等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.利用数形结合的思想解决问题即可.20.答案:(1)证明:四边形ABCD 是菱形,∴AB =BC ,AD//BC ,∴∠A =∠CBF ,∵BE ⊥AD 、CF ⊥AB ,∴∠AEB =∠BFC =90°,∴△AEB≌△BFC(AAS),∴AE =BF ;(2)∵E 是AD 的中点,且BE ⊥AD ,∴直线BE 为AD 的垂直平分线,∴BD =AB =2.解析:本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练运用菱形的性质是本题的关键.(1)由“AAS ”可证△AEB≌△BFC ,可得AE =BF ;(2)由线段垂直平分线的性质可得BD =AB =2.21.答案:解:(1)∵抛物线y =ax 2+bx +3经过A(−3,0),B(1,0)两点,∴{9a −3b +3=0,a +b +3=0,解得{a =−1,b =−2, ∴抛物线解析式为y =−x 2−2x +3=−(x +1)2+4,∴抛物线的顶点坐标为(−1,4),即该抛物线的解析式为y =−x 2−2x +3,顶点D 的坐标为(−1,4);(2)设直线AD 的函数解析式为y =kx +m ,{−3k +m =0,−k +m =4,解得{k =2,m =6,∴直线AD 的函数解析式为y =2x +6,∵点P 是线段AD 上一个动点(不与A ,D 重合),∴设点P 的坐标为(p,2p +6),∴S △PAE =−p⋅(2p+6)2=−(p +32)2+94,∵−3<p <−1, ∴当p =−32时,S △PAE 取得最大值,此时S △PAE =94,即△PAE 面积S 的最大值是94;(3)抛物线上存在一点Q ,使得四边形OAPQ 为平行四边形,∵四边形OAPQ 为平行四边形,点Q 在抛物线上,∴OA =PQ ,∵点A(−3,0),∴OA =3,∴PQ =3,∵直线AD 为y =2x +6,点P 在线段AD 上,点Q 在抛物线y =−x 2−2x +3上,∴设点P 的坐标为(p,2p +6),点Q(q,−q 2−2q +3),∴{q −p =32p +6=−q 2−2q +3, 解得{p =−5+√7,q =−2+√7或舍去), 当q =−2+√7时,−q 2−2q +3=2√7−4,即点Q 的坐标为(−2+√7,2√7−4).解析:(1)根据抛物线y =ax 2+bx +3经过A(−3,0),B(1,0)两点,可以求得该抛物线的解析式,然后将函数解析式化为顶点式,从而可以得到该抛物线的顶点坐标,即点D 的坐标;(2)根据题意和点A 和点D 的坐标可以得到直线AD 的函数解析式,从而可以设出点P 的坐标,然后根据图形可以得到△APE 的面积,然后根据二次函数的性质即可得到△PAE 面积S 的最大值;(3)根据题意可知存在点Q 使得四边形OAPQ 为平行四边形,然后根据函数解析式和平行四边形的性质可以求得点Q 的坐标.本题是一道二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,求出相应的函数解析式,利用二次函数的性质和数形结合的思想解答.22.答案:(1)证明:∵BE =CF ,∴BE⏜=CF ⏜, ∴∠BAE =∠CAF ,∵AF ⊥BC ,∴ADC =90°,∴∠FAC+∠ACD=90°,∵∠E=∠ACB,∴∠E+∠BAE=90°,∴∠ABE=90°,∴AE是⊙O的直径;(2)如图,连接OC,∴∠AOC=2∠ABC,∵∠ABC=∠CAE,∴∠AOC=2∠CAE,∵OA=OC,∠AOC,∴∠CAO=∠ACO=12∴△AOC是等腰直角三角形,∵AE=8,∴AO=CO=4,∴AC=4√2.解析:本题考查了圆周角定理和其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.(1)由BE=CF,则可证得∠BAE=∠FAC,根据圆周角定理和等角的余角相等证明即可;(2)连接OC,根据圆周角定理证明△AOC是等腰直角三角形,由勾股定理即可求得.23.答案:解:(1)如图1,过点G作GM⊥BC,垂足为M.由矩形ABCD可知:∠A=∠B=90°,由正方形EFGH可知:∠HEF=90°,EH=EF,∴∠1+∠2=90°,又∠1+∠3=90°,∴∠3=∠2,∴△AEH≌△BFE.∴BF=AE=2,同理可证:△MGF≌△BFE,∴△MGF≌△AEH,∴GM=AE=2,又FC=BC−BF=12−2=10,∴S△GFC=12FC⋅GM=12×10×2=10.(2)如图2,过点G作GM⊥BC,垂足为M,连接HF.由矩形ABCD得:AD//BC,∴∠AHF=∠HFM,由菱形EFGH得:EH//FG,EH=FG,∴∠1=∠2,∴∠3=∠4,又∠A=∠M=90°,EH=FG,∴△MGF≌△AEH,∴GM=AE=2,又BF=x,∴FC=12−x,∴S△GFC=12FC⋅GM=12(12−x)⋅2=12−x,即:S=12−x,定义域:0≤x≤4√7.解析:(1)只要证明△AEH≌△BFE.推出BF=AE=2,由△MGF≌△BFE,推出△MGF≌△AEH,求出FC、GM即可解决问题.(2)如图2,过点G作GM⊥BC,垂足为M,连接HF,根据S△GFC=12FC⋅GM,计算即可.本题考查正方形的性质、矩形的性质、菱形的性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.答案:解:(1)∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C=∠BEP+∠DEF,∴∠BEP=∠EQC,∴△BPE∽△CEQ;(2)解:由(1)得△BPE∽△CEQ,∴BPCE =BECQ.∵BP=2,CQ=9,BE=CE,∴BE2=18,∴BE=CE=3√2,∴BC=6√2.解析:本题考查相似三角形综合题、等腰直角三角形的性质,解题的关键是正确寻找相似三角形解决问题,属于中考常见题型.(1)由△ABC和△DEF是两个全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性质,即可得∠BEP=∠EQC,则可证得:△BPE∽△CEQ;(2)由△BPE∽△CEQ,可得BP:CE=BE:CQ,结合已知条件可得BE2=18,推出BE=CE=3√2,即可解决问题.。
浙江省温州市实验中学2024-2025学年九年级数学第一学期开学联考试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知菱形的两条对角线的长分别是6和8,则菱形的周长是( )A .36B .30C .24D .202、(4分)如图,、两处被池塘隔开,为了测量、两处的距离,在外选一点,连接、,并分别取线段、的中点、,测得,则的长为( )A .B .C .D .3、(4分)如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④ ,其中正确的是( )A B A B AB C AC BC AC BC E F 15EF m =AB 7.5m 15m 30m 45m ABCD ,AC BD O ,E F ,BC CD BE CF =,AE BF ,BD AC ,M N ,OE OF AE BF =AE BF ⊥CE CF +=14ABCD OECF S S =正方形四边形A .①②B .①④C .①②④D .①②③④4、(4分)下列命题中,是假命题的是( )A .在△ABC 中,若∠A:∠B:∠C=1:2:3,则△ABC 是直角三角形B .在△ABC 中,若a 2=(b +c) (b -c),则△ABC 是直角三角形C .在△ABC 中,若∠B=∠C=∠A,则△ABC 是直角三角形D .在△ABC 中,若a :b :c =5:4:3,则△ABC 是直角三角形5、(4分)如图,菱形ABCD 中,E. F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .246、(4分)在下列说法中: ①有一个外角是 120°的等腰三角形是等边三角形.② 有两个外角相等的等腰三角形是等边三角形.③ 有一边上的高也是这边上的中线的等腰三角形是等边三角形.④ 三个外角都相等的三角形是等边三角形.其中正确的有( )A .1 个B .2 个C .3 个D .4 个7、(4分)下列调查中,最适合采用抽样调查的是( )A .对某地区现有的16名百岁以上老人睡眠时间的调查B .对“神舟十一号”运载火箭发射前零部件质量情况的调查C .对某校九年级三班学生视力情况的调查D .对某市场上某一品牌电脑使用寿命的调查8、(4分)如图,直线y 1=kx 和直线y 2=ax +b 相交于点(1,2).则不等式组ax +b >kx >0的解集为( )A .x <0B .0<x <1C .x <1D .x <0或x >1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知a +b =3,ab =2,求代数式a 3b +2a 2b 2+ab 3的值_____.10、(4分)在,,,中任意取一个数,取到无理数的概率是___________.11、(4分)如下图,用方向和距离表示火车站相对于仓库的位置是__________.12、(4分)菱形ABCD 的边AB 为5 cm ,对角线AC 为8 cm ,则菱形ABCD 的面积为_____cm 1.13、(4分)在函数y 中,自变量x 的取值范围是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,已知线段a ,b ,∠α(如图).(1)以线段a ,b 为一组邻边作平行四边形,这样的平行四边形能作____个.015-21x(2)以线段a ,b 为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作_____个,作出满足条件的平行四边形(要求仅用直尺和圆规,保留作图痕迹,不写做法)15、(8分)如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC .(1)求证:四边形ABCD 是菱形;(2)过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.16、(8分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?17、(10分)如图,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC 交BC 于点D ,交AC 于点E.(1)求∠BAD 的度数;(2)若AB=10,BC=12,求△ABD 的周长.18、(10分)如图,菱形ABCD 的边长为20cm ,∠ABC =120°.动点P 、Q 同时从点A 出发,其中P 以4cm /s 的速度,沿A →B →C 的路线向点C 运动;Q 以cm /s 的速度,沿A →C 的路线向点C 运动.当P 、Q 到达终点C 时,整个运动随之结束,设运动时间为t秒.(1)在点P 、Q 运动过程中,请判断PQ 与对角线AC 的位置关系,并说明理由;(2)若点Q 关于菱形ABCD 的对角线交点O 的对称点为M ,过点P 且垂直于AB 的直线l 交菱形ABCD 的边AD (或CD )于点N .①当t 为何值时,点P 、M 、N 在一直线上?②当点P 、M 、N 不在一直线上时,是否存在这样的t ,使得△PMN 是以PN 为一直角边的直角三角形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)某种分子的半径大约是0.0000108mm ,用科学记数法表示为______________.20、(4分)学校开展的“争做最美中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数是_____,中位数是_____.21、(4分)如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为_______________.22、(4分)某垃圾处理厂日处理垃圾吨,实施垃圾分类后,每小时垃圾的处理量比原3600来提高,这样日处理同样多的垃圾就少用.若设实施垃圾分类前每小时垃圾的处理量为吨,则可列方程____________.23、(4分)某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,在网格平面直角坐标系中,△ABC 的顶点均在格点上.(1)请把△ABC 向上平移2个单位长度,再向左平移1个单位长度得到△A 'B ′C ',画出△A 'B ′C ’并写出点A ′,B ′的坐标.(2)求△ABC 的面积.25、(10分)将矩形纸片沿对角线翻折,使点的对应点(落在矩形所在平面内,与相交于点,接.(1)在图1中,①和的位置关系为__________________;②将剪下后展开,得到的图形是_________________;(2)若图1中的矩形变为平行四边形时(),如图2所示,结论①、②是否成立,若20%3h x AC =ABCD AC B B 'ABCD B C 'AD E B D 'B D 'AC AEC ∆AB BC ≠成立,请对结论②加以证明,若不成立,请说明理由26、(12分)如图,点B 、C 分别在直线y=2x 和y=kx 上,点A 、D 是x 轴上的两点,且四边形ABCD 是正方形.(1)若正方形ABCD 的边长为2,则点B 、C 的坐标分别为 .(2)若正方形ABCD 的边长为a ,求k 的值.参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D 【解析】解:如图所示,根据题意得:AO=×8=4,BO =×6=1.∵四边形ABCD是菱形,∴AB =BC =CD =DA ,AC ⊥BD ,∴△AOB 是直角三角形,∴AB =5,∴此菱形的周长为:5×4=2.故选D .2、C 【解析】根据题意直接利用三角形中位线定理,可求出.【详解】、是、的中点,是的中位线,,,.故选.本题考查的是三角形的中位线定理在实际生活中的运用,锻炼了学生利用几何知识解答实际问题的能力.3、D【解析】①易证得△ABE ≌△BCF (ASA ),则可得结论①正确;②由△ABE ≌△BCF ,可得∠FBC =∠BAE ,证得∠BAE +∠ABF =90°即可知选项②正确;1212AB E F AC BC ∴EF ABC ∴12EF AB = 15EF m =∴30AB m =C③根据△BCD 是等腰直角三角形,可得选项③正确;④证明△OBE ≌△OCF ,根据正方形的对角线将面积四等分,即可得出选项④正确.【详解】解:①∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°,在△ABE 和△BCF 中,AB =BC ,∠ABE =∠BCF ,BE =CF ,∴△ABE ≌△BCF (SAS ),∴AE =BF ,故①正确;②由①知:△ABE ≌△BCF ,∴∠FBC =∠BAE ,∴∠FBC +∠ABF =∠BAE +∠ABF =90°,∴AE ⊥BF ,故②正确;③∵四边形ABCD 是正方形,∴BC =CD ,∠BCD =90°,∴△BCD 是等腰直角三角形,∴BDBC ,∴CE +CF =CE +BE =BC , 故③正确;④∵四边形ABCD 是正方形,∴OB =OC ,∠OBE =∠OCF =45°,在△OBE 和△OCF 中,OB =OC ,∠OBE =∠OCF ,BE =CF ,∴△OBE ≌△OCF (SAS ),∴S △OBE =S △OCF ,∴S 四边形OECF =S △COE +S △OCF =S △COE +S △OBE =S △OBC =S 正方形ABCD ,故④正确;14故选:D .此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.4、C 【解析】一个三角形中有一个直角,或三边满足勾股定理的逆定理则为直角三角形,否则则不是,据此依次分析各项即可.【详解】A. △ABC 中,若∠B=∠C -∠A ,则∠C =∠A+∠B ,则△ABC 是直角三角形,本选项正确;B. △ABC 中,若a 2=(b+c)(b -c),则a 2=b 2-c 2,b 2= a 2+c 2,则△ABC 是直角三角形,本选项正确;C. △ABC 中,若∠A ∶∠B ∶∠C=3∶4∶5,则∠,故本选项错误;D. △ABC 中,若a ∶b ∶c=5∶4∶3,则△ABC 是直角三角形,本选项正确;故选C.本题考查的是直角三角形的判定,利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:①确定三角形的最长边;②分别计算出最长边的平方与另两边的平方和;③比较最长边的平方与另两边的平方和是否相等.若相等,则此三角形是直角三角形;否则,就不是直角三角形.5、D 【解析】根据三角形的中位线平行于第三边并且等于第三边的一半求出,再根据菱形的周长公式列式计算即可得解.【详解】、分别是、的中点,是的中位线,,菱形的周长.故选:.本题主要考查了菱形的四边形都相等,三角形的中位线平行于第三边并且等于第三边的一半,AD E F AC DC ∴EF ADC ∴2236AD EF ==⨯=∴ABCD 44624AD ==⨯=D6、B【解析】根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.【详解】解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法错误;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有2个,故选:B.此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.7、D【解析】试题分析:A.人数不多,容易调查,适合普查.B.对“神舟十一号”运载火箭发射前零部件质量情况的调查必须准确,故必须普查;C.班内的同学人数不多,很容易调查,因而采用普查合适;D.数量较大,适合抽样调查;故选D.考点:全面调查与抽样调查.8、B【解析】在轴的上方,直线和直线的图象上方部分对应的自变量的取值范围即为不等式的解集.【详解】解:在轴的上方,直线和直线的图象上方部分对应的自变量的取值范围即为不等式的解集,观察图象可知:不等式的解集为:,故选:.本题考查一次函数与一元一次不等式,两直线相交或平行问题等知识,解题的关键是学会利用图象法解决自变量的取值范围问题,属于中考常考题型.二、填空题(本大题共5个小题,每小题4分,共20分)9、1.【解析】根据a+b =3,ab =2,应用提取公因式法,以及完全平方公式,求出代数式a 3b+2a 2b 2+ab 3的值是多少即可.【详解】∵a+b=3,ab =2,∴a 3b+2a 2b 2+ab 3=ab (a 2+2ab+b 2)=ab (a+b )2=2×32=1故答案为:1.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10、【解析】直接利用无理数的定义得出无理数的个数,再利用概率公式求出答案.【详解】解:∵在,,这1个数,∴任取一个数,取到无理数的概率是,故答案为:.此题主要考查了概率公式以及无理数,正确把握无理数的定义是解题关键.11、东偏北20°方向,距离仓库50km【解析】根据方位角的概念,可得答案.【详解】15015 21515解:火车站相对于仓库的位置是东偏北20°方向,距离仓库50km ,故答案为:东偏北20°方向,距离仓库50km .本题考查了方向角的知识点,解答本题的关键是注意是火车站在仓库的什么方向.12、14【解析】【分析】连接BD.利用菱形性质得BD=1OB,OA=AC ,利用勾股定理求OB ,通过对角线求菱形面积.【详解】连接BD. AC ⊥BD ,因为,四边形ABCD 是菱形,所以,AC ⊥BD ,BD=1OB,OA=AC=4cm,所以,再Rt △AOB 中,cm,所以,BD=1OB=6 cm 所以,菱形的面积是cm 1 故答案为:14【点睛】本题考核知识点:菱形的性质.解题关键点:利用勾股定理求菱形的对角线.13、x ≥﹣2且x ≠1.【解析】根据二次根式的非负性及分式有意义的条件来求解不等式即可.【详解】解:根据题意,得:x +2≥1且x ≠1,12123==11•682422AC BD =⨯⨯=解得:x ≥﹣2且x ≠1,故答案为x ≥﹣2且x ≠1.二次根式及分式有意义的条件是本题的考点,正确求解不等式是解题的关键.三、解答题(本大题共5个小题,共48分)14、 (1)无数;(2)图形见解析;1.【解析】(1)内角不固定,有无数个以线段a ,b 为一组邻边作平行四边形;(2)作∠MAN=a,以A 为圆心,线段a 和线段b 为半径画弧分别交射线AN 和AM 于点D 和B,以D 为圆心,线段b 为半径画弧,以B 为圆心,线段a 为半径画弧,交于点C;连接BC,DC.则平行四边形ABCD 就是所求作的图形.【详解】解:(1)以线段a ,b 为一组邻边作平行四边形,这样的平行四边形能作无数个,故答案为:无数;(2)以线段a ,b 为一组邻边,它们的夹角为∠α,作平行四边形,这样的平行四边形能作1个,如图所示:四边形ABCD 即为所求.故答案为:1.此题主要考查平行四边形的作法,熟练掌握作图方法是解题的关键.15、(1)详见解析;(2)1.【解析】(1)根据平行线的性质得到∠ADB =∠CBD ,根据角平分线定义得到∠ABD =∠CBD ,等量代换得到∠ADB =∠ABD ,根据等腰三角形的判定定理得到AD =AB ,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE =90°,等量代换得到∠CDE =∠E ,根据等腰三角形的判定得到CD =CE =BC ,根据勾股定理得到DE6,于是得到结论.【详解】(1)证明:∵AD∥BC ,∴∠ADB =∠CBD ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴∠ADB =∠ABD ,∴AD =AB ,∵BA =BC ,∴AD =BC ,∴四边形ABCD 是平行四边形,∵BA =BC ,∴四边形ABCD 是菱形;(2)解:∵DE ⊥BD ,∴∠BDE =90°,∴∠DBC+∠E =∠BDC+∠CDE =90°,∵CB =CD ,∴∠DBC =∠BDC ,∴∠CDE =∠E ,∴CD =CE =BC ,∴BE =2BC =10,∵BD =8,∴DE =6,∵四边形ABCD 是菱形,∴AD =AB =BC =5,∴四边形ABED 的周长=AD+AB+BE+DE =1.本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.16、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为元,则:解得:经检验:是分式方程的解答:第一批饮料进货单价为8元.(2)设销售单价为元,则:,化简得:,解得:,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.17、(1)20°;(2)22.【解析】试题分析:(1)根据三角形内角和定理求出∠C ,根据线段垂直平分线的性质得到DA =DC ,求出∠DAC ,计算即可;(2)根据DA =DC ,三角形的周长公式计算.解:(1)∵∠BAC=60°,∠B=80°,∴∠C=180°-∠BAC-∠B=180°-60°-80°=40°,x m x 1600600032x x ⨯=+8x =8x =m ()()8200106001200m m -⋅+-⋅≥()()2861012m m -+-≥11m ≥∵DE 垂直平分AC ,∴DA=DC.∴∠DAC=∠C=40°,∴∠BAD=60°-40°=20°.(2)∵DE 垂直平分AC ,∴AD =CD ,∴AB +AD +BD =AB +CD +BD =AB +BC =10+12=22,∴△ABD 的周长为22.18、(1)在点P 、Q 运动过程中,始终有PQ ⊥AC ;理由见解析;(1)①当t =时,点P 、M 、N 在一直线上;② 存在这样的t ,故 当t =1或时,存在以PN为一直角边的直角三角形.【解析】(1)此问需分两种情况,当0<t≤5及5<t≤10两部分分别讨论得PQ⊥AC .(1)①由于点P 、M 、N 在一直线上,则AQ+QM=AM ,代入求得t 的值.②假设存在这样的t ,使得△PMN 是以PN 为一直角边的直角三角形,但是需分点N 在AD 上时和点N 在CD 上时两种情况分别讨论.【详解】解:(1)若0<t≤5,则AP=4t ,.则,又∵,AB=10,∴.∴=.又∠CAB=30°,∴△APQ ∽△ABO .∴∠AQP=90°,即PQ ⊥AC .当5<t≤10时,同理,可由△PCQ ∽△BCO 得∠PQC=90°,即PQ ⊥AC .∴在点P 、Q 运动过程中,始终有PQ ⊥AC .(1)①如图,在Rt △APM 中,∵∠PAM=30°,AP=4t ,307203AP AQ AB AO AP AQ ABAO∴.在△APQ 中,∠AQP=90°,∴t ,∴t .由AQ+QM=AM 得:,解得t=.∴当t=时,点P 、M 、N 在一直线上.②存在这样的t ,使△PMN是以PN 为一直角边的直角三角形.设l 交AC 于H .如图1,当点N 在AD上时,若PN ⊥MN ,则∠NMH=30°.∴MH=1NH .得,解得t=1.如图1,当点N 在CD 上时,若PM ⊥PN ,则∠HMP=30°.∴MH=1PH ,同理可得t=.故当t=1或时,存在以PN 为一直角边的直角三角形.307307t 203203一、填空题(本大题共5个小题,每小题4分,共20分)19、1.08×10-5【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000108=1.08×10-5.故答案为1.08×10-5.本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.20、86, 1 【解析】根据众数和中位数的定义求解可得.【详解】由表可知,这6为同学的成绩分别为:86、86、1、93、96,则众数为86,中位数为1,故答案为:86,1.此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.21、1【解析】解:根据三角形的中位线定理可得DE=AC ,EF=AB ,DF=BC121212所以△DEF 的周长为△ABC 的周长的一半,即△DEF 的周长为1故答案为:1.本题考查三角形的中位线定理.22、【解析】设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾吨,根据“原工作时间−3=后来的工作时间”列分式方程求解可得.【详解】解:设实施垃圾分类前每小时垃圾的处理量为吨,则后来每小时清除垃圾,根据题意得.故答案为.本题主要考查分式方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程求解.23、20cm 【解析】根据等腰梯形的性质及三角形中位线的性质可推出四边形EFGH 为菱形,根据菱形的性质可求得其边长,再根据三角形中位线的性质即可求得梯形对角线AC 的长度.【详解】连接BD∵四边形ABCD 是等腰梯形∴AC=BD∵各边的中点分别是E. F. G 、H ∴HG=AC=EF ,EH=BD=FG()360036003120%x x -=+x ()120%x +x ()120%x +()360036003120%x x -=+()360036003120%x x -=+1212∴HG=EH=EF=FG ,∴四边形EFGH 是菱形∵四边形EFGH 场地的周长为40cm ∴EF=10cm ∴AC=20cm 本题考查菱形的判定及等腰梯形的性质,熟练掌握菱形的基本性质是解题关键.二、解答题(本大题共3个小题,共30分)24、(1);;(2)7【解析】(1)将A 、B 、C 三点分别按要求平移,即可得出新坐标;;,连接三点,即可得出新三角形;(2)将△ABC 和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出,.【详解】解:(1)如图;(2) (1)此题主要考查平面坐标系中的平移问题,对应坐标按要求平移即可得出新坐标;(2)将△ABC 和周围的三个三角形整体长方形,长方形面积很容易得出,分别减去周围三个三角形的面积,即可得出.(3,0)A '-(2,3)B '(3,0)A '-(2,3)B '(1,4)C '-11145534213222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯△7=(3,0)A '-(2,3)B '11145534213222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯△207.54 1.5=---7=【解析】(1)①由平行线的性质和折叠的性质可得∠DAC=∠ACE,由∠AB'C=∠ADC=90°,可证点A,点C,点D,点B'四点共圆,可得∠ADB'=∠ACE=∠DAC,可得AC∥B'D;②由菱形的定义可求解;(2)都成立,设点E的对应点为F,由平行线的性质和折叠的性质可得∠DAC=∠ACE,AF=AE,CE=CF,可得AF=AE=CE=CF,可得四边形AECF是菱形.【详解】解:(1)①∵四边形ABCD是矩形∴AD∥BC,∠B=∠ADC=90°∴∠DAC=∠ACB∵将矩形纸片ABCD沿对角线AC翻折,∴∠AB'C=∠B=90°,∠ACB=∠ACE∴∠DAC=∠ACE,∴AE=EC∵∠AB'C=∠ADC=90°∴点A,点C,点D,点B'四点共圆,∴∠ADB'=∠ACE,∴∠ADB'=∠DAC∴B'D∥AC,故答案为:平行②∵将△AEC剪下后展开,AE=EC∴展开图形是四边相等的四边形,∴展开图形是菱形(2)都成立,如图2,设点E的对应点为F,∵四边形ABCD 是平行四边形∴AD ∥BC ,∴∠DAC=∠ACB ∵将矩形纸片ABCD 沿对角线AC 翻折,∴∠ACB=∠ACE ,AF=AE ,CE=CF ∴∠DAC=∠ACE ,∴AE=EC ∴AF=AE=CE=CF 四边形是菱形.本题是四边形综合题,考查了矩形的性质,平行四边形的性质,折叠的性质,菱形的判定,灵活运用这些性质进行推理是本题的关键.26、(1)(1,2),(3,2);(2) 【解析】(1)根据正方形的边长,运用正方形的性质表示出点B 、C 的坐标;(2)根据正方形的边长,运用正方形的性质表示出C 点的坐标,再将C 的坐标代入函数中,从而可求得k 的值.【详解】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x 中,当y=2时,x=1,∴B (1,2),∵OA=1,OD=1+2=3,AECF 23∴C (3,2),故答案为(1,2),(3,2);(2)∵正方形边长为a ,∴AB=a ,在直线y=2x 中,当y=a 时,x=,∴OA=,OD=,∴C (,a ),将C (,a )代入y=kx ,得a=k×,解得:k=,故答案为.本题考查了正方形的性质与正比例函数的综合运用,熟练掌握和灵活运用正方形的性质是解题的关键.2a 2a 32a 32a 32a 32a 2323。
αA1 2 0 A . 1 2 0 B . 12 0C .1 2 0D .浙江省温州市2012届九年级第一次模拟考试数学试题温馨提示:答题前请将班级、姓名、学号填写清楚。
全卷满分150分,考试时间120分钟。
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分) 1.计算:(-2)+3的结果是( ) A .1- B .1 C . 5 D .5- 2.方程213x +=的解是( )A .1x =B .1x =-C .2x =-D .2x =3.如图所示的物体的俯视图是( )4.不等式x >1在数轴上表示为( )5.抛物线2(1)2y x =++的对称轴是( ) A .直线1x =B .直线1x =-C .直线2x =D .直线2x =-6.已知点P (1,a )在反比例函数2y x=的图象上,则a 的值为( ) A. -1 B. 1 C. -2 D. 27.如图,在△ABC 中,AB AC =, 已知∠ACE=140°,则∠A =( ). A .30︒ B .40︒ C .50︒ D .100︒8.已知两圆半径分别为3和5,圆心距为2,则这两圆的位置关系是( )A. 内切B. 外切C. 相交D. 相离9.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数是( )A .30元B .35元C .50元D .100元金额(元) 20 30 35 50100 学生数(人) 3 8 5 1410E HF GCBA((第10题图)10.如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A.91B.31C.92D.94二、填空题(本题有6小题,每小题5分,共30分)11.杭州湾跨海大桥全长约36000米,36000用科学记数法可表示为.12.因式分解x2-9=.13.布袋中装有2个红球,3个白球,5个黑球,它们除颜色外均相同,则从袋中任意摸出一个球是白.球.的概率是.14.如图,已知AC平分BAD∠,12∠=∠,3AB DC==,则BC=.15.如图,正方形ABCD内接于⊙O,点P在弧AB上,则∠DPC = .16.如图,1+n个边长为2的等边三角形有一条边在同一直线上,设△112CDB面积为1S,△223CDB面积为2S,…,△nnnCDB1-面积为nS,则nS= .三、解答题(本题有8小题,共80分)17.(本题10分)(1)计算:01)2008(260cosπ-++-(2)解方程:224x x-=18.(本题8分)如图是由三个相同的小正方形组成的图形,请你用四种方法在图中补画一个相同的小正方形,使补画后的四个小正方形所组成图形为轴对称图形19.(本题8分)如图,已知BE⊥AD,CF⊥AD,且BE=CF.(1)请你判断AD是△ABC的中线还是角平分线?说明你判断的理由.(2)连结BF,CE,求证四边形BECF是平行四边形.20.(本题8分) A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A箱、B箱中各随机地取出1张卡片,请你用画树状图或列表的方法求:(1)两张卡片上的数字恰好相同的概率.(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.21.(本题10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,且AB=5,BC=3.(1) 求弦AC的长;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.第21题图22.(本题10分)如图,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.(1)求m的值及该抛物线对应的函数关系式;(2)求证:CB=CE;23.(本题12分)已知甲乙两种食物中维生素A和B的含量及甲乙食物的成本如下表:甲乙维生素A(单位/千克)300 500维生素B(单位/千克)700 100成本(元/千克) 5 4生素A不低于40000单位,B不低于28000单位(1)求x的取值范围(2)当甲、乙各取多少千克时,符合题意的混合食品成本最低?并求该最低成本价24.(本题14分)在△ABC中,∠A=90°,AB=4,AC=3,M是线段AB上的动点(不与A,B重合),过M点作MN∥BC 交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.(1)用含x的代数式表示△MNP的面积S;(2)当x为何值时,⊙O与直线BC相切?(3)当⊙O和直线BC相交时,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求当x取何值时,y有最大值.2011学年第二学期九年级数学第一次模拟考试参考答案三、解答题(本题有8小题,共80分) 17.(本题10分) (1)解: 0111cos602(2008)1222π-++-=++=………………5分 (2)1215x =,5分18.(本题8分)解:画对一个即给两分 19.(本题8分) 解:(1)AD 是ABC △的中线.………………1分 理由如下:证明:∵BE ⊥AD ,CF ⊥AD∴∠BED=∠CFD=900,…………………1分 又BDE CDF ∠=∠,BE CF =, BDE CDF ∴△≌△……………………………2分 BD CD ∴=.…………………………………1分 ∴AD 是ABC △的中线 (2)BDE CDF △≌△∴BD=CD ,ED=FD …………………………………2分 ∴四边形BECF 是平行四边形……………………1分 20.(本题8分)(1)图略,2/9……………5分(2)5/9………………………3分21.(本题10分) 解:(1)∵AB 是⊙O 的直径∴∠ACB=90又∵AB=5,BC=3∴由勾股定理可得AC=4 ………………………………3分(2)∵OE ⊥AC ,且∠ACB=900∴OE ∥BC∴△AOE ∽△ABC∴12OE AO BC AB == ∴1322OE BC ==……………………………………………4分(3)∵∠ADC=∠ABC∴4tan tan 3AC ADC ABC BC ∠=∠==……………………3分 22.(本题10分) 解:(1)∵ 点B (-2,m )在直线y =-2x -1上,∴ m =-2×(-2)-1=3. ………………………………(2分) ∴ B (-2,3)∵ 抛物线经过原点O 和点A ,对称轴为x =2, ∴ 点A 的坐标为(4,0) .设所求的抛物线对应函数关系式为y =a (x -0)(x -4). ……………………(1分)将点B (-2,3)代入上式,得3=a (-2-0)(-2-4),∴ 41=a . ∴ 所求的抛物线对应的函数关系式为)4(41-=x x y ,即x x y -=241. (3分) (2)直线y =-2x -1与y 轴、直线x =2的交点坐标分别为D (0,-1) E (2,-5). ……(1分) 过点B 作BG ∥x 轴,与y 轴交于F 、直线x =2交于G , 则BG ⊥直线x =2,BG =4.在Rt △BGC 中,BC =522=+BG CG .∵ CE =5,∴ CB =CE =5. ……………………(3分)23.(本题12分)解:(1)根据题意得:⎪⎩⎪⎨⎧≥-+≥-+28000)100(10070040000)100(500300x x x x ……………3分解得5030≤≤x ,…………………………………………2分 (2)设混合食品的成本为W则400)100(45+=-+=x x x w ,……………………………2分∵W 随x 的增大而增大,∴当30=x 时,则430=最小w ……………3分这时最低成本价为3.4100430=(元/千克) ……………1分 答:当甲取30千克,乙取70千克的时候,430=最小w 元,这时最低成本价为3.4(元/千克)……1分 24.(本题14分) 解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C . ∴ △AMN ∽ △ABC .∴ AM AN AB AC=,即43x AN=.∴ AN =43x . ……………2分∴ S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4) ………………2分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt△ABC 中,BC =22AB AC +=5.………………1分 由(1)知 △AMN ∽ △ABC .∴ AM MN AB BC=,即45x MN=.∴ 54MN x =,∴ 58OD x =. …………………2分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==.在Rt△BMQ 与Rt△BCA 中,∠B 是公共角, ∴ △BMQ ∽△BCA . ∴ BM QM BC AC=.∴ 55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴ x =4996. ∴ 当x =4996时,⊙O 与直线B C 相切.…………………………………………3分(3)设PM ,PN 分别交BC 于E ,F . ∵ 四边形AMPN 是矩形, ∴ PN ∥AM ,PN =AM =x . 又∵ MN ∥BC ,∴ 四边形MBFN 是平行四边形. ∴ FN =BM =4-x . ∴ ()424PF x x x =--=-. 又△PEF ∽ △ACB .∴ 2PEF ABC S PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴ ()2322PEF S x ∆=-. ………………………………… MNP PEF y S S ∆∆=-=()222339266828x x x x --=-+-(2<x <4)………2分ABCMND 图 2O2299866()2883823y x x x x y =-+-=--+∴=当时,有最大值………………………………………………2分。
温州实验中学九年级第一次适应性检测数 学 试 卷温馨寄语:请仔细审题,细心答题,相信你一定会有出色的表现!试卷Ⅰ一、选择题:(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.计算3-5的结果是( ▢ )A .-2B .2C .-8D .8 2.已知反比例函数ky x=的图象经过点(2,3)A -,则k 的值是( ▢ ) A .2B .-3C .6D . -63.根据国家信息产业部2006年5月21日的最新统计,截至2006年4月底,全国电话用户超过7.7亿户.将7.7亿用科学记数法表示为( ▢ ) A .7.7×1011B . 7.7×1010C . 7.7×109D . 7.7×1084.如图所示的几何体是由一些大小相同的小立方体搭成的,它的主视图是( ▢ )5.如果两圆的半径分别为2和5,且圆心距等于7,那么这两圆的位置关系是( ▢ )A .相离B .外切C .内切D .相交6.抛物线3)1(22-+-=x y 的顶点坐标是( ▢ )A .(1,3)B .(-1,-3)C .(1,-3)D .(-1,7.如图,已知⊙O 的半径为5,OM ⊥AB ,垂足为M ,如果OM =3,则弦AB 长为( ▢ )A .4B .6C .7D .88.小明和小亮口袋里都放有3张不同的2008年 北京奥运会福娃纪念卡(如图),小明和小亮从 口袋里各摸出一张卡片,摸出来都是“欢欢” 的概率为( ▢ )A .19 B .16 C .29 D .13(第4题)第7题9.图案⑴是一张等腰直角三角形纸片,在纸片的三个角上分别画出“●”,“▢”,“■”,将纸片绕斜边中点旋转180°所得的图形和原图形拼成的图案是(▢)10.如图所示是二次函数122-+-=axaxy的图象,则a的值是(A .1a=-B.12a=C.1a=D.1a=或1-试卷Ⅱ二、填空题:(本题共6小题,每小题5分,共30分)11.分解因式:=-3642x▢_.12.函数y=x的取值范围是▢.13.如图,在□ABCD中,E,F分别为AD和BC边上的一点,若再增加一个条件▢_,就可推得BE DF=.14.如图,P A切⊙O于点A,OP交⊙O于点B,C为⊙O上的一点,若∠ACB=25°,∠APO的度数为▢°.15.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知CE=3,AB=8,则图中阴影部分面积为▢.16.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1= A1A2= A 2 A 3=…= A n A n+1=1,分别过点A1,A2,A 3,…,A n+1作x轴的垂线交一次函数12y x=的图象于点B1,B2,B3,…,B n+1,连结A1 B2,B1 A2,A2 B3,B2 A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的横坐标是▢.DCBA图案(1)第14题A E DCB F第13题1y= xx第15题三、解答题:(本题有8小题,第17题10分,第18题6分,第19、20题每题8分,第21题10分,第22、23每题12分,第24题14分,共80分) 17.⑴计算: 60tan 3)13()3(02⋅++--. ⑵解方程:542=-x x .18.如图所示,已知点E 、F 在BC 上,BE =CF , AB =DC ,∠B =∠C . 求证:AF =DE .19.用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法(要求三种拼法各不相同,且其中至少一个既是轴对称图形,又是中心对称图形).20.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你 平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时C .0.5~1小时D .0.5小时以下图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间 在0.5小时以下.图1④③②①图1 图2第18题F BCDEA21.如图,矩形ABCD是供一辆机动车停放的车位示意图,请你参考图中数据,计算车位所占街道的宽度EF . (结果精确到0.1m ,参考数据:sin 400.64cos400.77tan 400.84︒︒︒≈≈≈, , )22.一商场有A 、B 、C 三种型号的先锋牌DVD 和D 、E 两种型号的明基牌DVD ,某中学准备从这两种品牌的DVD 中各选购一种型号安装到各班教室. ⑴写出所有的选购方案(利用树状图或列表方法表示); ⑵如果⑴中的各种选购方案被选中的可能性相同,那么A 型号DVD 被选中的概率是多少?⑶已知该中学用1万元人民币购买了先锋和明基两种品牌的DVD 共32台(价格如下表),其中先锋牌DVD 选A 型号的,明基牌可选D 或E 型号,请你通过计算写出其中正确的购买方案,并求出购买到A 型号DVD 多少台?23.“酱鸭舌”是温州的特产,温州某食品企业对新到的10吨“鸭舌”原料进行加工.已知该企业每天可加工散装“生酱鸭舌”0.8吨,每吨可获利1万元;或者每天可加工做成“熟酱鸭舌” 0.5吨,并进行真空包装上市,每吨可获利2万元.⑴设加工散装“生酱鸭舌”x 吨,企业加工完这批鸭舌的所获利润为y 万元,写出y 关于x 的函数关系式.⑵为了保鲜的需要, 该企业必须在17天内将这批“鸭舌”全部加工完毕,问加工散装“生酱鸭舌”多少吨时,该企业加工这批“鸭舌”获利润不低于12万元?24.如图,四边形OABC 为等腰梯形,OA ∥BC .点A 的坐标为(4,0),点C 的坐标为(1,2).点M 从O 点出发以每秒2个单位的速度向终点A 运动,同时点N 从B 出发以每秒1个单位的速度向终点C 运动,过点N 作NP ⊥x 轴于P ,连结AC 交NP 于Q ,连结MQ .设点M ,点N 运动的时间为t (s ). (1)求直线AC 的解析式;(2)设▣AMQ 的面积为S ,求S 关于t 出t 取何值时,▣AMQ 的面积最大; (3)求t 为何值时▣AMQ 是以MQ温馨提示:恭喜,你已经解答完所有问题,请再仔细检查一次,预祝你取得好成绩!5.4m 2.2m 40°A E DCBF第21题九年级第一次适应性检测数学参考答案一、选择题1~5 ADDAB 6~10 BDABC . 二、填空题11.4(3)(3)x x +- 12.x ≥313.AE CF =或ED BF =或EB ∥DF (答案不唯一) 14.40° 15.3016.21nn n ++(或22221n n n ++)三、解答题17.⑴解: 60tan 3)13()3(02⋅++-- ⑵ 解:24454x x -+=+…………1分=91-2分 2(2)9x -=…………2分=8+3………………4分 x -2=±3…………3分 =11………………5分 x 1=5,x 2=-1………5分18. 证明:∵BE =CF∴BE+EF =CF+EF即BF =CE ………………2分 又∵AB =DC ,∠B =∠C∴▣ABF ≌▣CDE …………5分 ∴AF =DE …………………6分19.参考如下:20.⑴200,B ⑵略 ⑶3000×5%=150(人). 21.解:在Rt ▣CFD 中sin 40 5.40.64 3.456DF CD =⋅≈⨯= …………2分∵四边形ABCD 是矩形∴∠ADC =90°…………………4分∵∠CDF =904050-= ………5分∴∠ADC =180905040--= ………6分 在Rt ▣CFD 中cos 40 2.20.77 1.694DE AD =⋅≈⨯= ………8分∴ 3.456 1.694 5.2EF DF DE =+=+≈(m ) ………10分第18题F B DEA既是轴对称又是中心对称 轴对称ACBDEEDED品牌(A,D)(A,E)(B,E)(B,D)(C,E)(C,D)22.选购方案有(A,D),(A,E),(B,D),(B,E),(C,D),(C,E)6种.⑵A型号DVD被选中有两种方案,即(A,D)和 (A,E),所以P(A)2163==.⑶设购买到x台A型号的DVD①若明基牌选D型号,则有600500(32)10000x x+-=,解得60x=-(舍去).②若明基牌选E型号,则有600200(32)10000x x+-=,解得9x=.∴正确的购买方案是(A,E),且购买到A型号的DVD 9台.23.解:⑴1000020000(10)20000010000y x x x=+-=-.(4分)⑵由题意,列不等式组得10170.80.520000010000120000x xx-⎧+≤⎪⎨⎪-≥⎩解得4≤x≤8 (7分)∴当加工散装“生酱鸭舌”4~8吨时,企业利润不低于12万元.(1分)24.解:(1)设直线AC的解析式为:y kx b=+,把点A(4,0),C(1,2)代入得402k bk b+=⎧⎨+=⎩解得2383kb⎧=-⎪⎪⎨⎪=⎪⎩,∴2833y x=-+(4分)(2)过B作BH⊥OA于H,∵C(1,2),由等腰梯形的性质∴1AH=,则41OP OA AH HP BN=--=--=∵点Q是AC上的点∴2822(3)3333PQ t t=--+=+(6分)∵42AM OA OM t=-=-∴2112222(42)()223333S AM PQ t t t=⋅=-+=-+(8分)当12t=时,32S=最大(10分)(3)有以下两种情形①QM QA=,由等腰三角形三线合一的性质此时MP AP=,即331t t-=+,0.5t=(2分)②QM MA=,即22QM MA=,由勾股定理得222MP PQ MA+=即22222(33)()(42)33t t t -++=-,15949t =,21t =-(舍去)∴当0.5t =或15949t =时,▣AMQ 是以MQ 为腰的等腰三角形(2分)。