汽车驱动桥简介
- 格式:doc
- 大小:110.50 KB
- 文档页数:4
汽车驱动桥的设计汽车驱动桥是将发动机的动力传递到车轮上的重要部件,它承载着扭矩的传递、转向力和悬挂的载荷,直接影响到汽车的动力性能、行驶稳定性和操控性能。
本文将从结构设计、功能和类型分类、工作原理和配套系统等方面进行阐述。
一、结构设计汽车驱动桥主要由差速器、后桥壳、半轴、主减速齿轮和齿轮箱等部件组成。
差速器通常位于驱动轴两半轴之间,起到分配扭矩和使驱动轮各自具有不同转速的作用。
后桥壳是驱动桥的承载结构,负责支撑和固定驱动桥的各个部件。
二、功能和类型分类汽车驱动桥的主要功能是将发动机的动力转化为车轮的动力,并且通过差速器的作用,使两个驱动轮以不同的转速旋转。
根据驱动轮的数量不同,可以将汽车驱动桥分为前驱动桥、后驱动桥和四驱动桥。
其中,前驱动桥一般布置在驾驶员座位后面,主要用于小型轿车和城市SUV;后驱动桥布置在车辆的后部,主要用于大型SUV和商用车;四驱动桥则将动力传递到四个车轮上,提供更强的通过性和驾驶稳定性。
三、工作原理汽车驱动桥的工作原理主要包括力的传递、扭矩的分配和转速的差异化。
当发动机输出扭矩传递到差速器时,差速器将扭矩通过齿轮传递到后桥壳,由主减速齿轮将扭矩分配到左右两个半轴上。
同时,差速器还可以使驱动轮各自具有不同的转速,以适应车辆转弯和路面状态的变化。
四、配套系统汽车驱动桥还有一些配套系统,用于提升驾驶性能。
其中,差速器锁定功能可以让两个驱动轮以相同的转速旋转,提供更强的通过性能;牵引力控制系统可以通过降低驱动轮的滑动,提供更好的牵引力,提高车辆的爬坡能力;加速差速器可以通过改变齿轮的传动比,提供更快的加速性能。
总之,汽车驱动桥作为汽车动力传递的核心部件,其设计要满足高强度、高刚度和轻量化的要求。
同时,根据不同的车型和用途,还要考虑到其功能需求和工作环境,以提供更好的驾驶性能和操控性能。
驱动桥的结构及组成一、驱动桥是什么呢?驱动桥呀,就像是汽车或者其他车辆的一个超级重要的小世界。
它在整个车辆的传动系统里可是扮演着超级厉害的角色呢。
你想啊,如果把车辆比作一个人,那驱动桥就像是人的腿关节部分,负责把动力传递到车轮,让车跑起来或者干活呢。
它就默默地在那儿,不怎么起眼,但是少了它,车就只能原地发呆啦。
二、驱动桥的结构1. 主减速器这个主减速器可是驱动桥里的一个大佬呢。
它的任务就是把从传动轴传来的动力进行减速增扭。
怎么理解呢?就好比你要搬一个很重的东西,直接用力可能很难搬动,但是你用一个杠杆,就能比较轻松地撬动了。
主减速器就是这样一个类似杠杆原理的存在。
它把高转速小扭矩的动力转化成低转速大扭矩的动力,这样就能让车辆的车轮更有力地转动啦。
而且主减速器的结构也有不同的类型呢,像单级主减速器,结构比较简单,就像一个简单的小机器,但是效率很高。
还有双级主减速器,就更复杂一些,不过能适应更多不同的工况。
2. 差速器差速器这个东西可太有趣啦。
你有没有想过,当车辆转弯的时候,内侧车轮和外侧车轮走过的距离是不一样的。
如果没有差速器,那车轮就会互相较劲,就像两个人拔河一样,这样车肯定就走不好啦。
差速器就能让内侧和外侧车轮以不同的速度转动,保证车辆顺利转弯。
它就像是一个超级聪明的小管家,协调着左右车轮的速度关系。
差速器里面有很多小零件,像行星齿轮这些,它们相互配合,共同完成这个神奇的任务。
3. 半轴半轴就像是连接差速器和车轮的小桥梁。
它把差速器输出的动力传递到车轮上。
半轴得很结实才行,因为它要承受很大的扭矩。
如果半轴不结实,就像一个脆弱的小树枝,那在车辆行驶过程中,动力就不能很好地传递到车轮,车就会出现问题。
半轴的设计也有很多讲究呢,要考虑它的长度、粗细、材料等因素,这样才能保证它能稳定地完成自己的使命。
三、驱动桥的组成部分1. 桥壳桥壳就像是驱动桥的房子,它把驱动桥的其他部分都包裹在里面,起到保护的作用。
驱动桥的名词解释驱动桥是汽车和其他一些机动车辆中的关键组件之一。
它被用于将发动机的动力传输到车轮上,以便推动车辆前进。
在这篇文章中,我们将对驱动桥进行详细的名词解释,并探讨它的工作原理以及在汽车中的作用。
1. 驱动桥概述驱动桥是汽车的一个重要部件,它主要由差速器、半轴、三角轮、轮毂以及其他相关零件组成。
它的作用是将发动机的动力传递给车轮,从而实现车辆的运动。
2. 差速器的作用在驱动桥中最重要的组件之一是差速器。
差速器的主要作用是平衡驱动桥两侧的车轮速度,以便在转弯时能够确保左右轮胎的旋转速度相匹配。
差速器还能够将动力传输到驱动桥的两个输出轴上,分别连接左右车轮的半轴。
3. 驱动方式驱动桥的工作原理和驱动方式有关。
常见的驱动方式包括前驱动、后驱动和四驱。
前驱动是指发动机的动力通过驱动桥传递到前轮,后驱动则是动力传递到后轮,而四驱则是动力同时传递到四个车轮上。
不同的驱动方式可以根据车辆的设计和用途来选择。
4. 驱动桥的工作原理当发动机工作时,它会产生扭矩,通过传动轴传递到驱动桥。
这时差速器开始起作用,它会将扭矩传递到驱动桥的两个半轴上。
半轴再将扭矩传递到各自连接的车轮上,推动车辆前进。
差速器的作用是确保车轮在转弯时以适当的速度旋转,避免轮胎之间的滑动。
5. 驱动桥的类型根据车辆的结构和用途,驱动桥可以分为不同的类型。
最常见的类型是常规驱动桥,它将动力传输到一个轴上,再通过差速器将扭矩传递到其他轴上。
另一个常见的类型是独立悬挂驱动桥,它使用独立悬挂来实现更好的操控性能。
此外,还有一些特殊的驱动桥类型,如电动驱动桥和空气驱动桥等,它们具有更高的效率和灵活性。
6. 驱动桥的维护和保养驱动桥是汽车的重要部件之一,因此它需要得到适当的维护和保养,以保证其正常运行和寿命。
定期更换差速器油可以保持差速器的良好工作状态。
此外,检查半轴和轮毂的磨损情况也是重要的,必要时进行更换。
总结驱动桥是汽车中至关重要的部件之一,它通过差速器将发动机的动力传输到车轮上,推动车辆前进。
驱动桥的作用及组成什么是驱动桥驱动桥(也称为后桥)是汽车传动系统的重要组成部分之一。
它的作用是将发动机产生的动力传输给车轮,并通过驱动轮的旋转来推动汽车前进。
驱动桥不仅负责传递动力,还能根据驾驶需求提供不同的转速和扭矩。
驱动桥的作用驱动桥在汽车传动系统中扮演着至关重要的角色,它的作用主要包括以下几点:1. 动力传递驱动桥将发动机产生的动力传递给车轮,通过将转动的动力传输给驱动轮,从而推动汽车前进。
动力传递的效率和质量对汽车的性能和燃油经济性有着重要影响。
2. 扭矩调节驱动桥可以根据驾驶需求提供不同的转速和扭矩。
通过不同的齿轮传动比例、不锁定差速器和限滑差速器等技术,驱动桥能够有效地调节扭矩分配,使车辆在不同的路况下保持稳定性和操控性。
3. 差速器功能驱动桥上常常配备差速器,它能够使左右两个驱动轮以不同的转速旋转。
当车辆转弯时,内侧轮子需要转动的距离比外侧轮子少,差速器就能够让两个驱动轮以不同的速度转动,从而保证车辆的稳定性和操控性。
4. 转速调节通过变速器和驱动桥之间的传动比例配合,驱动桥能够调节发动机转速和车轮转速之间的比例关系。
这样可以根据不同的驾驶需求,提供合适的转速和扭矩输出,以满足加速、爬坡、长途巡航等不同的行驶情况。
驱动桥的组成驱动桥由多个重要组成部分构成,每个部分都有特定的功能和作用。
下面是驱动桥的主要组成部分:1. 驱动轴驱动轴是连接发动机和驱动桥的重要传动部件。
它能够将发动机的旋转动力传递给驱动桥,从而推动车辆前进。
2. 齿轮组驱动桥上配备有齿轮组,它由一对或多对齿轮组成,通过不同的齿轮传动比例来调节车轮的转速和扭矩。
齿轮组通常由主减速齿轮和差速器组成。
3. 差速器差速器是驱动桥上的重要组件,它能够使左右两个驱动轮以不同的转速旋转。
当车辆转弯时,差速器能够让内外两个驱动轮以不同的速度滚动,保证车辆的行驶稳定性。
4. 轮轴驱动桥上还包括轮轴(也称为半轴),它将驱动桥传递的动力传输给车轮。
汽车驱动车桥1. 概述汽车驱动车桥是汽车的重要组成部分之一,主要起到将动力从发动机传递到车轮的作用。
本文将介绍汽车驱动车桥的定义、结构、工作原理以及分类等方面,旨在帮助读者更好地了解汽车驱动车桥的作用和重要性。
2. 定义与结构汽车驱动车桥,简称驱动桥,是指负责将发动机的动力传递到车辆的车轮上的装置。
一般由动力源、传动系统和驱动轮组成。
驱动桥结构包括输入轴、中间差速器、输出轴等组成部分。
驱动桥一般安装在汽车的后轴处,但某些四驱车型也会在前轴处安装驱动桥。
在后驱车中的驱动桥通常被称为后桥,而前驱车中的驱动桥则被称为前桥。
3. 工作原理汽车驱动车桥的工作原理主要涉及到动力的传递和转换。
当发动机产生动力时,通过传动系统将动力传递到驱动桥的输入轴上。
输入轴将动力传递给中间差速器,在其中通过齿轮的传动使得动力被分配到两个驱动轮上,从而驱动汽车前进。
驱动轮通过接触路面产生的阻力将动力传递给地面,从而推动汽车前进。
在四驱车型中,驱动桥的工作原理与常规驱动桥类似,但在驱动力的分配上有所不同。
四驱车型会根据路况和车辆需求,通过差速器的控制将动力合理分配给不同的轮胎,以提供更好的牵引力和操控性能。
4. 分类汽车驱动车桥根据不同的驱动方式可分为以下几种类型:4.1 前驱车桥前驱车桥是指将动力从发动机传递到前轮的驱动桥。
前驱车桥通常由输入轴、差速器和输出轴等组成。
前驱车型多数为小型和经济型车型,由于发动机和驱动桥安装在车辆前部,使得车内空间得到了充分的利用。
4.2 后驱车桥后驱车桥是指将动力从发动机传递到后轮的驱动桥。
后驱车桥一般由输入轴、差速器和输出轴等组成。
后驱车型在操控性能和牵引力方面相对于前驱车型更佳,适用于高性能车型和SUV等车型。
4.3 四驱车桥四驱车桥是指配备四驱系统的车型所采用的驱动桥。
四驱车型通过中央差速器、前后差速器以及其他传动装置,将动力合理分配给各个轮胎。
这种驱动桥适用于越野车和运动型车辆等,在各种路况下都能提供更高的牵引力。
驱动桥主要功能是将传动轴传来的转矩传给驱动轮,使变速箱输出的转速降低、转矩增大,并使两边车轮具有差速功能。
此外,驱动桥桥壳还起到承重和传力的作用。
一、驱动桥的结构驱动桥主要由桥壳、主传动器(包括差速器)、半轴、轮边减速器等组成。
其结构如图1所示:驱动桥安装在车架上,承受车架传来的载荷并将其传递到车轮上。
驱动桥的桥壳又是主传动器、半轴、轮边减速器等的安装支承体。
二、主传动器的构造主传动器的功用是将变速箱传来传动再一次降低转速、增大转矩,并将输入轴的旋转轴线改变900后,经差速器、半轴传给轮边减速器。
主传动器的结构如图2所示:主传动器主要由差速器和一对由螺旋锥齿轮组成的主减速器构成。
主动螺旋锥齿轮和从动螺旋锥齿轮之间,必须有正确的相对位置才能使两齿轮啮合后传动的冲击噪声较轻,而且使轮齿沿其长度方向磨损较均匀。
为此,在结构上一方面要使主动和从动螺旋锥齿轮有足够的支承刚度,使其在传动过程中不至于发生较大变形而影响正常啮合;另一方面,应有必要的啮合调整装置图二、主传动器为了保证主动螺旋锥齿轮有足够的支承刚度,将主动螺旋锥齿轮与轴制成一体,其前端支承在互相贴近而小端相向的两个圆锥滚子轴承上,后端支承在圆柱滚子轴承上,形成跨置式支承。
环状的从动锥齿轮用螺栓固定在差速器右壳的凸缘上。
而差速器壳则用两个圆锥滚子轴承支承在托架两端的座孔中。
为了保证从动锥齿轮有足够的支承刚度,在从动螺旋锥齿轮的背面,装有止推螺栓以限制从动螺旋锥齿轮的变形量,防止从动螺旋锥齿轮因过度变形而影响正常工作。
在装配和调试过程中应当注意:从动螺旋锥齿轮的背面和止推螺栓末端的间隙一般应调整至0.25~0.40毫米之间。
为了调整圆锥滚子轴承的预紧度,在轴承内座圈之间的隔套的一端装有调整垫片。
如果发现过紧则增加垫片的总厚度;反之,则减少垫片的总厚度。
圆锥滚子轴承的预紧转矩值可通过测量主动锥齿轮的旋转转矩获得。
一般地其旋转转矩为1.5~2.6N.m。
驱动桥国内外发展现状摘要:1.驱动桥的定义与作用2.国外驱动桥的发展现状3.我国驱动桥的发展现状4.驱动桥技术的研究现状与发展趋势5.驱动桥行业的发展挑战与机遇正文:驱动桥是汽车传动系统的重要组成部分,主要负责将发动机产生的动力传递给驱动轮,使汽车前进或后退。
在汽车行业不断发展的背景下,驱动桥技术也在不断进步。
本文将探讨驱动桥国内外的发展现状、研究现状与发展趋势。
一、驱动桥的定义与作用驱动桥是指汽车传动系统中,连接变速器和驱动轮的一系列零部件的总称。
它的主要作用是增大从变速器传递过来的扭矩,适应不同的路面条件,并使驱动轮能够独立地进行自由旋转。
二、国外驱动桥的发展现状国外汽车驱动桥的发展已经较为成熟,其产品在轻量化、高性能等方面具有明显优势。
许多国外企业,如德国的ZF、美国的Dana 等,在驱动桥技术方面拥有丰富的经验和先进的研发能力,其产品在全球范围内广泛应用。
三、我国驱动桥的发展现状我国汽车驱动桥行业经过多年的发展,已经取得了一定的成绩。
国内大部分厂商已能做到专业化、系列化和批量化生产。
但在产品研发和创新方面,我国驱动桥行业与国外先进水平相比仍有一定差距,尤其在轻量化和高性能方面。
四、驱动桥技术的研究现状与发展趋势驱动桥技术的研究现状主要体现在材料、结构和传动系统等方面。
随着汽车行业的发展,驱动桥技术正朝着轻量化、高性能、环保节能等方向发展。
其中,轻量化主要通过采用高强度材料和优化结构设计实现;高性能则通过改进传动系统、提高传动效率等手段实现。
此外,随着新能源汽车的兴起,驱动桥技术还需适应电动汽车的特殊需求,如提高扭矩、降低噪音等。
五、驱动桥行业的发展挑战与机遇驱动桥行业面临的主要挑战包括:提高产品性能,以满足汽车行业的发展需求;加强创新能力,缩小与国外先进水平的差距;适应新能源汽车的发展趋势,开发新型驱动桥技术。
驱动桥(Drive axle)是指汽车或其他机动车辆中的一个重要组成部分,它负责将动力从发动机传递给车轮,以驱动车辆前进。
驱动桥通常由几个关键组件组成,包括差速器、传动轴、轴承和齿轮系统。
1.差速器(Differential):差速器是驱动桥中的一个重要元件,用于平衡和分配
动力到两个驱动轮。
它允许驱动轮以不同的速度旋转,以适应转弯时内外侧轮胎的旋转差异。
2.传动轴(Drive shaft):传动轴是连接发动机和驱动桥的组件,将发动机的动
力传递到驱动桥。
它通常由一个或多个轴段组成,具有足够的强度和刚度来承受扭转力和传输动力。
3.轴承(Bearings):驱动桥中的轴承起着支撑和减少摩擦的作用。
它们允许轴
段或其他旋转部件在运转过程中平稳旋转,并承受由车辆运动和动力传递产生的载荷。
4.齿轮系统(Gear system):驱动桥中的齿轮系统是将动力从传动轴传递到驱动
轮的关键部分。
它包括一组齿轮,通常是锥齿轮,用于增加扭矩并改变动力的转速和方向,以适应不同的路况和行驶需求。
驱动桥的作用是将发动机的动力有效地传递到车轮,使车辆能够前进、加速和转弯。
它在汽车的操控性、牵引力和驱动效率方面起着重要的作用,是整个动力传输系统的重要组成部分。
汽车驱动桥功能:
驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。
驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。
汽车驱动桥设计:
驱动桥设计应当满足如下基本要求:
1.选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。
2.外形尺寸要小,保证有必要的离地间隙。
3.齿轮及其他传动件工作平稳,噪声小。
4.在各种转速和载荷下具有高的传动效率。
5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。
6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调。
7.结构简单,加工工艺性好,制造容易,拆装、调整方便。
汽车驱动桥分类
驱动桥分非断开式与断开式两大类。
1.非断开式驱动桥
非断开式驱动桥也称为整体式驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连一个整体梁,因而两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。
它由驱动桥壳1,主减速器(图中包括6、7),差速器
(图中包括2、3、4)和半轴5组成。
1-后桥壳;2-差速器壳;3-差速器行
星齿轮;4-差速器半轴齿轮;5-半轴;
6-主减速器从动齿轮齿圈;7-主减速
器主动小齿轮
2.断开式驱动桥
驱动桥采用独立悬架,即主减速器壳
固定在车架上,两侧的半轴和驱动轮能在横向平面相
对于车体有相对运动的则称为断开式驱动桥
1-主减速器;2-半轴;3-弹性元件;4-减振器;5-车轮;6-摆臂;7-摆臂轴
为了与独立悬架相配合,将主减速器壳固定在车架(或车身)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。
为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。
汽车驱动桥组成
驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。
1.主减速器
主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速皮。
主减速器类型较多,有单级、双级、双速、轮边减速器等。
1)单级主减速器
由一对减速齿轮实现减速的装置,称为单级减速器。
其结构简单,重量轻,东风BQl090型等轻、中型载重汽车上应用广泛。
2)双级主减速器
对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。
通常称为双级减速器。
双级减速器有两组减速齿轮,实现两次减速增扭。
为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。
二级齿轮副是斜齿因拄齿轮。
主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。
第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。
因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。
2.差速器
差速器用以连接左右半轴,可使两侧车轮以不同角速度旋转同时传递扭矩。
保证车轮的正常滚动。
有的多桥驱动的汽车,在分动器内或在贯通式传动的轴间也装有差速器,称为桥间差速器。
其作用是在汽车转弯或在不平坦的路面上行驶时,使前后驱动车轮之间产生差速作用。
1-轴承;2-左外壳;3-垫片;4-半轴齿轮;
5-垫圈;6-行星齿轮;7-从动齿轮;8-右
外壳;9-十字轴;10-螺栓
目前国产轿车及其它类汽车基本都采用了
对称式锥齿轮普通差速器。
对称式锥齿轮
差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成。
目前大多数汽车采用行星齿轮式差速器,普通锥齿轮差速器由两个或四个圆锥行星齿轮、行星齿轮轴、两个圆锥半轴齿轮和左右差速器壳等组成。
3.半轴
半轴是将差速器传来的扭矩再传给车轮,驱动车轮旋转,推动汽车行驶的实心轴。
由于轮毂的安装结构不同,而半轴的受力情况也不同。
所以,半轴分为全浮式、半浮式、3/4浮式三种型式。
1)全浮式半轴
一般大、中型汽车均采用全浮式结构。
半轴的内端用花键与差速器的半轴齿轮相连接,半轴的外端锻出凸缘,用螺栓和轮毂连接。
轮毂通过两个相距较远的圆锥滚子轴承文承在半轴套管上。
半轴套管与后桥壳压配成一体,组成驱动桥壳。
用这样的支承形式,半轴与桥壳没有直接联系,使半轴只承受驱动扭矩而不承受任何弯矩,这种半轴称为“全浮式”半轴。
所谓“浮”意即半轴不受弯曲载荷。
1-半轴套管;2-调整螺母;3-油封;
4-锁紧垫圈;5-锁紧螺母;6-半轴;
7-轮毂螺栓;8,10-圆锥滚子轴承;9-
轮毂;11-油封;12-空心梁
全浮式半轴,外端为凸缘盘与轴制成
一体。
但也有一些载重汽车把凸缘制
成单独零件,并借花键套合在半轴外
端。
因而,半轴的两端都是花键,可
以换头使用。
2)半浮式半轴
半浮式半轴的内端与全浮式的一样,
不承受弯扭。
其外端通过一个轴承直
接支承在半轴外壳的内侧。
这种支承
方式将使半轴外端承受弯矩。
因此,
这种半袖除传递扭矩外,还局部地承受弯矩,故称为半浮式半轴。
这种结构型式主要用于小客车
1-止推块;2-半轴;3-圆锥滚子轴承;4-
锁紧螺母;5-键;6-轮毂;7-桥壳凸缘
汽车驱动桥
图示为红旗牌CA7560型高级轿车的驱动桥。
其半轴内端不受弯矩,而外端却要承受全部弯矩,所以称为半浮式支承。
3)3/4浮式半轴
3/4浮式半轴是受弯短的程度介于半浮式和全浮式之间。
此式半轴目前应用不多,只在个别小卧车上应用,如华沙M20型汽车。
4.桥壳
1)整体式桥壳
整体式桥壳因强度和刚度性能好,便于主减速器的安装、调整和维修,而得到广泛应用。
整体式桥壳因制造方法不同,可分为整体铸造式、中段铸造压入钢管式和钢板冲压焊接式等。
2)分段式驱动桥壳
1、4-半轴壳2-左桥壳3-右桥壳5-钢板
弹簧座6-突缘7-半轴套管8-后桥壳9-壳
盖
分段式桥壳一般分为两段,由螺栓1将两
段连成一体。
分段式桥壳比较易于铸造和
加工。