An-1
A2
A3
A1
A4
An
A1A2+A2A3+…+ An-1An+AnA1 =____0___
例 1 : 已 知 O 为 正 六 边 形 A B C D E F 的 中 心 , 作 出 下 列 向 量 u u u r u u u r u u u r u u u r u u u r u u u r
当向 a与 量 b反向 , 若 时 ab, 则 ab的方 向a与 相,同 且 abab;
当向 a与 量 b反向 ,若 时 ab, 则 ab的方 向b与 相,同 且 abba.
已知 a8,b6,则ab的最大值和最1_4小 _, 2_
探究
向量加法的运算律
对于任意的向量 a , b ,c :
2.2.1向量的加法 运算及其几何意义
复习回顾:
向量的概念:
既有大小又有方向的量叫向量
向量的表示方法:
(1)几何表示法: 用有向线段表示
B(终点)
a
(2)代数表示法:
A(起点)
AB 或 a
向量的长度(或模):| AB | 或 | a |
复习回顾:
零向量的概念: 长度(模)为0的向量,记作 0 单位向量概念: 长度(模)为1个单位长度的向量
B A
(2)作 ABa,ADb 共
(3)以AB,AD为邻边 作平行四边形ABCD
起
D
C 则 ACab
点
作平移,共起点,四边形,对角线
课堂练习(一)
1.如图,已知a、b,用向量加法的三角形法则 作出a+b.
(1)
a+b
b
(2)
b
a
a