第七章 层流边界层的流动与换热
- 格式:ppt
- 大小:1.64 MB
- 文档页数:66
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
流体力学中的层流边界层层流边界层是流体力学中的一个重要概念,它在各种工程和科学领域中都有广泛应用。
层流边界层是指在流动过程中,由于粘滞力的作用,流体贴近固体壁面的区域产生的流动状态。
本文将对层流边界层的定义、特征、形成原因以及应用进行阐述。
一、层流边界层的定义在流体运动中,当流体通过固体壁面时,靠近壁面的流体具有不同于远离壁面的流体的特殊运动状态。
这个靠近固体壁面的区域称为边界层。
边界层内的流动状态受到粘滞力的影响,呈现出较为平稳、有序的特征,这种流动状态被称为层流边界层。
二、层流边界层的特征1. 速度剖面层流边界层内,流体的速度垂直于壁面方向的分布规律可以用速度剖面表达。
速度剖面呈现出在壁面附近速度接近零,向边界层外逐渐增加的趋势。
2. 流体性质变化层流边界层内,由于粘滞力的作用,流体的速度梯度较大,温度和浓度剖面也会发生变化。
例如,流体靠近壁面处的温度较高,随着距离壁面的增加,温度逐渐接近远离壁面的流体的温度。
3. 可压缩性忽略在大多数情况下,层流边界层内的流动速度相对较低,压力梯度较小,因此可以忽略流体的可压缩性。
三、层流边界层的形成原因层流边界层的形成是由于流体与壁面之间的粘滞力。
当流体通过固体壁面时,由于粘滞力的作用,流体贴近壁面处的速度受到壁面的摩擦力约束,而远离壁面的流体则不受这种约束,导致边界层的形成。
四、层流边界层的应用层流边界层的研究对于各个领域都具有重要意义。
以下是几个典型的应用示例:1. 汽车空气动力学设计在汽车设计中,了解层流边界层的运动特征对于减小气动阻力、提高燃油效率至关重要。
通过优化车身的形状、降低边界层内压力梯度等方法,可以改善车辆的空气动力学性能。
2. 飞机气动设计在飞机设计中,减小层流边界层的粘性阻力,提高飞机的升力性能是一个重要的目标。
通过使用特殊材料、采用新的构造方法和减小边界层厚度等措施,可以改善飞机的气动性能。
3. 水力学工程设计在水力学领域,层流边界层的研究对于水流速度分布、压力分布和腐蚀等问题都有着重要的影响。
7 对流换热7.0 本章主要内容导读本章讨论对流换热问题,首先介绍对流换热的相关基本概念——对流换热的机理、数学描述方法和主要研究方法,然后介绍两类无相变的对流换热——强制对流换热和自然对流换热,主要内容如图7-1所示。
图7-1 第七章主要内容导读7.1 对流换热基本概念7.1.1对流换热机理如前所述,实际工程中经常遇到的对流问题是对流换热问题,它是导热与热对流共同作用的结果。
由于流体的热运动强化了传热,通过对流流体的传热速率比通过静止流体导热的传热速率高得多。
并且,流体速度越快,传热速率越高。
理论上,对流换热可以通过牛顿冷却公式求解,即=αQ∆Ft与导热中的导热系数λ不同,对流换热系数α不是物性参数,因此对流换热过程和相应的对流换热系数受到许多因素的影响,这些影响因素可以分为如下五类。
(1)流体流动产生的原因。
根据流动产生的原因,对流换热可以分为强制对流换热与自然对流换热两大类。
前者由泵、风机或其它外部动力源的作用引起,后者通常由流体各个部分温度不同产生的密度差引起。
两种流动产生的原因不同,流体中的速度场、对流换热规律和换热强度均不一样。
通常强制对流换热的流速高、换热系数α大;(2)流体有无相变。
在流体没有相变时对流换热中的热量传输由流体显热的变化实现,在有相变的换热过程中(如沸腾或凝结),流体相变热(潜热)的释放或吸收常常起主要作用,流体的物性、流动特性和换热规律均与无相变时不同。
一般同一种流体在有相变时的换热强度远大于无相变时的强度;(3)流体的流动状态。
根据动量传输知识,粘性流体存在着两种不同的流态——层流和湍流。
层流时流体微团沿着主流方向作有规则的分层流动,湍流时流体各部分之间发生剧烈的混合。
因此,在其它条件相同时湍流换热的强度明显强于层流换热的强度;(4)换热表面的几何因素。
这里的几何因素指换热表面的形状、大小、换热表面与流体运动方向的相对位置以及换热表面的状态(光滑或粗糙)。
这些几何因素都将影响流体在壁面上的流动状况,从而影响到对流换热。
1Chapter 7 Condensation and BoilingHeat Transfer(凝结与沸腾换热)本章主要内容1 Condensation Heat Transfer 凝结换热2 Boiling Heat Transfer 沸腾换热3 Heat Pipe 热管学习本章的基本要求了解凝结换热的Nusselt理论解、相似准则意义,理解主要影响因素及掌握凝结换热关联式的应用。
理解沸腾换热机理、沸腾曲线。
了解主要影响因素及沸腾换热的计算方法,了解热管工作原理及其主要特点。
2§1Condensation Heat Transfer工质在饱和温度下由气态转变为液态的过程称为凝结或冷凝(condensation),而在饱和温度下,由液态转变为气态的过程称为沸腾(boiling)。
1-1 Introduction1、The process of condensationIf the temperature of the wall is bellow the saturation temperature of the vapor, condensate will form on the surface. (壁温低于蒸汽饱和温度时)(1)Film condensation 膜状凝结If the liquid wets the surface, a smooth film is formed, and the process is called film condensation 膜状凝结。
这是最常见的凝结形式。
例如,水蒸气在洁净无油的表面上凝结。
膜状凝结时,壁面总是被一层液膜覆盖着,凝结放出的相变热(潜热)要穿过液膜才能传到冷却壁面上去,且蒸气凝结只能在膜的表面进行,潜热以导热和对流方式通过液膜传到壁。
液膜层是换热的主要热阻,故液膜的厚薄及其运动状态(层流或紊流)对换热的影响很大。
这些又取决于壁的高度(液膜流程长度)以及蒸气与壁的温差。