6-粘性流体流动解析
- 格式:ppt
- 大小:697.50 KB
- 文档页数:40
第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。
在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。
流体的粘滞性:流体流动时产生内摩擦力的性质。
二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。
理想流体:忽略了粘滞性的流体。
三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。
()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。
()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。
(2)流线流场:流体流动的空间。
流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。
流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。
假定某一瞬间有两条流线相交于M点或转折。
M处就该有两个速度矢量,这是不符合流线的定义。
3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。
(2)微小流束及总流流束:在流管中运动的流体。
微小流束:断面无穷小的流束称为微小流束。
微小流束断面上各点的运动要素相等。
流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。
伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。
第六章 粘性流体动力学基础实际流体都是有粘性的,只有当粘性力与惯性力相比很小时,才能忽略粘性力而采用“理想流体”这个简单的理想模型。
支配粘性流体运动的方程比理想流体的基本方程复杂得多,因此粘性流体动力学问题的求解比理想流体动力学问题更加复杂、困难。
本章的目的在于介绍粘性流体动力学的一些基本知识。
§1 雷诺数(Re )——粘性对于流动的影响的大小的度量粘性流体运动方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=z y x Dt D z y x p p p f V ρ1 在x 方向的投影为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z p y p x p f z u w y u v x u u t u zx yx xx x ρ1 这里以xu u ∂∂作为惯性力的代表; y p yx ∂∂ρ1作为粘性力项的代表,其大小为⎪⎪⎭⎫ ⎝⎛∂∂∂∂y u y μρ1。
下面以圆球的粘性流体绕流为例,来估算作用在单位质量流体上的惯性力和粘性力的量阶:(插圆球绕流图)L 为所研究问题的特征长度;∞V 为特征速度;∞ρ为特征密度;∞μ为特征粘性系数。
u 的量阶为∞V ;x u ∂∂的量阶为L V ∞; 22yu ∂∂的量阶为L V 2∞, 则: 作用在单位质量流体上的惯性力的量阶为:LV 2∞ 作用在单位质量流体上的粘性力的量阶为:2L V ∞∞∞ρμ 粘性力惯性力~22L V L V ∞∞∞∞ρμ=∞∞v L V =∞Re Re 称为雷诺数(Reynolds 数),它的物理意义是作用在流体上的惯性力与粘性力的比值的度量。
Re 数是粘性流体动力学中最重要的无量纲参数,它在粘性流体动力学中所占地位与无粘气体动力学的M 数相当。
在不同Re 数范围内的粘性流体运动可以有完全不同的性质,下面以圆柱绕流为例看不同Re 数范围内的圆柱绕流运动。
(插圆柱绕流图)总之:Re 增加,粘性影响变弱,当Re 》1时,对于某些问题,如无分离绕流物体的升力问题,可忽略粘性影响,采用“理想流体”模型。
第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
粘性流体的名词解释粘性流体是一类特殊的物质,其在受力作用下会表现出类似于黏稠的流动特性。
与非粘性流体相比,粘性流体的分子有更强的相互作用力,导致其流动时呈现出一定的粘性效应。
粘性流体在日常生活和工业生产中都有广泛的应用,如润滑剂、食品、医药、等等。
本文将从不同角度对粘性流体进行详细解释和解剖。
一、粘性流体的特性粘性流体的流动特性主要由两个方面影响:剪切力和黏滞系数。
剪切力是指应用在流体上的力,而黏滞系数则是描述流体抵抗剪切力的能力。
黏滞系数越大,流体越粘稠。
粘性流体在受力作用下会发生形变,当受力作用停止时则会恢复原状。
这种特性称为流变特性,包括弹性应变、塑性流动和粘弹性等。
二、粘性流体的分类根据粘性流体在外力作用下形变的特点,可以将粘性流体分为牛顿流体和非牛顿流体两类。
牛顿流体的黏滞系数与剪切力成线性关系,即剪切应力与剪切速率成正比。
水和某些溶液就是典型的牛顿流体。
而非牛顿流体则不符合这种关系,其黏滞系数会随剪切应力或剪切速率的变化而变化。
例如,血液、牙膏以及液态塑料都属于非牛顿流体。
三、粘性流体的应用1. 医药领域:粘性流体在医药领域具有重要应用价值。
例如,制药工业中的药品、注射剂、多种胶囊等,都需要粘性流体的理解和控制。
此外,粘性流体还被用于人体内部的诊断和治疗技术,如胶囊内摄像头、可溶性药丸等。
2. 食品工业:粘性流体在食品加工中发挥着关键作用。
许多食品的口感和质地都与粘性流体的特性相关。
例如,面团的柔软和口感,果酱和酱料的黏稠度,甚至是巧克力的顺滑质地,都与粘性流体的黏度有关。
3. 石油工业:石油粘度是指石油流动的阻力和油品的黏稠度。
粘性流体的分析可以帮助石油工业确定石油的流动性能和适用性,从而更好地控制石油的开采和加工过程。
4. 汽车工业:粘性流体在汽车工业中的应用也是不可忽视的。
例如,引擎油、润滑剂和制动液都属于粘性流体,它们在汽车的正常运行和维护中起着关键作用。
四、粘性流体的研究领域粘性流体的研究领域包括流变学、纳米流体力学和自由表面流体等。