c第三章平稳时间序列模型的特性
- 格式:ppt
- 大小:1.94 MB
- 文档页数:44
时间序列模型的特征讲义时间序列模型特征讲义1. 数据的趋势性特征:时间序列模型通常需要分析数据的趋势性,即数据是否存在明显的上升或下降趋势。
有三种常见的数据趋势性特征:a. 上升趋势:数据随时间逐渐增加。
b. 下降趋势:数据随时间逐渐减少。
c. 平稳趋势:数据在长期内保持相对稳定,没有明显的上升或下降趋势。
2. 数据的季节性特征:某些数据在特定的时间段内会有重复的模式出现,这种特征被称为季节性特征。
常见的季节性特征包括:a. 季节性上升:数据在特定时间段内逐渐增加。
b. 季节性下降:数据在特定时间段内逐渐减少。
c. 季节性波动:数据在特定时间段内上升和下降交替出现。
3. 数据的周期性特征:周期性特征是指数据在一定时间间隔内出现循环模式的情况。
与季节性特征不同,周期性特征在更长的时间尺度上存在。
常见的周期性特征包括:a. 周期性上升:数据在一定时间间隔内逐渐增加。
b. 周期性下降:数据在一定时间间隔内逐渐减少。
c. 周期性波动:数据在一定时间间隔内上升和下降交替出现。
4. 数据的随机性特征:除了趋势性、季节性和周期性特征外,数据可能还包含随机性特征。
随机性特征表示数据在某一时间点的取值不受前一时间点的取值影响,具有随机性。
随机性特征使得时间序列模型无法准确预测未来的取值,需要通过其他方法进行处理。
5. 数据的自相关性特征:自相关性特征描述了数据点与其过去时间点的相关性。
自相关性越高,当前数据点与其过去时间点的关系越密切,可以通过自相关函数(ACF)进行衡量。
自相关性特征在时间序列模型中通常用于选择合适的滞后阶数(lag order)。
6. 数据的季节性相关性特征:季节性相关性特征描述了数据点与其过去季节性时间点的相关性。
季节性相关性越高,当前数据点与其过去季节性时间点的关系越密切,可以通过季节性自相关函数(SACF)进行衡量。
季节性相关性特征在时间序列模型中也用于选择合适的滞后阶数。
7. 数据的外部因素特征:在时间序列模型中,还需要考虑可能影响数据变动的外部因素。
第一章平稳时间序列模型及其特征第一节模型类型及其表示一、自回归模型(AR)由于经济系统惯性的作用,经济时间序列往往存在着前后依存关系。
最简单的一种前后依存关系就是变量当前的取值主要与其前一时期的取值状况有关。
用数学模型来描述这种关系就是如下的一阶自回归模型:X t=φX t-1+εt(2.1.1)常记作AR(1)。
其中{X t}为零均值(即已中心化处理)平稳序列,φ为X t对X t-1的依赖程度,εt为随机扰动项序列(外部冲击)。
如果X t 与过去时期直到X t-p的取值相关,则需要使用包含X t-X t-p在内的p阶自回归模型来加以刻画。
P阶自回归模型的一1 ,……般形式为:X t=φ1 X t-1+φ2 X t-2+…+φp X t-p+εt(2.1.2)为了简便运算和行文方便,我们引入滞后算子来简记模型。
设B 为滞后算子,即BX t=X t-1, 则B(B k-1X t)=B k X t=X t-k B(C)=C(C为常数)。
利用这些记号,(2.1.2)式可化为:X t=φ1BX t+φ2B2X t+φ3B3X t+……+φp B p X t+εt从而有:(1-φ1B-φ2B2-……-φp B p)X t=εt记算子多项式φ(B)=(1-φ1B-φ2B2-……-φp B P),则模型可以表示成φ(B)X t=εt (2.1.3) 例如,二阶自回归模型X t=0.7X t-1+0.3X t-2+0.3X t-3+εt可写成(1-0.7B-0.3B2)X t=εt二、滑动平均模型(MA)有时,序列X t的记忆是关于过去外部冲击值的记忆,在这种情况下,X t可以表示成过去冲击值和现在冲击值的线性组合,即X t=εt-θ1εt-1-θ2εt-2-……-θqεt-q (2.1.4) 此模型常称为序列X t的滑动平均模型,记为MA(q),其中q为滑动平均的阶数,θ1,θ2…θq为参滑动平均的权数。
相应的序列X t称为滑动平均序列。
平稳时间序列模型概述平稳时间序列模型是一种常见的时间序列分析方法,用于对事物在一定时间范围内的变化进行建模和预测。
平稳时间序列模型假设时间序列的均值和方差在任意时刻都保持不变,即不受时间的影响。
平稳时间序列模型有许多不同的形式,其中最常见的是自回归移动平均模型(ARMA)和季节性自回归移动平均模型(SARMA)。
ARMA模型由自回归(AR)部分和移动平均(MA)部分组成,描述了时间序列的自相关和滞后误差,可以用来预测未来的观测值。
SARMA模型在ARMA模型的基础上加入了季节性因素,适用于存在明显季节性变化的时间序列。
ARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} + \epsilon_t -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项。
SARMA模型的一般形式为:\[ X_t = c + \phi_1X_{t-1} + \dots + \phi_pX_{t-p} -\theta_1\epsilon_{t-1} - \dots - \theta_q\epsilon_{t-q} + \gammaX_{t-m} + \phi_1\gamma X_{t-m-1} + \dots + \phi_p\gammaX_{t-m-p} + \epsilon_t \]其中,\( X_t \)是时间序列在时刻\( t \)的观测值,\( c \)是常数,\( \phi_1, \dots, \phi_p \)是自回归系数,\( X_{t-1}, \dots, X_{t-p} \)是过去的观测值,\( \epsilon_t \)是误差项,\( \theta_1, \dots,\theta_q \)是移动平均系数,\( \epsilon_{t-1}, \dots, \epsilon_{t-q} \)是过去的误差项,\( \gamma \)是季节性系数,\( X_{t-m},\dots, X_{t-m-p} \)是过去的季节性观测值。
第3章平稳时间序列分析本章教学内容与要求:了解时间序列分析的方法性工具;理解并掌握ARMA 模型的性质;掌握时间序列建模的方法步骤及预测;能够利用软件进行模型的识别、参数的估计以及序列的建模与预测。
本章教学重点与难点:利用软件进行模型的识别、参数的估计以及序列的建模与预测。
型来息。
t x 为t x 的1阶差分: ▽1t t t x x x --=对1阶差分后的序列再进行一次1阶差分运算称为2阶差分,记▽2tx 为t x 的2阶差分:▽2t x =▽t x -▽1-t x以此类推,对p-1阶差分厚序列再进行一次1阶差分运算称为p 阶差分。
记▽p t x 为t x 的p 阶差分:▽p t x =▽p-1t x -▽p-11-t x (二)k 步差分kt x 为t x 的10,,1t = 10,,2 = 即2阶差分序列▽2t x :3,22,-63,-54,-6,16,-52,-40,10,,3t = 2步差分:▽29x x x 133=-= ▽234x x x 244=-=……▽2-28x x x 81010=-=即2步差分序列:9,34,-7,-26,12,21,-16,-28 二、延迟算子(滞后算子) (一)定义延迟算子类似于一个时间指针,当前序列值乘以一个延迟算子,就相x因此,15-18+6=343-30+9=222.k 步差分▽k =t k t k t k t t x )B 1(x B x x x -=-=--三、线性差分方程在实践序列的时域分析中,线性差分方程是非常重要的,也是极为有效的工具,事实上,任何一个ARMA模型都是一个现象差分方程。
因此,ARMA模型的性质往往取决于差分方程的性质。
为了更好地讨论ARMA 模型的性质,先简单介绍差分方程的一般性质。
设,,方程两边同除以,得特征方程(这是一个一元p次方程,应该至少有p个非零实根,称这p个实根为特征方程(3)的特征根,不防记作.特征根的取值情况不同,齐次线性差分方程的解会有不同的表达形式。
平稳时间序列模型的性质概述平稳时间序列模型是一种描述时间序列数据的统计模型,它的核心假设是数据在时间上的统计特性不发生变化。
具体而言,平稳时间序列模型具有以下性质:1. 均值稳定性:平稳时间序列的均值不随时间变化而变化,即序列的均值是恒定的。
这意味着序列的长期趋势是稳定的,不存在明显的上升或下降趋势。
2. 方差稳定性:平稳时间序列的方差不随时间变化而变化,即序列的方差是恒定的。
这意味着序列的波动性是稳定的,不存在明显的波动增长或缩减。
3. 自协方差稳定性:平稳时间序列的自协方差(序列任意两个时间点之间的协方差)仅依赖于时间点之间的间隔,而不依赖于特定的时间点。
这意味着序列的相关性结构是稳定的,不存在明显的季节性或周期性变化。
4. 纯随机性:平稳时间序列被认为是纯随机的,没有系统性的模式或规律可寻。
这意味着序列的未来值无法通过过去的观察值来准确预测。
根据这些性质,我们可以使用平稳时间序列模型来进行时间序列的建模和预测。
常见的平稳时间序列模型包括自回归移动平均模型(ARMA模型)、自回归积分移动平均模型(ARIMA 模型)以及季节性模型等。
总而言之,平稳时间序列模型具有均值稳定性、方差稳定性、自协方差稳定性和纯随机性等性质,这使得它们成为分析和预测时间序列数据的常用工具。
通过运用这些模型,我们可以揭示序列的短期和长期特征,提供数据的统计属性并进行未来值的预测。
平稳时间序列模型是时间序列分析中非常重要的方法之一,它能够帮助我们理解和预测一系列观测值之间的关系。
在实际应用中,平稳时间序列模型常被用于金融市场分析、经济学研究、气象预测等领域。
首先,均值稳定性是平稳时间序列模型的一个重要性质。
这意味着序列的长期平均水平是恒定的,不随时间变化而变化。
例如,在金融市场中,股票价格的均值稳定性意味着股票价格的长期趋势是稳定的,不存在明显的上升或下降趋势。
通过建立平稳时间序列模型,我们可以更好地理解价格的平均水平,并预测未来的价格走势。