二次函数的系数符号问题
- 格式:doc
- 大小:1.16 MB
- 文档页数:9
二次函数系数a、b、c与图像的关系知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.42.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.45.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<37.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011?重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>011、(2011?雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤12、(2011?孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c <0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专数形结合.题:分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象开口向下,∴a<0;故本选项正确;②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c <0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考点:二次函数图象与系数的关系.分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x轴交点的个数确定.9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。
精品文档二次函数a ,b ,c 符号问题1、已知二次函数2y ax bx c =++的图象如下,则下列结论正确的是(1)a>0 ;(2)b>•0;(3)c<0;(4)0ab < ;(5)0ab <; (6)0bc <;;(7)2a+b>0 ;(8)4a+b<0 ;(9)abc <0;(10)0a b c ++>;(11);a-b +c <0 ;(12)a +c >b ;(13)9a-3b +c <0;(14)4a-2b +c <0 ;(15)240b ac -> ; (16) 0<a b 2;(17),(的实数) ;(18)3a+c<0 ;(19);(20)(a+c )2<b 22、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①c<0,②b>•0,•③4a+2b+c>0,④(a+c )2<b 2.其中正确的有( )A .1个 B .2个 C .3个 D .4个3、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个4、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +> ④930a b c ++<. 其中,正确结论的个数是( )A . 1 B . 2 C . 3 D . 411O y精品文档 5、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B . ①③④C .①②③⑤D .①②③④⑤。
二次函数常见关系式符号的判定
二次函数是初中数学的重点内容之一,它的图像是由字母系数a、b、c的符号确定的,反之在给定抛物线的条件下如何确定字母系数的范围呢?现将二次函数的图像与字母系数的关系归纳如下:
(1)抛物线开口向上;抛物线开口向下.
(2)抛物线开口大小,越大开口越小
(3)、同号对称轴在轴左侧;、异号对称轴在轴右侧;=0对称轴为轴.
(4)抛物线与轴的交点在轴上方;抛物线与轴的交点在轴下方;
抛物线必过原点.
(5)抛物线与轴有两个交点;抛物线与轴有唯一交点;
抛物线与轴没有交点.
(6)的符号由点( 1,)的位置来确定;的符号由点( -1,)的位置来确定;
的符号由点(2,)的位置来确定。
例1如图1是抛物线的图像,则① 0;② 0;③ 0;④ 0;
⑤ 0;⑥ 0;⑦ 0。
解析:由图知:抛物线开口向下,;对称轴在轴左侧,、同号,故
;抛物线与轴的交点在轴上方,;点( 1,)、点( -1,)
分别在第四象限和第二象限,得<0, >0;抛物线与轴有两个交点,
得;由对称轴得=0.
例 2如图2,已知二次函数的图像与轴相交于(,0 ),(, 0)两点,
且,与轴相交于(O,-2),下列结论:①;②;
③;④;⑤。
.其中正确结论的个数为( )
A.1个 B.2个 C.3个D.4个
解析:由图知:.当时,,所以,故③错误;因为抛物
线与轴有两个交点,所以即,所以④正确;当时,由图像得
,即,所以,故①错误;因为,又,所
以,故②错;当时,,即,所以故⑤错误.所以答案选 A.。
专题03 二次函数系数问题【知识点梳理】1、二次函数图象的特征与a ,b ,c 的关系2、常用公式及方法:(1)二次函数三种表达式:(2)韦达定理:若二次函数y =ax 2+bx +c 图象与x 轴有两个交点且交点坐标为(x 1,0)和(x 2,0),则x 1+x 2=−ba,x 1⋅x 2=ca。
(3)赋值法:在二次函数y =ax 2+bx +c 中,令x =1,则y =a +b +c ;令x =−1,则y =a −b +c ;令x =2,则y =4a +2b +c ;令x =−2,则y =4a −2b +c ;利用图象上对应点的位置来判断含有a 、b 、c 的关系式的正确性。
【典例分析】【例1】如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而减小;⑤2a-b=0;⑥b2-4ac >0.下列结论一定成立的是【答案】①②③⑥【解析】解:①由图象可知,a>0,b<0,c<0,∴ac<0,故①正确;②由图象可知,二次函数与x轴的交点横坐标为-1和3,∴方程ax2+bx+c=0的根是x1=-1,x2=3,故②正确;③当x=1时,y<0∴a+b+c<0,故③正确;④∵方程ax2+bx+c=0的根是x1=-1,x2=3∴对称轴为x=x1+x22=−1+32=1由图象可知,当x>1时,y随x的增大而增大,故④错误;⑤∵对称轴−b2a=1∴b=-2a,2a+b=0,故⑤错误;⑥∵二次函数与x轴有两个交点,即方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,故⑥正确。
故答案为:①②③⑥【练1】如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于C 点,OA=OC.则由抛物线的特征写出如下结论:①abc>0;②4ac-b2>0;③a-b+c>0;④ac+b+1=0.其中正确的个数是()A.4个B. 3个C. 2个D. 1个【答案】B【解析】解:①由图象可知,a>0,b<0,c<0,∴abc>0,故①正确;②由图象可知,二次函数与x轴有两个交点,即方程ax2+bx+c=0有两个不相等的实数根,∴b2-4ac>0,即4ac-b2<0故②错误;③当x=-1时,y>0∴a-b+c>0,故③正确;④∵C(0,c),OA=OC,∴A(c,0)∴当x=c时,y=0,即(c)²+bc+c=0∵c≠0正确错误.故答案为:B.【练2】小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0.你认为其中正确的信息是()A.①②③⑤B. ①②③④C. ①③④⑤D. ②③④⑤【答案】A【解析】解:①由图象可知,a>0,b<0,c<0,故①正确;②abc>0,故②正确;③由图象可知当x=-1时,y>0∴a-b+c>0,故③正确;④∵对称轴−b2a =13∴3b=-2a,2a+3b=0,故④错误;⑤∵当x=2时,y>0即4a+2b+c>0∵3b=-2a∴2×(-3b)+2b+c=c-4b>0,故⑤正确.故答案为:A.【例2】抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=−1,其图象如图所示.下列结论:①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(−1,m),则关于x的方程ax2+bx+c=m−1无实数根.其中正确结论的个数是()A.4B.3C.2D.1【答案】B【解析】解:①∵抛物线图象开口向上,∴a>0,∵对称轴在直线y轴左侧,∴a,b同号,b>0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc<0,故①正确.②(4a+c)2−(2b)2=(4a+c+2b)(4a+c−2b),当x=2时ax2+bx+c=4a+2b+c,由图象可得4a+2b+c>0,当x=−2时,ax2+bx+c=4a−2b+c,由图象可得,4a−2b+c<0∴(4a+c)2−(2b)2<0,即,(4a+c)2<(2b)2故②正确.③|x1+1|=|x1−(−1)|,|x2+1|=|x2−(−1)|,∵|x1+1|>|x2+1|∴点(x1,y1)到对称轴的距离大于点(x2,y2)到对称轴的距离,∴y1>y2,故③错误.④∵抛物线的顶点坐标为(−1,m),∴由图象知,y>m,∴ax2+bx+c>m,∴ax2+bx+c=m−1无实数根.故④正确,综上所述,①②④正确,故答案为:B.【练1】二次函数y=ax2+bx+c(a≠0)的图象的一部分如图所示.已知图象经过点(−1,0),其对称轴为直线x =1.下列结论:①abc <0;②4a +2b +c <0;③8a +c <0;④若抛物线经过点(−3,n ),则关于x 的一元二次方程()200ax bx c n a ++-=≠的两根分别为−3,5,上述结论中正确结论的个数为( )A .1个B .2个C .3个D .4个【答案】C【解析】解:①由图象可知,a <0,b >0,c >0, ∴abc <0,故①正确;②∵对称轴为直线x = −b2a =1,且图象与x 轴交于点(﹣1,0), ∴图象与x 轴的另一个交点坐标为(3,0),b=﹣2a , ∴根据图象,当x =2时,y =4a +2b +c >0,故②错误;③根据图象,当x =﹣2时,y =4a ﹣2b +c =4a +4a +c =8a +c <0,故③正确; ④∵抛物线经过点(−3,n ),∴根据抛物线的对称性,抛物线也经过点(5,n ),∴抛物线y =ax 2+bx +c 与直线y =n 的交点坐标为(﹣3,n )和(5,n ), ∴一元二次方程ax 2+bx +c −n =0(a ≠0)的两根分别为−3,5, 故④正确,综上,上述结论中正确结论有①③④, 故答案为:C .【练2】已知抛物线y =ax 2+bx +c (a,b,c 是常数,a ≠0)经过点(−1,−1),(0,1),当x =−2时,与其对应的函数值y >1.有下列结论:①0abc >;②关于x 的方程ax 2+bx +c −3=0有两个不等的实数根;③a +b +c >7.其中,正确结论的个数是( ) A .0 B .1C .2D .3【答案】D【解析】解:∵抛物线y =ax 2+bx +c (a,b,c 是常数,a ≠0)经过点(−1,−1),(0,1),当x =−2时,与其对应的函数值y >1. ∴c =1>0,a -b +c = -1,4a -2b +c >1, ∴a -b = -2,2a -b >0,∴2a-a-2>0,∴a>2>0,∴b=a+2>0,∴abc>0,∵ax2+bx+c−3=0,∴△=b2−4a(c−3)=b2+8a>0,∴ax2+bx+c−3=0有两个不等的实数根;∵b=a+2,a>2,c=1,∴a+b+c=a+a+2+1=2a+3,∵a>2,∴2a>4,∴2a+3>4+3>7,故答案为:D.【例3】抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过点A(1,0),B(m,0)(−2< m<−1),下列结论:①2b+c>0;②2a+c<0;③ a(m+1)−b+c>0;④若方程a(x−m)(x−1)−1=0有两个不相等的实数根,则244ac b a-<.其中正确结论的个数是()A.4B.3C.2D.1【答案】A【解析】解:∵抛物线开口向下,∴a<0把A(1,0),B(m,0)代入y=ax2+bx+c得{a+b+c=0am2+bm+c=0,∴am2+bm=a+b∴am2+bm−a−b=0(m−1)(am+a+b)=0∵−2<m<−1∴am+a+b=0∴am=c,a(m+1)=−b∴c>0∴−1<m+1<0∵m+1<0∴−12<m+12<0∴−12<−b2a<0∴1>ba>0∴a<b<0①2b+c=2b−a−b=b−a>0,故①正确;②2a+c=2a−a−b=a−b<0,故②正确;③ a(m+1)−b+c=−2b+c=−2b−a−b=−3b−a>0,故③正确;;④若方程a(x−m)(x−1)−1=0有两个不相等的实数根,即ax2−a(m+1)x+am−1=0Δ=a2(m+1)2−4a(am−1)=a2(m+1)2−4a2m+4a=b2−4a2⋅−a−ba+4a=b2+4a2+4ab+4a=b2+4a(a+b)+4a=b2−4ac+4a>0∴4ac−b2<4a,故④正确,即正确结论的个数是4,故答案为:A.【练1】如图,抛物线y=ax2+bx+c(a≠0)的顶点为(1,n),与x轴的一个交点B(3,0),与y轴的交点在(0,﹣3)和(0,﹣2)之间.下列结论中:①abc >0;②﹣2<b<−53;③(a+c)2﹣b2=0;④2c﹣a<2n,则正确的个数为()A.1B.2C.3D.4【答案】B【解析】解:∵抛物线y=ax2+bx+c(a≠0)的开口向上,∴a>0,∵抛物线线y=ax2+bx+c(a≠0)的顶点坐标为(1,n),∴对称轴x=−b2a=1,∴b=-2a<0,∵抛物线与y轴的交点在(0,﹣3)和(0,﹣2)之间∴-3<c<-2<0,>0;故①正确;∴abc∵抛物线线x轴的一个交点B(3,0),∴9a+3b+c=0,抛物线线x轴的一个交点(-1,0),∵b=-2a,∴c=3b2<-2,∴-3<3b2∴﹣2<b<−4,故②错误;3∵抛物线线x轴的一个交点(-1,0),∴a-b+c=0,∴(a+c)2﹣b2=(a+b+c)(a-b+c)=0,故③正确;∵a>0,∴-a<0∵b=-2a∴3a+2b=-a<0∴2c﹣a>2(a+b+c),∵抛物线y=ax2+bx+c(a≠0)的顶点为(1,n),∴a+b+c=n,∴2c﹣a>2n;故④错误;故答案为:B【练2】已知二次函数y=ax2+bx+c的图像如图所示,有下列结论:①a>0;②b2−4ac >0;③4a+b=0;④不等式ax2+(b−1)x+c<0的解集为1≤x<3,正确的结论个数是()A.1B.2C.3D.4【答案】A【解析】解:∵抛物线的开口向上,∴a>0,故①正确;∵抛物线与x轴没有交点∴b2−4ac<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3){a+b+c=19a+3b+c=3∴8a+2b=2∴4a+b=1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点∴ax2+(b−1)x+c<0可化为ax2+bx+c<x,根据图象,解得:1<x<3故④错误.故答案为:A.【练3】如图,已知抛物线y=ax2+bx+c的对称轴在y轴右侧,抛物线与x轴交于点A(−2,0)>0;②2b−4ac=1;和点B,与y轴的负半轴交于点C,且OB=2OC,则下列结论:①a−bc;④当−1<b<0时,在x轴下方的抛物线上一定存在关于对称轴对称的两点M,N(点③a=14M在点N左边),使得AN⊥BM.其中正确的有()A.1个B.2个C.3个D.4个【答案】B【解析】解:①从图像观察,开口朝上,所以a>0,对称轴在y轴右侧,所以b<0,图像与y轴交点在x轴下方,所以c<0<0,所以①不正确;∴a−b>0,a−bc②点A(−2,0)和点B,与y轴的负半轴交于点C(0,c),且OB=2OC设B(−2c,0)代入y=ax2+bx+c,得:4ac2−2bc+c=0∵c≠0∴2b−4ac=1,所以②正确;③∵A(−2,0),B(−2c,0)设抛物线解析式为:y=a(x+2)(x+2c)过C(0,c)∴c=4ac∴a=14,所以③正确;④如图:设AN,BM交点为P,对称轴与x轴交点为Q,顶点为D,根据抛物线的对称性,△APB是等腰直角三角形,∵A(−2,0),B(−2c,0)∴AB=2−2c,PQ=12AB=1−c又对称轴x=−2+(−2c)2=c+1∴P(c+1,c−1)由顶点坐标公式可知D(c+1,4ac−b24a)∵a=14∴D(c+1,c−b2)由题意c−b2<c−1,解得b>1或者b<−1由①知b<0∴b<−1,所以④不正确.综上所述:②③正确共2个故答案为:B.【例4】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为x=12,且经过点(2,0).下列说法:①abc<0;②−2b+c=0;③4a+2b+c<0;④若(−12,y1),(52,y2)是抛物线上的两点,则y1<y2;⑤14b+c>m(am+b)+c(其中m≠12).正确的结论有()A.2个B.3个C.4个D.5个【答案】B【解析】解:∵抛物线的开口向下,与y轴的交点位于y轴正半轴,∴a<0,c>0,∵抛物线的对称轴为x =−b 2a =12,∴b=-a >0,∴abc <0,则结论①正确;将点(2,0)代入二次函数的解析式得:4a +2b +c =0,则结论③错误;将a =−b 代入得:−2b +c =0,则结论②正确;∵抛物线的对称轴为x =12,∴x =32和x =−12时的函数值相等,即都为y 1,又∵当x ≥12时,y 随x 的增大而减小,且32<52,∴y 1>y 2,则结论④错误;由函数图象可知,当x =12时,y 取得最大值,最大值为14a +12b +c =−14b +12b +c =14b +c ,∵m ≠12, ∴14b +c >am 2+bm +c ,即14b +c >m(am +b)+c ,结论⑤正确;综上,正确的结论有①②⑤,共3个,故答案为:B .【练1】二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①0abc >,②4a −2b +c <0,③()a b x ax b -≥+,④3a +c <0,正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】解:∵抛物线开口向下,∴a <0,∵对称轴为直线x =-1,即−b 2a =−1,∴b =2a ,则b <0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故①正确;∵抛物线对称轴为直线x=-1,与x轴的一个交点横坐标在0和1之间,则与x轴的另一个交点在-2和-3之间,∴当x=-2时,y=4a-2b+c>0,故②错误;∵x=-1时,y=ax2+bx+c的最大值是a-b+c,∴a-b+c≥ax2+bx+c,∴a-b≥ax2+bx,即a-b≥x(ax+b),故③正确;∵当x=1时,y=a+b+c<0,b=2a,∴a+2a+c=3a+c<0,故④正确;故答案为:C.【练2】如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为x=−1,结合图象给出下列结论:①a+b+c=0;②a−2b+c<0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为-3和1;④若点(−4,y1),(−2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤a−b<m(am+b)(m为任意实数).其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】解:∵二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),∴当x=1时,a+b+c=0,故结论①正确;根据函数图像可知,当x =−1,y <0,即a −b +c <0,对称轴为x =−1,即−b 2a =−1,根据抛物线开口向上,得a >0,∴b =2a >0,∴a −b +c −b <0,即a −2b +c <0,故结论②正确;根据抛物线与x 轴的一个交点为(1,0),对称轴为x =−1可知:抛物线与x 轴的另一个交点为(-3,0),∴关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为-3和1, 故结论③正确;根据函数图像可知:y 2<y 1<y 3,故结论④错误;当x =m 时,y =am 2+bm +c =m(am +b)+c ,∴当m =−1时,a −b +c =m(am +b)+c ,即a −b =m(am +b),故结论⑤错误,综上:①②③正确,故答案为:C .【练3】如图,已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a ≠0)经过点(2,0),且对称轴为直线x =12,有下列结论:①0abc >;②a +b >0;③4230a b c ++<;④无论a ,b ,c 取何值,抛物线一定经过,02c a ⎛⎫ ⎪⎝⎭;⑤2440am bm b +-≥.其中正确结论有( )A .1个B .2个C .3个D .4个【答案】D 【解析】解:①图像开口朝上,故a >0 ,根据对称轴“左同右异”可知0b <, 图像与y 轴交点位于x 轴下方,可知c <0∴abc >0故①正确;②x =−b 2a =12得a =−b∴a +b =0故②错误;③∵y =ax 2+bx +c 经过(2,0)∴4a+2b+c=0又由①得c <0∴4a +2b +3c <0故③正确;④根据抛物线的对称性,得到x =2与x =−1时的函数值相等∴当x =−1时y =0,即a −b +c =0∵a=-b∴2a +c =0即c 2a =−1∴y =ax 2+bx +c 经过(c 2a ,0),即经过(−1,0)故④正确;⑤当x =12时,y =14a +12b +c , 当x =m 时,y =am 2+bm +c∵a >0∴函数有最小值14a +12b +c∴am 2+bm +c ≥14a +12b +c 化简得4am 2+4bm −b ≥0,故⑤正确.综上所述:①③④⑤正确.故选D .【练4】已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①0abc ;②b 2<4ac ;③2c <3b ;④a +2b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c |=1有四个根,则这四个根的和为2,其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【解析】解:①∵抛物线开口方向向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴在y轴右侧,∴b>0,∴abc<0,①错误;②∵抛物线与x轴有两个交点∴b2−4ac>0∴b2>4ac,故②错误;③∵抛物线的对称轴为直线x=1,∴−b2a=1,∴a=−12b由图象得,当x=−1时,y=a−b+c<0,∴−12b−b+c<0∴2c<3b,故③正确;④当x=1时,y=a+b+c的值最大,∴当x=m(m≠1)时,a+b+c>am2+bm+c,∴a+b>m(am+b)(m≠1),∵b>0,∴a+2b>m(am+b)(m≠1),故④正确;⑤∵方程|ax2+bx+c|=1有四个根,∴方程ax2+bx+c=1有2个根,方程ax2+bx+c=-1有2个根,∴所有根之和为2×(-ba )=2×2aa=4,所以⑤错误.∴正确的结论是③④,故选:A【例5】函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A .1B .2C .3D .4【答案】B 【解析】解∵函数y=x 2+bx+c 与x 轴无交点,∴b 2﹣4c <0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x <3时,二次函数值小于一次函数值,∴x 2+bx+c <x ,∴x 2+(b ﹣1)x+c <0.故④正确.综上所述,正确的结论有③④两个,故答案为:B【练1】已知抛物线y =ax 2+bx +c(a >0),且a +b +c =−12,a −b +c =−32.判断下列结论:①abc <0;②220a b c ++>;③抛物线与x 轴正半轴必有一个交点;④当2≤x ≤3时,y 最小=3a ;⑤该抛物线与直线y =x −c 有两个交点,其中正确结论的个数( ) A .2B .3C .4D .5【答案】D【解析】解:∵a +b +c =−12,a −b +c =−32,∴两式相减得b =12,两式相加得c =−1−a ,∴c <0,∵a >0,b >0,c <0,∴abc <0,故①正确;∴2a +2b +c =2a +2×12−1−a =a >0,故②正确;∵当x =1时,则y =a +b +c =−12,当x =-1时,则有y =a −b +c =−32, ∴当y =0时,则方程0=ax 2+bx +c 的两个根一个小于-1,一个根大于1, ∴抛物线与x 轴正半轴必有一个交点,故③正确;由题意可知抛物线的对称轴为直线x =−b 2a =−14a <0,∴当2≤x ≤3时,y 随x 的增大而增大,∴当x =2时,有最小值,即为y =4a +2b +c =4a +1−1−a =3a ,故④正确;联立抛物线y=ax2+bx+c及直线y=x−c可得:x−c=ax2+bx+c,整理得:ax2−1x+2c=0,2−8ac>0,∴Δ=14∴该抛物线与直线y=x−c有两个交点,故⑤正确;∴正确的个数有5个;故答案为:D.。