二次函数中的系数a-b-c符号
- 格式:ppt
- 大小:1.70 MB
- 文档页数:37
完整版)二次函数知识点复习二次函数知识点一、二次函数概念:二次函数是形如y=ax²+bx+c(a≠0)的函数。
需要强调的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。
二次函数的定义域是全体实数。
二、二次函数的基本形式1.二次函数基本形式:y=ax²的性质:a的绝对值越大,抛物线的开口越小。
a的符号决定开口方向,顶点坐标为(0,0),对称轴为y轴。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值。
a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值。
2.y=ax²+c的性质:上加下减。
a的符号决定开口方向,顶点坐标为(0,c),对称轴为y轴。
性质:a>0时,当x增大时,y增大;当x减小时,y减小;当x=0时,y有最小值c。
a<0时,当x增大时,y减小;当x减小时,y增大;当x=0时,y有最大值c。
3.y=a(x-h)²的性质:左加右减。
a的符号决定开口方向,顶点坐标为(h,0),对称轴为x=h。
性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值。
ah时,y减小;当x<h时,y增大;当x=h时,y有最大值。
4.y=a(x-h)²+k的性质:a的符号决定开口方向,顶点坐标为(h,k),对称轴为x=h。
性质:a>0时,当x>h时,y增大;当x<h时,y减小;当x=h 时,y有最小值k。
ah时,y减小;当x<h时,y增大;当x=h时,y有最大值k。
三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)²+k,确定其顶点坐标(h,k),具体平移方法如下:保持抛物线y=ax²的形状不变,将其顶点平移到(h,k)处,向上(k>0)或向下(k<0)平移|k|个单位。
精品文档二次函数a ,b ,c 符号问题1、已知二次函数2y ax bx c =++的图象如下,则下列结论正确的是(1)a>0 ;(2)b>•0;(3)c<0;(4)0ab < ;(5)0ab <; (6)0bc <;;(7)2a+b>0 ;(8)4a+b<0 ;(9)abc <0;(10)0a b c ++>;(11);a-b +c <0 ;(12)a +c >b ;(13)9a-3b +c <0;(14)4a-2b +c <0 ;(15)240b ac -> ; (16) 0<a b 2;(17),(的实数) ;(18)3a+c<0 ;(19);(20)(a+c )2<b 22、二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①c<0,②b>•0,•③4a+2b+c>0,④(a+c )2<b 2.其中正确的有( )A .1个 B .2个 C .3个 D .4个3、已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论: ①a,b 同号;②当1x =和3x =时,函数值相等;③40a b +=④当2y =-时, x 的值只能取0.其中正确的个数是( )A.1个B.2个C. 3个D. 4个4、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:①240b ac ->;②0abc >;③80a c +> ④930a b c ++<. 其中,正确结论的个数是( )A . 1 B . 2 C . 3 D . 411O y精品文档 5、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①②B . ①③④C .①②③⑤D .①②③④⑤。
二次函数图象与系数的关系二次函数的图象与二次函数的系数a 、b 、c 有内在联系。
由系数可以得出二次函数的大致图象,由图象可以得出二次函数系数的取值范围,以下是二次函数的系数和图象之间联系的一些归纳和总结!一、知识点1 二次函数的图像与系数的关系(1)a 的符号由 决定: ①开口向 ⇔ a 0;①开口向 ⇔ a 0.(2)b 的符号由 决定:① 在y 轴的 ⇔b a 、 ;① 在y 轴的 ⇔b a 、 ;① 是 ⇔b 0.(3)c 的符号由 决定:①点(0,c )在y 轴正半轴 ⇔c 0;①点(0,c )在原点 ⇔c 0;①点(0,c )在y 轴负半轴 ⇔c 0.知识点2 二次函数与一元二次方程的关系[归纳概括]如果抛物线)0(2≠++=a c bx ax y 与x 轴有公共点,公共点的横坐标是0x ,那么当x= 时,函数的值是0,因此x= 就是方程02=++c bx ax 的一个根.[归纳概括]函数)0(2≠++=a c bx ax y 的图像与x 轴交点的个数(1)当042>-ac b 时,有 交点;(2)当042=-ac b 时,有 交点;(3)当042<-ac b 时,没有交点;二、例题讲解:例1 已知二次函数)0(2≠++=a c bx ax y 的图像如图所示,试确定代数式①a ;②b ;③c ;④b 2-4ac ;⑤2a+b ;⑥a+b+c ;⑦a-b+c ;⑧4a+2b+c 的符号.练习1:根据图象填空:(1)a _____0;(2)b 0;(3)c 0;(4)ac b 42- 0 ; (5)2a b +______0;(6)0a b c ++⎽⎽⎽⎽ ; (7)0a b c -+⎽⎽⎽⎽;练习2:二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.(1)试确定代数式的符号①abc ______0;②3a +c ______0;③(a +c )2﹣b 2______0; ④b 2-4ac ______0 ⑤a +b +2c _____0(2)证明:a +b ≤m (am +b )(m 为实数).练习3.在平面直角坐标系中,二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,证明: a ﹣b ≤m (am +b )(m 为实数);例2二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x =2,(1)试确定代数式的符号4a +b 0;(2)9a +c 3b ;(2)证明:8a +7b +2c >0;(3)若点A (﹣3,y 1)、点B (﹣,y 2)、点C (,y 3)在该函数图象上,判断y 1,y 2,y 3的大小(4)若方程a (x +1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,判断﹣1,5,x 1,x 2的大小变式1:利用抛物线图象求解一元二次方程及二次不等式(1)方程02=++c bx ax 的根为___________;(2)方程23ax bx c ++=-的根为__________;(3)方程24ax bx c ++=-的根为__________;(4)不等式20ax bx c ++>的解集为 ;(5)不等式20ax bx c ++<的解集为 ;(6)若方程|ax 2+bx +c |=1有四个根,则这四个根的和为 ,变式2.抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,与x 轴的一个交点坐标为(4,0),抛物线的对称轴是直线x =1.下列结论中:①方程ax 2+bx +c =3有两个不相等的实数根;②抛物线与x 轴的另一个交点坐标为(﹣2,0);③若点A (m ,n )在该抛物线上,则am 2+bm +c ≤a +b +c .其中正确的有变式3.(1)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴上方的条件是(2)抛物线2(0)y ax bx c a =++≠的图象全部在x 轴下方的条件是 例3.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),(1)求代数式(a +c )2﹣b 2的值(2)若方程|ax 2+bx +c |=2有四个根,求这四个根的和(3)求a 的取值范围 (4)求b 的取值范围例4.在同一平面直角坐标系xOy 中,一次函数y =ax 与二次函数y =ax 2+a 的图象可能是( ) A .B .C .D . 三、课后作业1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0),(3,0)两点,下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>2时,y随x的增大而减小C.当﹣1<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是﹣1和32.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣3,0),顶点为P(﹣1,n).下列结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根3.如图,已知抛物线y=ax2+bx+c开口向上,与x轴的一个交点为(﹣1,0),对称轴为直线x=1.下列结论错误的是()A.abc>0B.b2>4acC.4a+2b+c>0D.2a+b=04.在同一坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.5.二次函数y=ax2+bx+c的图象如图所示(1).判断正误并说明理由:①abc<0②b2﹣4ac<0③2a>b(2)证明:(a+c)2<b26.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1、x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc<0;②2a﹣b<0;③﹣1<a<0;④b2+8a>4ac;⑤a+c<1.其中正确的是7.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=,且经过点(2,0).下列说法:①﹣2b+c=0;;②4a+2b+c<0;③若(0,y1),(1,y2)是抛物线上的两点,则y1=y2;④b+c>m(am+b)+c(其中m≠).其中正确的是8.二次函数y=ax2+bx+c(a,b,c为常数,a≠0)的部分图象如图所示,图象顶点的坐标为(2,1),与x轴的一个交点在点(3,0)和点(4,0)之间,有下列结论:①abc<0;②a﹣b+c>0;③c﹣4a=1;④b2>4ac;⑤am2+bm+c≤1(m为任意实数).其中正确的是9.如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=,求证:无论a,b,c取何值,抛物线一定经过(,0)10.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个。
二次函数(最全的中考二次函数知识点总结二次函数基础知识二次函数的概念是指形如22y=ax^2+bx+c(a≠0)的函数。
其中,a、b、c是常数。
与一元二次方程类似,二次函数的定义域是全体实数。
二次函数的结构特征是等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.其中,a是二次项系数,b是一次项系数,c是常数项。
二次函数的各种形式之间可以通过变换相互转化。
例如,用配方法可将二次函数y=ax^2+bx+c化为y=a(x-h)^2+k的形式,其中h=(-b/2a),k=(4ac-b^2)/4a。
二次函数的解析式可以表示为一般式、顶点式或两根式。
其中,一般式是2y=ax^2+bx+c,顶点式是y=a(x-h)^2+k,两根式是y=a(x-x1)(x-x2)。
二次函数的图象可以用五点绘图法画出。
首先将二次函数化为顶点式,然后确定其开口方向、对称轴及顶点坐标,最后在对称轴两侧左右对称地描点画图。
二次函数y=ax^2的性质与a的符号有关。
当a>0时,开口向上,顶点坐标为(0,0);当a<0时,开口向下,顶点坐标为(0,0)。
顶点坐标为b/2ac−b2/4a以上是二次函数的基本性质,其中y轴和对称轴是直线,顶点是一个点,开口方向和最值是由a的符号决定的。
在具体应用中,可以利用这些性质来帮助我们解决问题。
例如,求函数的最值、确定函数的图像等等。
顶点决定抛物线的位置。
对于几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向和大小完全相同,只是顶点位置不同。
在二次函数2y=ax^2+bx+c中,a、b、c 与函数图像的关系是:抛物线。
二次项系数a在函数中起着决定性的作用。
当a>0时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;当a<0时,抛物线开口向下,a越小,开口越小,反之a 的值越大,开口越大。
因此,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a的大小决定开口的大小。
课次教学方案教学过程:一、知识要点二次函数y=ax 2+bx+c 系数符号确实定:〔1〕a 由抛物线开口方向确定:开口方向向上,那么a >0;否那么a <0. 〔2〕b 由对称轴和a 的符号确定:由对称轴公式x=判断符号.〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,那么c >0;否那么c <0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0; 没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号. 〔6〕由对称轴公式x=,可确定2a+b 的符号.二、根底练习1、抛物线y=ax 2+bx+c 〔a ≠0〕在平面直角坐标系中的位置如下图,那么以下结论中,正确的选项是〔 D 〕 A 、a >0 B 、b <0 C 、c <0 D 、a+b+c >02、二次函数y=ax 2+bx+c 的图象如图,其对称轴x=-1,给出以下结果①b 2>4ac ; ②abc >0;③2a+b=0; ④a+b+c >0;⑤a-b+c <0,那么正确的结论是〔 D 〕 A 、①②③④ B 、②④⑤ C 、②③④ D 、①④⑤任课教师学科 版本 年段 辅导类型 上课时间学生签名数学北师大初三课题二次函数y=a 2x +bx+c 系数符号确实定方法课次教学目标掌握二次函数中字母 a 、b 、c 三者与图象之间的关系。
教学策略 教学重点、难点:利用图形的性质与特殊性来确定字母a 、b 、c 三者之间的关系。
3、如图,二次函数y=ax 2+bx+c 的图象与y 轴正半轴相交,其顶点坐标为〔21,1〕,以下结论:①ac <0;②a+b=0;③4ac-b 2=4a ;④a+b+c <0.其中正确结论的个数是〔 C 〕1\2\3 A 、1 B 、2 C 、3 D 、44、二次函数y=ax 2+bx+c 的图象如下图,对称轴为直线x=1,那么以下结论正确的选项是〔B 〕 A 、ac >0 B 、方程ax 2+bx+c=0的两根是x 1=-1,x 2=3 C 、2a-b=0 D 、当x >0时,y 随x 的增大而减小5、二次函数y=ax 2+bx+c 〔a ,b ,c 为常数,a ≠0〕的图象如下图,有以下结论: ①abc >0,②2b -4ac <0,③a-b+c >0,④4a-2b+c <0,其中正确结论的个数是〔A4 〕 A 、1 B 、2 C 、3 D 、46、〔如下图的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四条信息: 〔1〕b 2-4ac >0;〔2〕c >1;〔3〕2a-b <0;〔4〕a+b+c <0.你认为其中错误的有〔D2〕 A 、2个 B 、3个 C 、4个 D 、1个7、抛物线y=ax 2+bx+c 〔a ≠0〕的图象如下图,那么以下说法正确的选项是〔C 〕 A 、b 2-4ac <0 B 、abc <0 C 、 -a2b<-1 D 、a-b+c <08、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,现有以下结论:①b 2-4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,那么其中结论正确的个数是〔B 〕1/2/5 A 、2个 B 、3个 C 、4个 D 、5个9、二次函数y=ax 2的图象开口向上,那么直线y=ax-1经过的象限是〔D 〕 A 、第一、二、三象限 B 、第二、三、四象限 C 、第一、二、四象限 D 、第一、三、四象限10、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕A 、a <0,b <0,c >0,b 2-4ac >0B 、a >0,b <0,c >0,b 2-4ac <0C 、a <0,b >0,c <0,b 2-4ac >0D 、a <0,b >0,c >0,b 2-4ac >011、二次函数y=ax 2+bx+c 的图象如下图,那么以下判断不正确的选项是〔B 〕 A 、ac <0 B 、a-b+c >0C 、b=-4aD 、关于x 的方程a 2x +bx+c=0的根是x 1=-1,x 2=512、二次函数y=ax 2+bx+c 的图象如下图,那么a ,b ,c 满足〔A 〕A 、a <0,b <0,c >0,2b -4ac >0 B 、a <0,b <0,c <0,2b -4ac >0 C 、a <0,b >0,c >0,2b -4ac <0 D 、a >0,b <0,c >0,2b -4ac >013、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,有以下4个结论,其中正确的结论是〔B 〕 A 、abc >0 B 、b >a+c C 、2a-b=0 D 、2b -4ac <014、二次函数y=2ax +bx+c 〔a ≠0〕的图象如下图,那么以下结论: ①ac >0;②a-b+c <0;③当x <0时,y <0;④方程2ax +bx+c=0〔a ≠0〕有两个大于-1的实数根.其中错误的结论有〔C 〕 A 、②③ B 、②④ C 、①③ D 、①④15、如下图为二次函数y=ax 2+bx+c 〔a ≠0〕的图象,在以下选项中错误的选项是〔C 〕 A 、ac <0 B 、x >1时,y 随x 的增大而增大 C 、a+b+c >0 D 、方程ax 2+bx+c=0的根是1x =-1,2x =316、二次函数y=ax 2+bx+c 的图象如下图,以下结论错误的选项是〔B 〕 A 、ab <0 B 、ac <0C 、当x <2时,函数值随x 增大而增大;当x >2时,函数值随x 增大而减小D 、二次函数y=2ax +bx+c 的图象与x 轴交点的横坐标就是方程2ax +bx+c=0的根17、二次函数y=ax 2+bx+c 的图象如下图,那么以下结论正确的选项是〔D 〕 A 、a >0 B 、c <0 C 、b 2-4ac <0 D 、a+b+c >018、二次函数y=ax 2+bx+c 〔a ≠0〕的图象如下图,以下结论①a ,b 异号;②当x=1和x=3时,函数值相等; ③4a+b=0;④当y=4时,x 的取值只能为0,结论正确的个数有〔 C 〕个.1/2/3 A 、1 B 、2 C 、3 D 、4三、能力练习c bx ax y ++=2的图象如图 l -2-2所示,那么a 、b 、c 满足〔 〕 A .a <0,b <0,c >0 B .a <0,b <0,c <0C .a <0,b >0,c >0D .a >0,b <0,c >02.二次函数c bx ax y ++=2(a≠0〕且a <0,a -b+c >0,那么一定有〔 〕A .b 2-4ac >0B .b 2-4ac =0C .b 2-4ac <0D .b 2-4ac≤03.二次函数c bx ax y ++=2的图象如图1-2-10,那么点〔b ,c a〕在〔 〕A .第一象限B .第二象限C .第三象限D .第四象限4.假设二次函数c bx ax y ++=2的图象如图,那么ac_____0〔“<〞“>〞或“=〞〕第4题图5.二次函数c bx ax y ++=2的图象如图 1-2-14所示,那么以下关于a 、b 、c 间的关系判断正确的选项是〔 〕 A .ab <0 B 、bc <0 C .a+b +c >0 D .a -b 十c <0四、知识小结:例题.抛物线c bx ax y ++=2过三点〔-1,-1〕、〔0,-2〕、〔1,l 〕.〔1〕求抛物线所对应的二次函数的表达式; 〔2〕写出它的开口方向、对称轴和顶点坐标;〔3〕这个函数有最大值还是最小值? 这个值是多少?五、中考真题回忆:〔09佛山〕19.〔1〕请在坐标系中画出二次函数22y x x =-+的大致图象;〔2〕在同一个坐标系中画出22y x x =-+的图象向上平移两个单位后的图象; 〔3〕直接写出平移后的图象的解析式. 注:图中小正方形网格的边长为1.〔1〕画图〔略〕注:根本反映图形的特征〔如顶点、对称性、变化趋势、平滑〕给2分, 满足其中的两至三项给1分,满足一项以下给0分; 〔2〕画图、写解析式〔略〕注:画图总分值2分,同〔1〕的标准;写解析式2分〔无过程不扣分〕.〔11·佛山〕21.如图,二次函数y =ax 2+bx +c 的图像经过A 〔-1,-1〕、B 〔0,2〕、C 〔1,3〕; 〔1〕求二次函数的解析式; 〔2〕画出二次函数的图像;【答案】解:〔1〕根据题意,得⎩⎪⎨⎪⎧a -b +c =-1c =2a +b +c =3………………2分解得a =-1,b =2,c =2………………4分所以二次函数的解析式为y =-x 2+2x +2………………5分〔2〕二次函数的图象如图………………8分 给分要点:顶点、对称、光滑〔各1分〕〔12佛山〕xyO第19题图xyoABC1xyoABC122.(1)任选以下三个条件中的一个,求二次函数c bx ax y ++=2的解析式; ①y 随x 变化的局部数值规律如下表:②有序数对()0,1-、()4,1、()0,3满足c bx ax y ++=2; ③函数c bx ax y ++=2的图象的一局部〔如图〕. (2)直接写出二次函数c bx ax y ++=2的三个性质.解析:〔1〕方法一:由 可得:C=3,0=+-c b a ,4=++c b a ,所以1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y方法二:由②可得:0=+-c b a ,4=++c b a ,039=++c b a ,解之得:1-=a ,2=b ,C=3,所以二次函数解析式为:322++-=x x y 方法三:由③可得:C=3,0=+-c b a ,12=-ab,解之得:1-=a ,2=b ,C=3, 所以二次函数解析式为:322++-=x x y 〔三种选其一即可〕〔2〕1、对称轴为1=x , 2、开口向下 3、与x 轴有2个交点 4、交 y 轴正半轴考察知识:待定系数法求二次函数解析式、二次函数的性质及图像〔2021•佛山〕24.如图①,抛物线y=ax 2+bx+c 经过点A 〔0,3〕,B 〔3,0〕,C 〔4,3〕.x -1 0 1 2 3 y343〔1〕求抛物线的函数表达式;〔2〕求抛物线的顶点坐标和对称轴;〔3〕把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S〔图②中阴影局部〕.分析:〔1〕把点A、B、C代入抛物线解析式y=ax2+bx+c利用待定系数法求解即可;〔2〕把抛物线解析式整理成顶点式形式,然后写出顶点坐标与对称轴即可;〔3〕根据顶点坐标求出向上平移的距离,再根据阴影局部的面积等于平行四边形的面积,列式进展计算即可得解.解:〔1〕∵抛物线y=ax2+bx+c经过点A〔0,3〕,B〔3,0〕,C〔4,3〕,∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;〔2〕∵y=x2﹣4x+3=〔x﹣2〕2﹣1,∴抛物线的顶点坐标为〔2,﹣1〕,对称轴为直线x=2;〔3〕如图,∵抛物线的顶点坐标为〔2,﹣1〕,∴PP′=1,阴影局部的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影局部的面积=2.点评:此题考察了待定系数法求二次函数解析式,二次函数的性质,二次函数图象与几何变换,〔3〕根据平移的性质,把阴影局部的面积转化为平行四边形的面积是解题的关键.【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
二次函数图像与性质及与a 、b 、c 的关系【命题趋势】在中考中.二次函数的图像与性质常在选择题和填空题常考;二次函数图像与系数a 、b 、c 的关系常在选择题或填空题的最后一题出现。
【中考考查重点】一、会用描点法画出二次函数的图像.通过图像了解二次函数的性质; 二、会用配方法将数字系数的二次函数的表达式化为k ax +=-)h (2y 的形式.并能由此得到二次函数图像的顶点坐标.说出图像的开口方向.画出图像的对称轴。
考点一:二次函数的概念及三种解析式概念 形如的函数叫二次函数三种解析式 1. 一般式:;2. 顶点式:(a ≠0)其中(h,k )为二次函数的顶点坐标3. 交点式:.其中为抛物线与x 轴交点的横坐标图像画法列表、描点、连线1.(2021秋•黔西南州期末)下列各式中.y 是关于x 的二次函数的是( ) A .y =4x +2 B .y =(x ﹣1)2﹣x 2 C .y =3x 2+5﹣4x D .y =【答案】C【解答】解:A .y =4x +2.是一次函数.故A 不符合题意; B .y =(x ﹣1)2﹣x 2=﹣2x +1.是一次函数.故B 不符合题意; C .y =3x 2+5﹣4x =3x 2﹣4x +5.是二次函数.故C 符合题意; D .y =等号右边是分式.不是二次函数.故D 不符合题意;故选:C .考点二:二次函数的图像与性质2.(2021春•岳麓区校级期末)已知二次函数的解析式为y =x 2﹣4x +5.则该二次函数图象的顶点坐标是( ) A .(﹣2.1) B .(2.1)C .(2.﹣1)D .(1.2)【答案】B【解答】解:∵二次函数的解析式为y =x 2﹣4x +5. ∴x =﹣=﹣=2.y ===1.二次函数图象的顶点坐标为(2.1). 故选:B .3.(2020秋•莫旗期末)对于二次函数y =(x ﹣1)2+2的图象.下列说法正确的是( )A .开口向下B .当x =﹣1时.y 有最大值是2C .对称轴是直线x =﹣1解析式对称轴直线(还可以利用.其中为y 值相等的两个点对应的横坐标)求解)顶点坐标2424b ac b a a ⎛⎫-- ⎪⎝⎭,增减性当时.在对称轴左侧.y 随x 的增大而减少;在对称轴右侧.y 随x 的增大而增大 当a <0时.在对称轴左侧.y 随x 的增大而增大;在对称轴右侧.y 随x的增大而减少最值当时.y 有最小值当2bx a =-时.y 有最小值244ac ba-. 当a <0时.y 有最大值当时.y 有最大值D.顶点坐标是(1.2)【答案】D【解答】解:二次函数y=(x﹣1)2+2的图象的开口向上.故A错误;当x=1时.函数有最小值2.故B错误;对称轴为直线x=1.故C错误;顶点坐标为(1.2).故D正确.故选:D.4.(2021秋•越秀区期末)在同一平面直角坐标系xOy中.一次函数y=ax与二次函数y =ax2﹣a的图象可能是()A.B.C.D.【答案】C【解答】解:选项A.直线下降a<0.抛物线开口向上.a>0.不符合题意.选项B.直线下降.a<0.抛物线开口向下a<0.抛物线与y轴交点在x轴下方.﹣a<0.即a>0.不符合题意.选项C.直线上升.a>0.抛物线开口向上a>0.抛物线与y轴交点在x轴下方.﹣a<0.即a>0.符合题意.选项D.直线上升.a>0.抛物线开口向下a<0.不符合题意.故选:C.5.(2021秋•南召县期末)已知(﹣3.y1).(1.y2).(5.y3)是抛物线y=﹣2x2﹣4x+m 上的点.则()A.y1>y2>y3B.y2>y1>y3C.y1=y2>y3D.y1>y2=y3【答案】C【解答】解:∵y=﹣2x2﹣4x+m=﹣2(x+1)2+2+m.∴抛物线的开口向下.对称轴是直线x=﹣1.∴当x>﹣1时.y随x的增大而减小.∵(﹣3.y1).(1.y2).(5.y3)是抛物线y=﹣2x2﹣4x+m上的点.∴点(﹣3.y1)关于对称轴x=﹣1的对称点是(1.y3).∵1<5.∴y1=y2>y3.故选:C6.(2021秋•昭阳区期中)已知二次函数y=﹣(x﹣k)2+h.当x>2时.y随x的增大而减小.则函数中k的取值范围是()A.k≥2B.k≤2C.k=2D.k≤﹣2【答案】B【解答】解:抛物线的对称轴为直线x=k.因为a=﹣1<0.所以抛物线开口向下.所以当x>k时.y的值随x值的增大而减小.而x>2时.y的值随x值的增大而减小.所以k≤2.故选:B.考点三:二次函数图像与a、b、c的关系a、b、c的正负数判断二次函数图像二次项系数a 决定抛物线的开口方向及开口大小⑴当0a>时.抛物线开口向上⑵当0a<时.抛物线开口向下一次项系数b 决定对称轴的位置在二次项系数a确定的前提下.b决定了抛物线的对称轴.(同左异右b为对称轴为y轴)2.根据二次函数图像判断a 、b 、c 关系式与0的关系7.(2021秋•新抚区期末)如图.已知点A (﹣1.0)和点B (1.1).若抛物线y =x 2+c 与线段AB 有公共点.则c 的取值范围是( )A .﹣1≤c ≤0B .﹣1≤c ≤C .﹣1≤c ≤D .0≤c ≤常数项系数c决定抛物线与y 轴的交点的位置⑴ 当0c >时.抛物线与y 轴的交点在x 轴上方⑵ 当0c =时.抛物线与y 轴的交点为坐标原点⑶ 当0c <时.抛物线与y 轴的交点在x 轴下方ac 4b2-决定抛物线与x 轴的交点个数b2-4ac >0时.抛物线与x 轴有2个交点;b2-4ac =0时.抛物线与x 轴有1个交点; b2-4ac <0时.抛物线与x 轴没有交点 决定抛物线与x 轴的交点个数关系式 实质2a+b实质式结合a 的正负比较a2b-与1关系 2a+b实质式结合a 的正负比较a2b-与-1关系 a+b+c 实质是令x=1.看纵坐标正负 a -b+c 实质是令x=-1.看纵坐标正负 4a+2b+c 实质是令x=2.看纵坐标正负 4a -2b+c实质是令x=-2.看纵坐标正负【答案】C【解答】解:设AB所在直线为y=kx+b.将(﹣1.0).(1.1)代入y=kx+b得.∴y=x+.如图.当抛物线与线段AB相切时.令x+=x2+c.整理得x2﹣x﹣+c=0.∴Δ=(﹣)2﹣4(﹣+c)=0.解得c=.c减小.抛物线向下移动.当抛物线经过点A(﹣1.0)时.将(﹣1.0)代入y=x2+c得0=1+c.解得c=﹣1.∴﹣1≤c≤满足题意.故选:C.8.(2021秋•肃州区期末)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示.在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向上.∴a>0.∵0<﹣<1.∴b<0.2a﹣b>0.①不正确.不符合题意.∵抛物线与y轴交点在x轴下方.∴c<0.∴abc>0.②不正确.不符合题意.∵x=1时.y<0.∴a+b+c<0.③正确.符合题意.∵x=﹣1时.y>0.∴a﹣b+c>0.④正确.符合题意.∵x=2时.y>0.∴4a+2b+c>0.⑤正确.符合题意.故选:C1.(2021秋•五常市期末)抛物线y=x2+2x﹣3的对称轴是直线()A.x=﹣2B.x=﹣1C.x=1D.x=2【答案】B【解答】解:∵y=x2+2x﹣3.∴抛物线对称轴为直线x=﹣=﹣1.故选:B.2.(2021秋•呼和浩特期末)关于二次函数y=2x2+4x﹣1.下列说法正确的是()A.图象与y轴的交点坐标为(0.1)B.当x<1时.y的值随x值的增大而减小C.图象的顶点坐标为(﹣1.﹣3)D.图象的对称轴在y轴的右侧【答案】C【解答】解:∵y=2x2+4x﹣1=2(x+1)2﹣3.∴当x=0时.y=﹣1.故选项A错误.该函数的对称轴是直线x=﹣1.当x<﹣1时.y随x的增大而减小.故选项B错误.图象的顶点坐标为(﹣1.﹣3).故选项C正确.图象的对称轴在y轴的左侧.故选项D错误.故选:C.3.(2021春•岳麓区校级期末)已知抛物线y=﹣(x+1)2上的两点A(﹣4.4.y1)和B (﹣3.3.y2).那么下列结论一定成立的是()A.0<y2<y1B.0<y1<y2C.y1<y2<0D.y2<y1<0【答案】C【解答】解:∵y=﹣(x+1)2.∴二次函数图象开口向下.对称轴为直线x=﹣1.顶点为(﹣1.0).∵A(﹣4.4.y1)和B(﹣3.3.y2).∴|﹣1+4.4|>|﹣1+3.3|.∴y1<y2<0.故选:C.4.(2021秋•克东县期末)抛物线y=x2﹣2x﹣4的顶点M关于坐标原点O的对称点为N.则点N的坐标为()A.(1.﹣5)B.(1.5)C.(﹣1.5)D.(﹣1.﹣5)【答案】C【解答】解:∵抛物线y=x2﹣2x﹣4=(x﹣1)2﹣5.∴该抛物线的顶点M的坐标为(1.﹣5).∴顶点M关于坐标原点O的对称点为N的坐标为(﹣1.5).故选:C.5.(2021秋•龙江县期末)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数.且a≠0)如图所示.现有结论:①abc<0.②b2>4ac.③3a+c>0.④ac﹣bc+c2<0.其中结论正确的有()A.1个B.2个C.3个D.4个【答案】C【解答】解:∵抛物线开口向上.∴a>0.∵抛物线对称轴为直线x=﹣=1.∴b=﹣2a<0.∵抛物线与y轴交点在x轴下方.∴c<0.∴abc>0.①错误.∵抛物线与x轴有2个交点.∴b2﹣4ac>0.∴b2>4ac.②正确.∵b=﹣2a.∴y=ax2﹣2ax+c.由图象可得x=﹣1时y>0.∴a+2a+c=3a+c>0.③正确.∵c<0.∴ac﹣bc+c2<0可整理为a﹣b+c>0.∵x=﹣1时y>0.∴a﹣b+c>0.④正确.故选:C.1.(2021•兰州)二次函数y=x2+4x+1的图象的对称轴是()A.x=2B.x=4C.x=﹣2D.x=﹣4【答案】C【解答】解:∵二次函数y=x2+4x+1.∴抛物线对称轴为直线x=﹣=﹣2.故选:C.2.(2021•广州)抛物线y=ax2+bx+c经过点(﹣1.0)、(3.0).且与y轴交于点(0.﹣5).则当x=2时.y的值为()A.﹣5B.﹣3C.﹣1D.5【答案】A【解答】解:如图∵抛物线y=ax2+bx+c经过点(﹣1.0)、(3.0).且与y轴交于点(0.﹣5).∴可画出上图.∵抛物线对称轴x==1.∴点(0.﹣5)的对称点是(2.﹣5).∴当x=2时.y的值为﹣5.故选:A.3.(2021•常州)已知二次函数y=(a﹣1)x2.当x>0时.y随x增大而增大.则实数a 的取值范围是()A.a>0B.a>1C.a≠1D.a<1【答案】B【解答】解:∵二次函数y=(a﹣1)x2.当x>0时.y随x增大而增大.∴a﹣1>0.∴a>1.故选:B.4.(2021•阜新)如图.二次函数y=a(x+2)2+k的图象与x轴交于A.B(﹣1.0)两点.则下列说法正确的是()A.a<0B.点A的坐标为(﹣4.0)C.当x<0时.y随x的增大而减小D.图象的对称轴为直线x=﹣2【答案】D【解答】解:∵二次函数y=a(x+2)2+k的图象开口方向向上.∴a>0.故A错误.∵图象对称轴为直线x=﹣2.且过B(﹣1.0).∴A点的坐标为(﹣3.0).故B错误.D正确.由图象知.当x<0时.由图象可知y随x的增大先减小后增大.故C错误.故选:D.5.(2021•深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A.B.C.D.【答案】A【解答】解:A、由抛物线可知.a>0.b<0.c=1.对称轴为直线x=﹣.由直线可知.a >0.b<0.直线经过点(﹣.0).故本选项符合题意;B、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;C、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;D、由抛物线可知.对称轴为直线x=﹣.直线不经过点(﹣.0).故本选项不符合题意;故选:A.6.(2021•阿坝州)二次函数y=ax2+bx+c的图象如图所示.下列说法错误的是()A.a<0.b>0B.b2﹣4ac>0C.方程ax2+bx+c=0的解是x1=5.x2=﹣1D.不等式ax2+bx+c>0的解集是0<x<5【答案】D【解答】解:由图象可知.抛物线开口向下.所以a<0;对称轴为直线x=﹣=2.所以b=﹣4a.所以b>0.故A正确.因为抛物线与x轴有两个交点.所以b2﹣4ac>0.故B正确.由图象和对称轴公式可知.抛物线与x轴交于点(5.0)和(﹣1.0).所以方程ax2+bx+c =0的解是x1=5.x2=﹣1.故C正确.由图象可知.不等式ax2+bx+c>0的解集是﹣1<x<5.故D错误.故选:D.7.(2021•雅安)定义:min{a.b}=.若函数y=min{x+1.﹣x2+2x+3}.则该函数的最大值为()A.0B.2C.3D.4【答案】C【解答】解:x+1=﹣x2+2x+3.解得x=﹣1或x=2.∴y=.把x=2代入y=x+1得y=3.∴函数最大值为y=3.故选:C.8.(2021•烟台)如图.二次函数y=ax2+bx+c的图象经过点A(﹣1.0).B(3.0).与y 轴交于点C.下列结论:①ac>0;②当x>0时.y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数有()A.1个B.2个C.3个D.4个【答案】B【解答】解:把点A(﹣1.0).B(3.0)代入二次函数y=ax2+bx+c.可得二次函数的解析式为:y=ax2﹣2ax﹣3a.∵该函数图象开口方向向下.∴a<0.∴b=﹣2a>0.c=﹣3a>0.∴ac<0.3a+c=0.①错误.③正确;∵对称轴为直线:x=﹣=1.∴x<1时.y随x的增大而增大.x>1时.y随x的增大而减小;②错误;∴当x=1时.函数取得最大值.即对于任意的m.有a+b+c≥am2+bm+c.∴a+b≥am2+bm.故④正确.综上.正确的个数有2个.故选:B.9.(2021•徐州)如图.点A、B在y=x2的图象上.已知A、B的横坐标分别为﹣2、4.直线AB与y轴交于点C.连接OA、OB.(1)求直线AB的函数表达式;(2)求△AOB的面积;(3)若函数y=x2的图象上存在点P.使△P AB的面积等于△AOB的面积的一半.则这样的点P共有个.【答案】(1)y=+2 (2)6 (3)4【解答】解:(1)∵点A、B在y=x2的图象上.A、B的横坐标分别为﹣2、4.∴A(﹣2.1).B(4.4).设直线AB的解析式为y=kx+b.∴.解得.∴直线AB的解析式为y=+2;(2)在y=+2中.令x=0.则y=2.∴C的坐标为(0.2).∴OC=2.∴S△AOB=S△AOC+S△BOC=+=6.(3)过OC的中点.作AB的平行线交抛物线两个交点P1、P2.此时△P1AB的面积和△P2AB的面积等于△AOB的面积的一半.作直线P1P2关于直线AB的对称直线.交抛物线两个交点P3、P4.此时△P3AB的面积和△P4AB的面积等于△AOB的面积的一半.所以这样的点P共有4个.故答案为4.1.(2021•龙湾区模拟)下列函数中.是二次函数的是()A.y=6x2+1B.y=6x+1C.y=D.y=﹣+1【答案】A【解答】解:A.是二次函数.故本选项符合题意;B.是一次函数.不是二次函数.故本选项不符合题意;C.是反比例函数.不是二次函数.故本选项不符合题意;D.等式的右边是分式.不是整式.不是二次函数.故本选项不符合题意;故选:A.2.(2021•安徽模拟)在平面直角坐标系中.A的坐标为(1.﹣2).B的坐标为(﹣1.﹣5).若y关于x的二次函数y=﹣x2+2mx﹣m2﹣1在﹣1≤x≤1段的图象始终在线段AB 的下方.则m的取值范围是()A.m<﹣3B.m>2C.m<﹣2或m>2D.m<﹣3或m>2【答案】D【解答】解:∵y关于x的二次函数为y=﹣x2+2mx﹣m2﹣1.∴顶点式为y=﹣(x﹣m)2﹣1.∴抛物线顶点为(m.﹣1).当﹣1≤m≤1时.∵﹣1>﹣2>﹣5.∴顶点在线段AB的上方.不符合题意;当m<﹣1时.若二次函数的图象与线段AB交于点B.则当x=﹣1时.y=﹣(﹣1﹣m)2﹣1=﹣5.解得:m1=﹣3.m2=1(舍去).∴要使二次函数的图象在线段AB的下方.则需要将图象向左平移.∴m<﹣3.当m>1时.若二次函数图象与线段AB交于点A.则当x=1时.y=﹣(1﹣m)2﹣1=﹣2.解得:m1=2.m2=0(舍去).∴而要使二次函数始终在线段AB下方.则需要将图象向右平移.∴m>2.综上所述:m<﹣3或m>2.故选:D.3.(2021•陕西模拟)如图.若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1.与y 轴交于点C.与x轴交于点A、点B(﹣1.0).则:①二次函数的最大值为1;②4a ﹣2b+c>0;③b2﹣4ac>0;④当y<0时.x<﹣1或x>3.其中错误的个数是()A.I B.2C.3D.4【答案】B【解答】解:∵对称轴为直线x=1.∴b=﹣2a.∵B(﹣1.0).∴A(3.0).∴a﹣b+c=0.∴c=﹣3a.∴y=ax2﹣2ax﹣3a;①当x=1时.函数的最大值是a+b+c.故①不正确;②当x=﹣2时.y<0.∴4a﹣2b+c<0.故②不正确;③∵函数与x轴有两个不同的交点.∴Δ=b2﹣4ac>0.故③正确;④由图象可知当y<0时.x<﹣1或x>3.故④正确;故选:B.。
九年级数学二次函数中a ,b ,c 符号的确定珠海市第四中学(519015) 邱金龙二次函数)0(2≠++=a c bx ax y 的图象是抛物线,利用图象来确定a ,b ,c 的符号,是常见的问题,解决的关键是对二次函数的图象和性质的正确理解。
一、a ,b ,c 符号的确定(1)a 符号的确定。
抛物线的开口向上,a >0,抛物线的开口向下,a <0。
(2)c 符号的确定。
因为x=0时,由c bx ax y ++=2得,y =c ,故抛物线与y 轴交点在y 轴的正半轴,c >0,抛物线与y 轴交点在y 轴的负半轴,c <0,抛物线经过原点,c =0。
(3)b 符号的确定。
b 的符号要看对称轴ab x 2-=,再结合a 的符号来确定。
二、应用举例1、二次函数c bx ax y ++=2的图象分别如图所示,试分别判断(A )(B )(C )(D )图中a ,b ,c 的符号。
分析:(A )图中,抛物线的开口向上,故a >0;抛物线与y 轴的交点P 在y 轴的负半轴,故c <0。
对称轴ab x 2-=>0,而a >0,故b <0。
(B )图中,抛物线的开口向下,故a <0;抛物线与y 轴的交点P 在y 轴的正半轴,故c >0。
对称轴ab x 2-=<0,而a <0,故b <0。
(C )图中(过程略),a >0,c >0 ,b >0。
(D )图中(过程略),a <0, c <0 ,b >0。
2、(2004重庆中考题)二次函数c bx ax y ++=2的图象如图,则点M (b ,ac )在( ) A 、第一象限 B 、第二象限C 、第三象限D 、第四象限分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的正半轴,故c >0。
对称轴ab x 2-=>0,而a <0,故b >0。
因此,点M (b ,ac )的横坐标为正,纵坐标为负,在第四象限,选(D )。
3、(2004陕西中考题)二次函数y =ax 2+bx+c 的图象如图所示,则下列关于a 、b 、c 间的关系判断正确的是( )A 、ab <0B 、bc <0C 、.a+b+c >0D 、a -b+c <0分析:抛物线的开口向下,故a <0;抛物线与y 轴的交点在y 轴的负半轴,故c <0。
二次函数系数a 、b 、c 与图像的关系知识要点二次函数y=ax 2+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0. (2)b 由对称轴和a 的符号确定:由对称轴公式abx 2-=判断符号. (3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0. (4)b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b2-4ac=0;没有交点,b 2-4ac <0.(5)当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号.一.选择题(共9小题) 1.(2014•威海)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a ;④am 2+bm+a >0(m ≠﹣1). 其中正确的个数是( )A . 1B . 2C . 3D . 4 2.(2014•仙游县二模)已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( ) A . ③④ B . ②③ C . ①④ D . ①②③ 3.(2014•南阳二模)二次函数y=ax 2+bx+c 的图象如图所示,那么关于此二次函数的下列四个结论:①a <0;②c >0;③b 2﹣4ac >0;④<0中,正确的结论有( )A . 1个B . 2个C . 3个D . 4个4.(2014•襄城区模拟)函数y=x 2+bx+c 与y=x 的图象如图,有以下结论:①b 2﹣4c <0;②c ﹣b+1=0;③3b+c+6=0;④当1<x <3时,x 2+(b ﹣1)x+c <0. 其中正确结论的个数为( )A . 1B . 2C . 3D . 4 5.(2014•宜城市模拟)如图是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc <0;②2a ﹣b=0;③4a+2b+c <0;④若(﹣5,y 1),(2,y 2)是抛物线上的两点,则y 1>y 2. 其中说法正确的是( )A.①②B.②③C.②③④D.①②④6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3 7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011•雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤11、(2011•孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(21,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案:CBDCD DCDDD 11、C一.选择题(共9小题)1.(2014•威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a >0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014•仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0 ∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014•南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解解:①∵图象开口向下,∴a<0;故本选项正确;答:②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014•襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014•宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a ﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c <0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c<0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014•莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考点:二次函数图象与系数的关系.分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014•玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A (﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014•乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a ≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.(2014•齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。
专题02 二次函数与系数a 、b 、c 的关系【知识梳理】知识梳理一、二次函数2y ax bx c =++中a 、b 、c 的基本认知b 2-4ac =0知识梳理二、关于a 、b 、c 代数式的取值问题.a 、b 、m知识梳理三、图像共存问题.(一般分为以下三类)(1)通过给出的系数系数信息,判断图像共存(2)通过给出的图像判断系数,再判断图像共存(3)不给出任何系数信息,通过题意判断【例题精讲】例1.函数y=ax2﹣2x+1和y=ax+a(a是常数,且a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.例2.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.例3.函数y=﹣(x﹣m)(x﹣n)(其中m<n)的图象与一次函数y=mx+n的图象可能是()A.B.C.D.例4.反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.例5.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx﹣与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.例6.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(,0)和(m,y),对称轴为直线x=﹣1,下列5个结论:其中正确的结论为.(注:只填写正确结论的序号)①abc>0;②a+2b+4c=0;③2a﹣b>0;④3b+2c>0;⑤a﹣b≥m(am﹣b),例7.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=﹣1,经过点(0,1)有以下结论:①a+b+c<0;②b2﹣4ac>0;③abc>0;④4a﹣2b+c>0;⑤c﹣a>1.其中所有正确结论的序号是.例8.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(﹣1,0),对称轴为直线x=1,与y轴的交点B在(0,2)和(0,3)之间(不包括这两个点),下列结论:①当﹣1<x<3时,y>0;②﹣1<a<﹣.③当m≠1时,a+b>m(am+b);④b2﹣4ac=15a2.其中正确的结论的序号.例9.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣4,0),对称轴为直线x=﹣1,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的解是x1=﹣4,x2=1;④当y>0时,﹣4<x<2,其中正确的结论有.例10.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点(x1,0),(x2,0).则下列说法正确的有:.(填序号)①该二次函数的图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:<m<2;③当m>2,且1≤x≤2时,y的最大值为4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1、x2满足﹣3<x1<2,﹣1<x2<0时,m的取值范围为:<m<11.【专项训练】1.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.2.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.3.一次函数y=acx+b与二次函数y=ax2+bx+c在同一平面直角坐标系中的图象可能是()A.B.C.D.4.在同一平面直角坐标系内,二次函数y=ax2+bx+b(a≠0)与一次函数y=ax+b的图象可能是()A.B.C.D.5.在同一平面直角坐标系中,函数y=ax2+bx+2b与y=﹣ax+b的图象可能是()A.B.C.D.6.如图,一次函数y1=﹣x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b+1)x+c的图象可能为()A.B.C.D.7.函数y=ax2+bx与y=ax+b在同一平面直角坐标系中的图象大致是()A.B.C.D.8.在同一平面直角坐标系中,函数y=ax2﹣bx与y=bx+a的图象可能是()A.B.C.D.9.如图,关于x的二次函数y=x2﹣x+m的图象交x轴的正半轴于A,B两点,交y轴的正半轴于C点,如果x=a时,y<0,那么关于x的一次函数y=(a﹣1)x+m的图象可能是()A.B.C.D.10.在同一平面直角坐标系中,函数y=6ax+b与y=ax2﹣bx的图象可能是()A.B.C.D.11.已知函数y=ax2+bx+c,当y>0时,.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.若b>0时,二次函数y=ax2+bx+a2﹣1的图象如下列四图之一所示,根据图象分析,则a 的值等于()A.﹣1B.1C.D.13.已知函数y1=mx2+n,y2=nx+m(mn≠0),则两个函数在同一坐标系中的图象可能为()A.B.C.D.14.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.15.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A.B.C.D.16.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y =cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.17.反比例函数的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致是()A.B.C.D.18.若ab>0,则一次函数y=ax﹣b与反比例函数y=在同一坐标系中的大致图象是()A.B.C.D.19.二次函数y=ax2+bx+c的图象如图所示,则﹣次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.20.下列图中,反比例函数y=(a≠0)与二次函数y=ax2+ax(a≠0)的大致图象在同一坐标系中是()A.B.C.D.21.二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的序号是.第21题图第22题图22.二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是.23.抛物线y=ax2+bx+c的对称轴是直线x=﹣1,且过点(1,0).顶点位于第二象限,其部分图象如图所示,给出以下判断:①ab>0且c<0;②4a﹣2b+c>0;③8a+c>0;④c=3a﹣3b;⑤直线y=2x+2与抛物线y=ax2+bx+c两个交点的横坐标分别为x1,x2,则x1+x2+x1x2=﹣5.其中结论正确是.24.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①abc<0;②5a﹣b+c<0;③方程ax2+bx+c=0的两根分别为x1=﹣5,x2=1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为﹣4.其中正确的结论有.25.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①ab c>0;②2a+b<0;③a﹣b+c<0;④a+c>0;其中正确的说法有(写出正确说法的序号).26.如图为二次函数y=ax2+bx+c图象,直线y=t(t>0)与抛物线交于A,B两点,A,B两点横坐标分别为m,n.根据函数图象信息有下列结论:①abc>0;②若对于t>0的任意值都有m<﹣1,则a≥1;③m+n=1;④m<﹣1;⑤当t为定值时,若a变大,则线段AB变长.其中,正确的结论有.(写出所有正确结论的番号)27.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A,B两点,与y轴交于点C,OA=OC,对称轴为直线x=1,则下列结论:①abc<0;②a+c=0;③ac+b+1=0;④2+c 是关于x的一元二次方程ax2+bx+c=0的一个根,其中正确的有个.28.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x =2,下列结论:①4a+b=0;②9a+c>3b;③,3a+c>0;④当x>﹣1时,y的值随x值的增大而增大;⑤4a+2b≥am2﹣bm(m为任意实数).其中正确的结论有.(填序号)29.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有以下结论:①abc>0;②a+b+c<0;③4a+b=0;④若点(1,y1)和(3,y2)在该图象上,则y1=y2,其中正确的结论是(填序号).30.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m(am+b).其中正确的结论为.(注:只填写正确结论的序号)。