全息术实验说明书
- 格式:pdf
- 大小:510.64 KB
- 文档页数:15
简介全息的意义是记录物光波的全部信息。
自从20世纪60年代激光出现以来得到了全面的发展和广泛的应用。
它包含全息照相和全息干涉计量两大内容。
全息照相的种类很多,按一定分类法有:同轴全息图、离轴全息图、菲涅耳全息图和傅里叶变换全息图等等。
本实验主要包括两项基本全息照相实验:(一)全息光栅:可以看成基元全息图,当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,采用线性曝光可以得到正弦振幅型全息光栅。
(二)三维全息:通过干涉将漫反射物体的三维信息记录在全息干板上,再通过原光路衍射得到与原物体完全相似的物光波。
本实验的意义是让学生通过这两个实验,掌握全息照相的基本技术,更深刻地认识光的相干条件的物理意义,初步了解全息术的基本理论。
全息光栅光路图全息照相光路图教学重点1.使学生学会全息照相的干涉记录和衍射再现的技术手段。
2.使学生较深刻理解全息照相的本质。
3.使学生了解全息照相的应用。
教学难点1.拍摄高质量的全息图的技术关键。
2.全息图的衍射效率。
自测题1.(1)全息照相通过条纹的对比度记录了物体的强度分布信息。
(2)全息照相通过条纹的深浅记录了物体的强度分布信息。
2.(1)拍摄物体的三维全息图时分束板的透过率为50%(2)拍摄物体的三维全息图时分束板的透过率为5%。
3.在拍摄全息图时所用的扩束镜为(1)长焦距透镜(2)短焦距透镜。
4.如果全息图被打坏了,取一小块再现看到(1)不完整的像(2)较小的像。
思考题1.用细激光束垂直照射拍好的全息光栅,如能在垂直的白墙上看到五个亮点,说明什么问题?2.如果想拍摄一个100线/mm的全息光栅应如何布置光路?3.怎样测量全息光栅的衍射效率?4.为什么拍摄物体的三维全息图要求干板的分辨率在1500线/mm以上?。
实验三 全息技术1948年,英国物理学家伽伯为了提高电子显微镜的分辨能力,发明了一种利用干涉和衍射的照相新技术。
它不是记录物体的平面影像,而是记录物体上各点的完全信息—振幅和位相,因此后来称这种技术为全息技术。
1962年利恩等人利用激光做光源,成功地进行了三维物体光波波前的记录和重建,全息技术进入了迅速发展时期。
因此它在精密计量、无损 检验、信息存贮和处理、遥感技术和生物医学等方面有着广泛的应用。
现在,全息技术已成为一门仍在不断发展的新技术学科,并得到越来越多的应用。
本实验将通过静态光学全息照片的拍摄和再现观察,了解光学全息照相的基本原理、主要特征以及操作要领。
还要了解全息双曝光技术的基本原理,主要特征和操作要领。
一、实验目的1.了解全息照相的基本原理和全息双曝光技术的基本原理。
2.学习静物全息照相的拍摄方法和双曝光技术的拍摄方法。
3.了解再现全息物象的性质和方法。
二、实验原理全息照相是一种二步成像的照相术。
第一步如图3-1所示,采用相干光照明,利用干涉原理,把物体O 在感光材料H 处的光波波前记录下来,H 经显影、定影处理后,这种记录就被保存下来,H 被称为全息图。
第二步如图3-2所示,利用衍射原理,按一定条件用光照射这全息图H ,原先被记录的物体光波的波前,就会重新被激活出来在H 右方继续转播,就像原物O 在原位发出的一样。
但要注意,这时H 左方原物已取走,激活的是光波在H 左方已不存在,所以,我们在H 右方按重建的光波看到的“物”,只不过是与原物完全相同的一个三维像。
1、 物体光波波前的记录—摄制全息图(1) 参考光和物光的干涉。
如图3-1所示。
物光O 和参考光R 是相干的,它们的 电矢量E 的振动,在H 所在的xy 平面上的分布为e 0(x,y)cos [)],(0y x t ωω+和e r (x,y)cos [)],(y x t r ωω+,其中e 0(x,y),e r (x,y)、),(0y x ω、),(y x r ω分别是O 和R 的振幅分布和初位相分布,在固定点是定值。
实验报告勾天杭 pb05210273题目:全息光栅,三维全息目的:初步了解全息术的基本原理,并拍摄物体的三维全息图和制作全息光栅。
原理:预习报告和下面思考题(二)已述,不再重复思考题:一 把拍摄好的全息光栅用一束细光束垂直入射,测出L,x,计算光栅常数d 及两光束夹角φ并与测量值比较6328A λ= ,并测得/2 6.9x cm = 15.1L cm = 28ϕ=︒由光栅方程 sin d m θλ= (此处m=1)及sin θ=求得光栅常数 1.52d m μ= 由12sin (/2)242sin 2d d λϕλϕ-=⇒==︒测量值与计算值有一些偏差.因为我们拍出来的光栅不太好,只能同时看到两个点(+1和-1级不同时出现, 得把干板稍微转一个小角度才能看到+1或-1级光点),零级亮斑的光强也比较弱.所以只测量了1级光点与零级光点的距离,记为x/2.这可能会给光栅常数的计算带来误差,导致算出来的φ与测出来的φ有差距.二 简述全息术的两步成像方法,利用什么原理实现1.波前记录(双光束干涉)双光束干涉原理表明,干涉光强分布包含着干涉光束的振幅信息和位相信息,这就构成波前记录的基础. 从双光束干涉到全息记录,只需在干涉光束中用物光束替换其中的一束光. 全息干板上记录到的就是物光束O 与参考光束R 的双光束干涉条纹. 曝光后的全息干板经显影、定影处理,成为一张记录着干涉条纹的干板,称为全息图或全息照片. 这样以干涉条纹的形式记录了物光相对于参考光的振幅分布和位相分布,振幅分布表现为条纹的衬比度,位相分布表现为条纹的位置、形状和疏密.波前记录称得上是用参考光波对物光波进行的编码记录,在同一张全息干板上,就可以用不同的编码实现对不同波前的记录,这就是波前记录的多重性.考虑通常全息记录的是来自同一光源的相干波的干涉, 物体发出(透射或散射) 的光波即物光波在记录面上的光场分布为00(,)(,)exp[(,)]O x y O x y i x y =Φ,参考光在此平面上的光场分布为0(,)(,)exp[(,)]R R x y R x y i x y =Φ,记录面上某点记录的光强为)cos(2****)*)((0002020R R O R O RO OR RR OO R O R O I Φ-Φ++=+++=++=上述光强分布表明,波前记录面上每一点的光强依赖于物光波的振幅和位相, 即波前记录面上每一个点域均记录着物光波前的全部信息.在线性记录的条件下, tI H H ββββτ+=+=00t 为曝光时间,I 为总光强,β0和β为常数。
全息技术应用实验报告1. 引言全息技术是一种将三维物体的信息以全息图的形式进行记录和重现的技术。
全息图具有真实感强、逼真度高的特点,因此在很多领域有广泛的应用前景。
本实验旨在通过搭建简单的全息投影实验装置,了解全息技术的基本原理和应用。
2. 实验装置和原理实验所需的装置主要包括激光器、分束器、反射镜和全息底片。
激光器用于产生单色、相干光源,而分束器则将激光器发出的光线分为两束。
其中一束光线照射到被记录物体上,这部分光线被物体反射或透过后与另一束激光光线进行干涉。
通过干涉效应形成的光波干涉图案被记录到全息底片上。
在重现时,通过将读取光线照射到全息底片上,以全息底片记录时的光波干涉图案为参考,再次使光波干涉图案重现,形成立体的全息图。
3. 实验步骤3.1 实验准备首先,将实验所需的装置搭建起来。
激光器放置在平稳的支架上,并连接电源。
分束器与激光器通过适配器连接,反射镜放置在适当的位置,确保光线能够正确地照射到全息底片上。
3.2 全息底片的制备将底片片放置在清洁的玻璃片上,然后在底片上制备一个均匀的薄膜。
将激光器发出的光线照射到带有薄膜的底片上,确保底片光泽度良好。
调整光线的角度和位置,使光线能够正确地照射到底片上。
3.3 物体的记录和重现将准备好的物体放置在激光光线的路径上,确保物体与激光光线的干涉效应较强。
打开激光器并调整反射镜,使光线正确地照射到底片上。
如果光线的过程中与物体有干涉,将会记录下物体的全息图。
在重现时,将读取光线照射到底片上,使底片上记录的光波干涉图案重现。
通过调整和控制光线的角度和方向,实现全息图的立体效果。
4. 实验结果和讨论经过实验记录和重现,我们成功地制备并观察到了全息图的立体效果。
记录和重现的全息图具有良好的逼真度和真实感。
在观察全息图时,我们可以从不同的角度和距离来欣赏物体的立体特性。
通过对实验过程和结果的讨论,我们可以得出以下结论:- 全息技术是一种将三维物体信息以全息图的形式进行记录和重现的高级技术。
一、实验目的1. 了解全息技术的基本原理和拍摄方法。
2. 掌握全息技术拍摄过程中的操作技能。
3. 通过实验,观察全息图像的再现效果,加深对全息技术原理的理解。
二、实验原理全息技术是一种记录和再现光波振幅和相位信息的照相技术。
其基本原理是利用光的干涉和衍射现象,将物体光波和参考光波进行干涉,形成干涉条纹,将干涉条纹记录在感光材料上,从而获得全息图像。
当用激光照射全息图像时,由于干涉条纹的存在,光波发生衍射,从而再现出物体的三维立体图像。
三、实验仪器与材料1. 全息实验台2. 半导体激光器3. 分束镜4. 反射镜5. 扩束镜6. 载物台7. 底片夹8. 被摄物体9. 全息干板10. 曝光定时器11. 显影及定影器材四、实验步骤1. 搭建实验装置:将全息实验台、半导体激光器、分束镜、反射镜、扩束镜等仪器连接好,确保光路畅通。
2. 调整光路:根据实验要求,调整光路参数,使物光束和参考光束满足干涉条件。
3. 拍摄全息图像:a. 将被摄物体放置在载物台上,调整物体位置,确保物体与全息干板之间的距离适中。
b. 开启激光器,调节曝光时间,使全息干板充分感光。
c. 拍摄全息图像,记录曝光参数。
4. 显影及定影:将拍摄好的全息干板进行显影和定影处理,以增强图像质量。
5. 观察全息图像:a. 用激光照射全息图像,观察再现效果。
b. 从不同角度观察全息图像,比较立体效果。
五、实验结果与分析1. 通过实验,成功拍摄出全息图像,并观察到再现的三维立体效果。
2. 实验过程中,调整光路参数和曝光时间对全息图像的质量有很大影响。
合适的参数可以使全息图像更加清晰、立体感更强。
3. 全息技术在艺术、防伪、光学测量等领域具有广泛的应用前景。
六、实验总结本次实验使我们对全息技术的基本原理和拍摄方法有了深入的了解,掌握了全息图像的再现效果。
在实验过程中,我们学会了调整光路参数和曝光时间,提高了实验技能。
全息技术在现代社会具有广泛的应用价值,通过本次实验,我们对全息技术有了更加浓厚的兴趣。
像面全息实验报告实验报告实验名称:像面全息实验时间:2021年8月15日实验地点:XXX实验室实验人员:XXX、XXX、XXX一、实验目的1.了解全息图的特点及原理2.学习如何制作像面全息二、实验步骤1.准备材料:Fotoplast PTL 780、Fotoplast PTL 818、全息板、激光器(633nm He Ne Laser)、全息摄像机、像面全息图样2.制作像面全息片:将Fotoplast PTL 780和Fotoplast PTL 818按照一定比例混合均匀后倒在净化后的全息玻璃板上,平整后用全息摄像机在光线稳定的环境下拍摄全息图样,制作像面全息片。
3.投射像面全息:将像面全息放在离激光器一定距离的地方,开启激光器,将激光束照射在像面全息上。
在目视距离内照射出全息图。
三、实验结果实验成功制作出了像面全息片,并成功投射出了全息图,实验效果较好。
四、实验分析全息图是指通过光学方法将物体影像以全息记录的方式储存下来,在特定的照明条件和观察条件下,能够再现出原物的全貌和立体感的技术。
像面全息是全息图的一种。
制作像面全息的主要材料是光敏胶,可以用于记录并再现实物的三维形态和表面形貌。
实验结果表明,在一定的制作条件下,可以成功制作出高质量的像面全息片。
五、实验总结通过本次实验,我们学习并了解了全息图的特点和制作原理,掌握了制作像面全息的方法,实践中也取得了不错的效果。
全息技术具有广泛的应用场景,商业、安防、医疗等领域都有着重要的应用,我们应该继续学习和探索这一领域。
第1篇一、实验目的1. 了解激光全息的基本原理和操作步骤。
2. 通过实验掌握激光全息的拍摄方法。
3. 观察并分析全息图像的再现效果。
二、实验原理激光全息技术是一种利用光的干涉和衍射原理,记录和再现物体光波波前信息的技术。
实验中,我们利用激光器发出的相干光,将其分为两束:一束照射到物体上,形成物光;另一束直接照射到全息干板上,形成参考光。
物光与参考光在物体表面发生干涉,形成干涉条纹,这些条纹记录在干板上。
当用激光照射干板上的干涉条纹时,就可以再现出物体的三维立体图像。
三、实验仪器与材料1. 激光器:用于产生相干光束。
2. 全息干板:用于记录干涉条纹。
3. 物体:用于产生物光。
4. 反射镜:用于改变光路。
5. 扩束镜:用于扩大激光束。
6. 分束器:用于将激光束分为物光和参考光。
7. 显影液、定影液:用于冲洗全息干板。
8. 暗房设备:用于冲洗干板。
四、实验步骤1. 准备实验器材,确保激光器、全息干板、物体、反射镜、扩束镜、分束器等设备正常工作。
2. 将激光器发出的激光束通过扩束镜,使其成为较宽的激光束。
3. 将分束器放置在激光束的路径上,使激光束分为物光和参考光。
4. 将物体放置在分束器与全息干板之间,使物光照射到物体上,形成物光束。
5. 将参考光束直接照射到全息干板上,形成参考光束。
6. 调整激光器、分束器、反射镜等设备,使物光和参考光在物体表面发生干涉。
7. 打开激光器,记录干涉条纹在干板上的形成过程。
8. 关闭激光器,取出干板。
9. 将干板放入显影液中,进行显影处理。
10. 将显影后的干板放入定影液中,进行定影处理。
11. 取出定影后的干板,观察全息图像的再现效果。
五、实验结果与分析1. 干板上的干涉条纹清晰可见,说明干涉现象发生。
2. 通过激光照射干板,可以观察到物体的三维立体图像,说明全息图像再现成功。
六、实验讨论1. 实验过程中,调整激光器、分束器、反射镜等设备时,要注意使物光和参考光在物体表面发生干涉,以保证干涉条纹的清晰度。
全息干涉技术实验报告全息干涉技术实验报告概述:全息干涉技术是一种利用光的干涉原理来记录和再现物体三维信息的先进技术。
本实验旨在通过实际操作,深入了解全息干涉技术的原理、应用和局限性。
一、实验仪器和材料:1. 全息干涉实验装置:包括激光器、分束器、反射镜、全息板等。
2. 实验样品:选择适合的物体,如硬币、玻璃球等。
二、实验步骤:1. 搭建全息干涉实验装置:按照实验指导书上的示意图,将激光器、分束器、反射镜等组装起来。
2. 准备全息板:将全息板放置在适当的位置上,确保其与激光器的光线垂直。
3. 调整实验装置:通过调整反射镜的位置和角度,使得激光器的光线能够正确地照射到全息板上。
4. 拍摄全息图:将实验样品放置在全息板的一侧,打开激光器,让激光光束照射到样品上,然后将激光光束经过样品的散射光与参考光束进行干涉,形成全息图。
5. 处理全息图:将全息图进行显影、固定等处理,使其能够稳定地保存下来。
6. 再现全息图:将处理好的全息图放置在实验装置上,通过照射激光光束,将全息图中的三维信息再现出来。
三、实验结果与分析:通过实验,我们成功地制作了全息图,并且实现了对全息图中三维信息的再现。
在再现的过程中,我们发现全息图所呈现的物体具有立体感,可以从不同角度观察到物体的不同部分,这正是全息干涉技术的特点所在。
然而,全息干涉技术也存在一些局限性。
首先,全息图的制作过程相对复杂,需要精确的操作和调整,对实验人员的要求较高。
其次,全息图的再现需要较为强大的激光器,这对于实际应用来说可能会增加成本和难度。
此外,全息图的再现效果也会受到环境光的干扰,需要在较为理想的实验条件下进行。
四、应用前景:尽管全息干涉技术存在一些局限性,但其在科学研究、工程设计等领域具有广阔的应用前景。
例如,全息干涉技术可以用于三维成像、光学计算、光学存储等方面。
在医学领域,全息干涉技术可以应用于显微镜成像、医学诊断等方面。
此外,全息干涉技术还可以用于安全防伪、艺术创作等领域。
全息照相实验报告实验目的:通过全息照相技术将三维物体的光场信息记录在全息平台上,使得观察者在还原全息图时能够看到真实的三维效果。
实验原理:全息照相是指通过记录物体光的振幅和相位信息,再通过照相底片或全息平台的再现特性,来恢复物体的三维形态和光的全息信息的一种照相技术。
实验步骤:1.准备全息平台:将全息平台放在黑暗室的旋转台上,保证平台水平。
2.准备光源:将连续光源放置在全息平台上方,使光源位置稳定。
3.准备对象:将要拍摄的物体放置在全息平台近处,调整位置和角度使其最清晰。
4.调整全息平台:调整全息平台高度和位置,使得物体完全受到光照。
5.调整照相机:将照相机对准全息平台上一侧的观察窗口,通过取景器观察场景并调整焦距。
6.曝光:在不移动物体和平台的情况下,按下快门按钮进行曝光。
7.显影:将曝光后的照相底片按照制片商指示进行显影。
8.镭射照明:在全息平台上方启动一束透明的镭射光源照明全息平台。
9.观察全息图:在黑暗室中观察全息图的立体效果。
实验结果:通过以上实验方法,成功的制作出了一张全息照相图。
在观察全息图时,我们可以清晰的看到物体的形态,并且可以看到背景和物体的距离感。
当改变观察的角度时,全息图中的物体也会相应移动,达到了真实的三维效果。
实验结论:全息照相技术通过记录物体的全息信息,使得观察者在观察全息图时能够真实的感受到物体的三维效果。
全息图的制作需要稳定的光源和合适的拍摄角度,同时制作过程中也要注意保持物体和全息平台的静止,以保证全息图质量。
需要注意的是,在观察全息图时要选择适当的照明光源,不要使用非透明的光源,以免阻碍光的通过,影响全息图的立体效果。
此外,全息照相技术还可以应用于三维成像领域,用于制作全息影像、全息电视等。