【附加15套高考模拟试卷】安徽省2020届百校联盟TOP20四月联考(全国I卷)数学(文)试卷含答案
- 格式:doc
- 大小:7.81 MB
- 文档页数:157
2020年高考(文科)数学(4月份)模拟试卷(全国Ⅰ卷)一、选择题(共12小题).1.已知集合A={x∈Z|x2≤1},B={x|x•ln(x+3)=0},则A∪B=()A.{﹣1,0,1}B.{﹣2,﹣1,1}C.{﹣2,0,1}D.{﹣2,﹣1,0,1}2.设是复数z的共轭复数,若•i=1+i,则z•=()A.B.2C.1D.03.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x sin x B.y=xlnxC.D.4.数列{a n}是等比数列,S n是其前n项和,a n>0,a2+a3=4,a3+3a4=2,则S3=()A.B.12C.D.135.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.2C.D.6.已知函数f(x)=2cos2x﹣cos(2x﹣),则下列结论正确的个数是()①函数f(x)的最小正周期为π;②函数f(x)在区间[0,]上单调递增;③函数f(x)在[0,]上的最大值为2;④函数f(x)的图象关于直线x=对称.A.1B.2C.3D.47.如图,在△ABC中,AB=2,AC=3,∠BAC=,M、N分别为BC、AM的中点,则=A.﹣2B.﹣C.﹣D.8.改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是()A.B.C.D.9.已知函数在(,+∞)上为减函数,则实数a的取值范围是()A.(﹣∞,1]B.[﹣,1]C.(﹣,1]D.(﹣,+∞)10.若x,y满足约束条件,则z=|x﹣y+1|的最大值为()A.2B.C.D.311.如图所示,在三棱锥P﹣ABC中,AB⊥BC,AB=3,BC=2,点P在平面ABC内的投影D恰好落在AB上,且AD=1,PD=2,则三棱锥P﹣ABC外接球的表面积为()A.9πB.10πC.12πD.14π12.已知函数f(x)=(x>0),若a=>0,则f(x)的取值范围是()A.[﹣﹣1,﹣1)B.(﹣2,﹣1)C.[﹣2,﹣1)D.(﹣,0)13.从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为.14.已知函数f(x)=x3﹣5x+a,直线2x+y+b=0与函数f(x)的图象相切,a,b为正实数,则a+b的值为.15.已知实数x,y满足y≥2x>0,则的最小值为.16.F1、F2是双曲线C:的左、右焦点.过F2作直线l⊥x轴,交双曲线C于M、N两点,若∠MF1N为锐角,则双曲线C的离心率e的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A、B、C所对的边分别是a、b、c,a2=b2+bc,且sin C+tan B cos C =1.(1)求角A;(2)b=2,P为△ABC所在平面内一点,且满足=0,求BP的最小值,并求BP 取得最小值时△APC的面积S.18.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产品在不同电商平台的销售情况,统计了A、B两个电商平台各十个网络销售店铺的销售数据:A电商平64718170796982737560台B电商平60809777968776839496台(1)作出A、B两个电商平台销售数据的茎叶图,根据茎叶图判断哪个电商平台的销售更好,并说明理由;(2)填写下面关于店铺个数的2×2列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;销售量>80销售量≤80总计A电商平台B电商平台总计(3)生产商要从这20个网络销售店铺销售量前五名的店铺中,随机抽取三个店铺进行销售返利,则其中恰好有两个店铺的销售量在95以上的概率是多少?附:,n=a+b+c+d.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.82819.如图①,平行四边形ABCD中,AB=4,AD=2,∠ABC=,E为CD中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到如图②所示的四棱锥P﹣ABCE.(1)求证:平面PAE⊥平面PBE;(2)求点B到平面PEC的距离.20.动圆P过定点A(2,0),且在y轴上截得的弦GH的长为4.(1)若动圆圆心P的轨迹为曲线C,求曲线C的方程;(2)在曲线C的对称轴上是否存在点Q,使过点Q的直线l'与曲线C的交点S、T满足为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由.21.已知函数f(x)=ax+,g(x)=﹣1.(1)讨论函数f(x)在(0,+∞)上的单调性;(2)若对任意的x∈(0,+∞),f(x)<g(x)恒成立,求实数a的取值范围.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(φ+)+=0,P为直线l上的任意一点(1)Q为曲线C上任意一点,求P、Q两点间的最小距离;.(2)过点P作曲线C的两条切线,切点为A、B,曲线C的对称中心为点C,求四边形PACB面积的最小值.[选修4-5:不等式选讲]23.已知函数.(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,设a的最大值为s,当正数m,n满足=s时,求3m+4n的最小值.参考答案一、选择题:共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈Z|x2≤1},B={x|x•ln(x+3)=0},则A∪B=()A.{﹣1,0,1}B.{﹣2,﹣1,1}C.{﹣2,0,1}D.{﹣2,﹣1,0,1}【分析】可以求出集合A,B,然后进行并集的运算即可.解:∵A={﹣1,0,1},B={0,﹣2},∴A∪B={﹣2,﹣1,0,1}.故选:D.2.设是复数z的共轭复数,若•i=1+i,则z•=()A.B.2C.1D.0【分析】把已知等式变形,再由复数代数形式的乘除运算化简,结合求解.解:∵•i=1+i,∴,则.故选:B.3.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x sin x B.y=xlnxC.D.【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.解:根据题意,依次分析选项:对于A,y=x sin x,其定义域为R,有f(﹣x)=x sin x=f(x),即函数f(x)为偶函数;对于B,y=xlnx,其定义域为(0,+∞),既不是奇函数,也不是偶函数;对于C,y=x•,其定义域为R,有f(﹣x)=(﹣x)•=x•=f (x),即函数f(x)为偶函数;对于D,y=xln(﹣x),其定义域为R,有f(﹣x)=(﹣x)ln(+x)=xln(﹣x)=f(x),即函数f(x)为偶函数;故选:B.4.数列{a n}是等比数列,S n是其前n项和,a n>0,a2+a3=4,a3+3a4=2,则S3=()A.B.12C.D.13【分析】利用等比数列通项公式列出方程组,求出,由此能求出S3的值.解:∵数列{a n}是等比数列,S n是其前n项和,a n>0,a2+a3=4,a3+3a4=2,∴,解得,∴S3==13.故选:D.5.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.2C.D.【分析】根据三视图可知几何体为四棱锥,画出直观图,利用体积公式求解.解:根据三视图,可知几何体为四棱锥P﹣ABCD,体积V=.故选:C.6.已知函数f(x)=2cos2x﹣cos(2x﹣),则下列结论正确的个数是()①函数f(x)的最小正周期为π;②函数f(x)在区间[0,]上单调递增;③函数f(x)在[0,]上的最大值为2;④函数f(x)的图象关于直线x=对称.A.1B.2C.3D.4【分析】先根据函数化简得f(x)=,根据,可判断①;先求出所以单调递增区间,然后可以判断②;可求f(x)在在[0,]上的最大值,可以判断③;可求出f(x)的所有对称轴,可判断④.解:f(x)=2cos2x﹣cos(2x﹣)=cos2x+1﹣﹣==,∴,①对;由2kπ﹣π≤2x+≤2kπ,得x∈[kπ﹣,kπ﹣],k∈Z,所以函数f(x)单调递增区间为[kπ﹣,kπ﹣],②错;∵x∈[0,]时,2x+∈[,],cos(2x+)∈[﹣1,],函数f(x)在[0,]上的最大值为,③错,∵2x+=kπ,x=,k∈Z,④对,故选:B.7.如图,在△ABC中,AB=2,AC=3,∠BAC=,M、N分别为BC、AM的中点,则=()A.﹣2B.﹣C.﹣D.【分析】根据已知条件把所求问题转化,即可求得结论.解:因为在△ABC中,AB=2,AC=3,∠BAC=,M、N分别为BC、AM的中点,则=()•=(﹣+)=[﹣+()]=(﹣)==×22﹣×=﹣.故选:C.8.改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是()A.B.C.D.【分析】由满足条件的时间段为7:50~8:00,8:20~8:30共20分钟,结合与长度有关的几何概率公式可求.解:由题意可知,满足条件的时间段为7:50~8:00,8:20~8:30共20分钟,由几何概型知所求的概率P=.故选:C.9.已知函数在(,+∞)上为减函数,则实数a的取值范围是()A.(﹣∞,1]B.[﹣,1]C.(﹣,1]D.(﹣,+∞)【分析】由复合函数的单调性法则可知y=x2﹣ax+a在上为增函数,由对数函数的真数大于0可知,y>0恒成立,则实数a应满足,解不等式组即可得到答案.解:∵在(0,+∞)上为减函数,∴y=x2﹣ax+a在上为增函数,且y>0恒成立,∴,解得.故选:B.10.若x,y满足约束条件,则z=|x﹣y+1|的最大值为()A.2B.C.D.3【分析】作出不等式组对应的平面区域,令t=x﹣y+1,利用目标函数t的几何意义,结合图象得到结论.解:作出不等式组对应的平面区域如图:令t=x﹣y+1,得y=x+1﹣t表示,斜率为1纵截距为1﹣t的一组平行直线,⇒C(,﹣);平移直线y=x+1﹣t,当直线y=x+1﹣t经过点C(,﹣)时,直线y=x+1﹣t的截距最小,此时t max=﹣(﹣)+1=,当直线y=x+1﹣t与AB重合时,直线y=x+1﹣t的截距最大,A(0,)此时t min=0﹣+1=,∴z=|x﹣y+1|的取值范围是:[,].故z=|x﹣y+1|的最大值为.故选:C.11.如图所示,在三棱锥P﹣ABC中,AB⊥BC,AB=3,BC=2,点P在平面ABC内的投影D恰好落在AB上,且AD=1,PD=2,则三棱锥P﹣ABC外接球的表面积为()A.9πB.10πC.12πD.14π【分析】结合已知构造直三棱柱PAB﹣MNC,则直三棱柱PAB﹣MNC的外接球即为所求,球心O为直直三棱柱底面三角形外接圆圆心连心线连心的中点,结合球的性质及勾股定理可求.解:由题意可知,PD⊥平面ABC,所以平面PAB⊥平面ABC,又因为AB⊥BC,所以BC⊥平面PAB,构造直三棱柱PAB﹣MNC,则直三棱柱PAB﹣MNC的外接球即为所求,球心O为直直三棱柱底面三角形外接圆圆心连心线连心的中点,△PAB中,由正弦定理可得,r==,故R==,故S=4=14π故选:D.12.已知函数f(x)=(x>0),若a=>0,则f(x)的取值范围是()A.[﹣﹣1,﹣1)B.(﹣2,﹣1)C.[﹣2,﹣1)D.(﹣,0)【分析】依题意,a2+x2=1,采用三角换元设a=cosα,x=sinα,可得,再令,可得在上为减函数,由此求出f(x)的取值范围.解:由得,a2+x2=1,不妨设a=cosα,x=sinα,其中,则,令,,∴在上为增函数,∴在上为减函数,∴.故选:C.二、填空题:共4小题,每小题5分.13.从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为.【分析】根据在系统抽样中,每个个体被抽到的概率是相等的,得出结论.解:从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为,故答案为:.14.已知函数f(x)=x3﹣5x+a,直线2x+y+b=0与函数f(x)的图象相切,a,b为正实数,则a+b的值为2.【分析】先对f(x)求导,根据条件设切点的坐标为(x0,y0),然后由f'(x0)=﹣2求出切点坐标,进一步求出a+b的值.解:由f(x)=x3﹣5x+a,得f'(x)=3x2﹣5,∵直线2x+y+b=0与函数f(x)的图象相切,设切点的坐标为(x0,y0),则,∴x0=1或x0=﹣1,∴y0=a﹣4或y0=a+4,即切点坐标为(1,a﹣4)或(﹣1,a+4),代入直线中,得a+b=2或a+b=﹣2,∵a,b为正实数,∴a+b=2.故答案为:2.15.已知实数x,y满足y≥2x>0,则的最小值为.【分析】先令t=,可转化成f(t)=t+,t≥2,因为不满足不等式取等号时的条件,使用单调性求最值.解:设t=,由题意知t≥2,则=t+,令f(t)=t+,t≥2,∵f'(x)=1﹣>0,∴f(t)在t≥2上单调递增,∴f(t)≥f(2)=,故答案为:.16.F1、F2是双曲线C:的左、右焦点.过F2作直线l⊥x轴,交双曲线C于M、N两点,若∠MF1N为锐角,则双曲线C的离心率e的取值范围是(1,1+).【分析】求出交点M,N的坐标,只要∠MF1F2<45°即可,利用斜率公式进行求解即可.解:解:当x=c时,,可得y=故M(c,)如图只要∠MF1F2<45°即可,则tan∠MF1F2<tan45°=1,即,即b2<2ac,则c2﹣a2<2ac,即c2﹣2ac﹣a2<0,则e2﹣2e﹣1<0,解得:1﹣又e>1,∴故答案为:(1,1+)三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A、B、C所对的边分别是a、b、c,a2=b2+bc,且sin C+tan B cos C =1.(1)求角A;(2)b=2,P为△ABC所在平面内一点,且满足=0,求BP的最小值,并求BP 取得最小值时△APC的面积S.【分析】(1)先根据已知条件得到b+c=2a cos B;再结合正弦定理得到A=2B,结合sin C+tan B cos C=1即可求得结论;(2)根据数量积为0推得点P在以CA为直径的圆上,进而得到当点P在BO上时,BP 取得最小值,求出最小值以及△APC的面积S即可.解:(1)因为a2=b2+bc⇒a2+c2﹣b2=c2+bc;∴=;∴b+c=2a cos B;由正弦定理得:sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B⇒sin B=sin(A﹣B);因为都是三角形内角;∴A=2B;又由sin C+tan B cos C=1.得sin(B+C)=cos B;∴sin A=cos B;∴sin B=.∴B=,A=.(2)由(1)可知C=.∴△ABC为直角三角形.又因为=0⇒PA⊥PC;所以点P在以CA为直径的圆上,如图:∵b=2,所以:BC=2,AB=4,设O为AC的中点,连接BO,则当点P在BO上时,BP取得最小值,此时BP=BO﹣PO =﹣1=﹣1.设∠OCP=α,则∠COP=π﹣2α,∴sinα==PA;cosα==PC;∴S =PA•PC=2sinαcosα=sin2α;在直角三角形BOC中,sin∠COB=sin(π﹣2α)=sin2α===.∴当BP 取得最小值时(﹣1)时,△APC的面积S 为:.18.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产品在不同电商平台的销售情况,统计了A、B两个电商平台各十个网络销售店铺的销售数据:A电商平64718170796982737560台B电商平60809777968776839496台(1)作出A、B两个电商平台销售数据的茎叶图,根据茎叶图判断哪个电商平台的销售更好,并说明理由;(2)填写下面关于店铺个数的2×2列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;销售量>80销售量≤80总计A电商平台B电商平台总计(3)生产商要从这20个网络销售店铺销售量前五名的店铺中,随机抽取三个店铺进行销售返利,则其中恰好有两个店铺的销售量在95以上的概率是多少?附:,n=a+b+c+d.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【分析】(1)根据题意画茎叶图,(2)根据数据填表,代公式,比较,判断,(3)根据题意找出店铺销售量前五名,然后求事件,求概率.解:(1)A、B两个电商平台销售数据的茎叶图如图,由茎叶图可知B电商平台的销售更好,因为B整体数据集中比A高,(2)填表如下;销售量>80销售量≤80总计A电商平台2810B电商平台6410总计81220≈3.333<3.841,没有95%的把握认为销售量与电商平台有关.(3)从这20个网络销售店铺销售量前五名为97,96,96,94,87.分别设为A,B,C,D,E,随机抽取三个店铺共有10种可能,如下:(A,B,C),(A,B,D),(A,B,E),(A,C,D),(A,C,E),(A,D,E),(B,C,D),(B,C,E),(B,D,E),(C,D,E),恰好有两个店铺的销售量在95以上有6种,恰好有两个店铺的销售量在95以上的概率为.19.如图①,平行四边形ABCD中,AB=4,AD=2,∠ABC=,E为CD中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到如图②所示的四棱锥P﹣ABCE.(1)求证:平面PAE⊥平面PBE;(2)求点B到平面PEC的距离.【分析】(1)求解三角形可得AE=2,BE=2,结合AB=4,得到BE⊥AE,再由平面APE⊥平面ABCE,结合平面与平面垂直的性质可得BE⊥平面PAE,进一步得到平面PAE⊥平面PBE;(2)设O为AE的中点,连接PO,CO,求得PO=,进一步求解三角形可得OC、PC的值,求解三角形PEC与BEC的面积,利用等体积法可求得点B到平面PEC的距离.【解答】(1)证明:在图①中连接BE,由平面几何知识,求得AE=2,BE=2,又∵AB=4,∴BE⊥AE,在图②中,∵平面APE⊥平面ABCE,且平面APE∩平面ABCE=AE,∴BE⊥平面PAE,又∵BE⊂平面PBE,∴平面PAE⊥平面PBE;(2)解:设O为AE的中点,连接PO,CO,由已知可得△PAE为等边三角形,∴PO=.∵平面PAE⊥平面ABCE,∴PO⊥平面ABCE,得PO⊥CO.在△OEC中,OE=1,EC=2,.由余弦定理得OC=.∴PC=.在△PEC中,PE=EC=2,PC=.∴,又∵.设点B到平面PEC的距离为d,由V P﹣BCE=V B﹣PCE,得,解得d=.∴点B到平面PEC的距离为.20.动圆P过定点A(2,0),且在y轴上截得的弦GH的长为4.(1)若动圆圆心P的轨迹为曲线C,求曲线C的方程;(2)在曲线C的对称轴上是否存在点Q,使过点Q的直线l'与曲线C的交点S、T满足为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由.【分析】(1)设P(x,y),过P作PB⊥GH,交GH于点B,则B为GH的中点,GB=GH=2,PG=,PA==,整理可得y2=4x(x≠0);(2)假设存在Q(a,0)满足题意,设S(x1,y1),T(x2,y2),设其方程为x=t1y+a (t1≠0),联立,利用根与系数关系表示出QS2,QT2,进而表示出即可.解:(1)设P(x,y),由题意知:PA=PG,当P点不在y轴上时,过P作PB⊥GH,交GH于点B,则B为GH的中点,∴GB=GH=2,∴PG=,又∵PA==,整理可得y2=4x(x≠0);当点P在y轴上时,易知P点与O点重合,P(0,0)也满足y2=4x,∴曲线C的方程为y2=4x,(2)假设存在Q(a,0)满足题意,设S(x1,y1),T(x2,y2),根据题意可知直线l′的斜率必不为0,设其方程为x=t1y+a(t1≠0),联立,整理可得y2﹣4t1y﹣4a=0,∴y1+y2=﹣4t1,y1y2=﹣4a,∴x1+x2=t1(y1+y2)+2a=4t12+2ax1x2==a2,∵QS2=(x1﹣a)2+=(x1﹣a)2+4x1=x12+(4﹣2a)x1+a2,QT2=(x2﹣a)2+=(x2﹣a)2+4x2=x22+(4﹣2a)x2+a2,∴QS2+QT2=x12+(4﹣2a)x1+a2+x22+(4﹣2a)x2+a2=(x1+x2)2+(4﹣2a)(x1+x2)﹣2x1x2+2a2=(x1+x2)(x1+x2+4﹣2a)﹣2x1x2+2a2=(4+2a)(4++4),QS2•QT2=16a2(+1)2,则==,当a=2时,上式=与t1无关为定值,所以存在Q(2,0)使过点Q的直线与曲线交于点S、T满足为定值.21.已知函数f(x)=ax+,g(x)=﹣1.(1)讨论函数f(x)在(0,+∞)上的单调性;(2)若对任意的x∈(0,+∞),f(x)<g(x)恒成立,求实数a的取值范围.【分析】(1)对f(x)求导得,,然后分a≤0和a>0两个类别,讨论f'(x)的正负,即可得f(x)的单调性;(2)构造函数h(x)=e x﹣ax2﹣x﹣1(x>0),求出h'(x),令H(x)=h'(x)=e x﹣2ax﹣1,再求H'(x)=e x﹣2a,当时,易证得h(x)在(0,+∞)上为增函数,h(x)>h(0)=0成立,即f(x)<g(x)成立;当时,由H'(x)=e x ﹣2a=0,解得x=ln2a,可得函数H(x)的单调性即h'(x)的单调性,于是h'(x)≥h'(ln2a)≥2a﹣1﹣2aln2a,再令t(a)=2a﹣1﹣2aln2a(),求导可知t(a)在上为减函数,t(a)<,即h'(ln2a)<0,最后结合隐零点的思维可证得当时,对x∈(0,+∞),f(x)<g(x)不恒成立,因此得解.解:(1)∵f(x)=ax+,∴,当a≤0时,f'(x)<0,函数f(x)在(0,+∞)上单调递减;当a>0时,由f'(x)=0,得(舍负),当时,f'(x)<0,函数f(x)单调递减,当时,f'(x)>0,函数f(x)单调递增.(2)由f(x)<g(x),得e x﹣ax2﹣x﹣1>0,设h(x)=e x﹣ax2﹣x﹣1(x>0),则h'(x)=e x﹣2ax﹣1,令H(x)=e x﹣2ax﹣1,则H'(x)=e x﹣2a,当时,∵x∈(0,+∞),∴H'(x)>0,H(x)为增函数,∴H(x)=h'(x)>h'(0)=0,∴h(x)在(0,+∞)上为增函数,∴h(x)>h(0)=0成立,即f(x)<g(x)成立.当时,由H'(x)=e x﹣2a=0,解得x=ln2a,x∈(0,ln2a)时,H'(x)<0,H(x)为减函数,x∈(ln2a,+∞)时,H'(x)>0,H(x)为增函数,∴h'(x)≥h'(ln2a)≥2a﹣1﹣2aln2a,设t(a)=2a﹣1﹣2aln2a(),则t'(a)=﹣2ln2a<0,∴t(a)在上为减函数,∴t(a)<,即h'(ln2a)<0∴∃x0∈(0,+∞),当x∈(0,x0)时,h'(x)<0,h(x)为减函数,当x∈(x0,+∞)时,h'(x)>0,h(x)为增函数,又h(0)=0,∴当x∈(0,x0)时,h(x)<0,∴当时,对x∈(0,+∞),f(x)<g(x)不恒成立,综上所述,.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(φ+)+=0,P为直线l上的任意一点(1)Q为曲线C上任意一点,求P、Q两点间的最小距离;.(2)过点P作曲线C的两条切线,切点为A、B,曲线C的对称中心为点C,求四边形PACB面积的最小值.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间的进行转换.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为(x ﹣1)2+(y﹣1)2=1.直线l的极坐标方程为ρsin(φ+)+=0,转换为直角坐标方程为x+y+2=0.所以圆心(1,1)到直线x+y+2=0的距离d=,所以最小距离.(2)由于圆心到直线的最小距离d=2,所以构成的切线长为,所以四边形PACB面积的最小值为S=.[选修4-5:不等式选讲]23.已知函数.(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,设a的最大值为s,当正数m,n满足=s时,求3m+4n的最小值.【分析】(1)a=4时,得出f(x)需满足|x+2|+|x﹣1|﹣4≥0,然后讨论x的取值,去掉绝对值号求出x的范围即可得出f(x)的定义域;(2)根据题意可知a≤|x+2|+|x﹣1|对x∈R恒成立,从而可得出a≤3,进而得出s=3,从而得出,然后即可得出,然后根据基本不等式即可得出3m+4n的最小值.解:(1)a=4时,|x+2|+|x﹣1|﹣4≥0,当x<﹣2时,﹣x﹣2﹣x+1﹣4≥0,解得;当﹣2≤x≤1时,x+2﹣x+1﹣4≥0,解得x∈∅;当x>1时,x+2+x﹣1﹣4≥0,解得,∴函数f(x)的定义域为{x|或x};(2)∵函数f(x)的定义域为R,∴|x+2|+|x﹣1|﹣a≥0对任意的x∈R恒成立,∴a≤|x+2|+|x﹣1|,又|x+2|+|x﹣1|≥|x+2﹣x+1|=3,∴a≤3,∴s=3,∴,且m>0,n>0,∴3m+4n=(2m+n)+(m+3n)==,当且仅当时取等号,∴3m+4n的最小值为.。
百校联盟2020届普通高中教育教学质量监测考试 全国I 卷 理科数学注意事项:1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3.全部答案写在答题卡上,写在本试卷上无效。
4.本试卷满分150分,测试时间120分钟。
5.考试范围:高考全部内容。
第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足z -1+i =2i +1,则|z|=A.5B.2C.3D.32.已知集合A ={2a -1,a 2,0},B ={1-a ,a -5,9},且A ∩B ={9},则A.A ={9,25,0}B.A ={5,9,0}C.A ={-7,9,0}D.A ∪B ={-7,9,0,25,-4}3.已知向量a =(x 2-2x ,1),b =(1,-3),则“-1<x<3”是“a ,b 的夹角为钝角”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.将函数y =2sin(2x +4π)的图象向右平移4π个单位长度,所得函数 A.在区间(-38π,8π)上单调递增 B.在区间(-58π,-8π)上单调递减 C.以x =8π为一条对称轴 D.以(38π,0)为一个对称中心 5.已知一个几何体的三视图如图所示,则此几何体的体积为A.83πB.8πC.163πD.12π 6.改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话。
小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是A.13B.12C.25D.347.已知函数()()122log f x x ax a =-+在(12,+∞)上为减函数,则实数a 的取值范围是 A.(-∞,1] B.[-12,1] C.(-12,1] D.(-12,+∞) 8.在平面直角坐标系xOy 中,A 、B 为函数y =33|x|图象上的两点,若线段AB 的中点M 恰好落在曲线x 2-3y 2+3=0上,则△OAB 的面积为A.2B.3C.32D.339.一只蚂蚁从正四面体A -BCD 的顶点A 点出发,沿着正四面体A -BCD 的棱爬行,每秒爬一条棱,每次爬行的方向是随机的,则第4秒时蚂蚁在A 点的概率为A.2027B.79C.727D.2910.在梯形ABCD 中,AB//CD ,AB =2CD ,BC 3,则∠ADB 的最大值为A.4πB.3πC.2π D.23π 11.我国古代的数学著作《九章算术·商功》中,将底面是直角三角形的直三棱柱称为“堑堵”。
百校联盟2020届普通高中教育教学质量监测考试全国I卷语文注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
2.全部答案写在答题卡上,写在本试卷上无效。
3.本试卷满分150分,测试时间150分钟。
4.考试范围:高考全部内容。
一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
随着电视、网络等传播媒体的普及,作为民族文化瑰宝的诗词也得到了新的应用及传播。
央视《经典咏流传》《中国诗词大会》等文化类节目,将传统文化与当下生活紧密联系起来,受到大众喜爱。
《经典咏流传》以传统诗词名篇配乐为主,新歌词创作为辅,体现出“新旧结合”“新旧共生”的文化生态,不仅提升了传统诗词的传播度,还催生了新的诗词体式的出现,这对于诗词当代化具有深刻意义。
这些节目降低了诗词欣赏的门槛,使之赢得了更为广泛的受众。
节目中,作为内容的诗词与多种传播形式呈现出互动关系,体现出以下两大创新点:首先,诗歌与音乐再次紧密结合,呈现出“万口相传”的盛况。
自古以来,诗词的创作与传播都与音乐密不可分。
《诗经》《乐府》中的大部分篇章都来自于民间歌谣。
经过文人的改造,民间歌谣的艺术性得以提升,从而获得更广泛传播并经典化的可能。
可以说,中华民族的诗与乐,从一开始就是相互配合、相互成就的。
中华诗词千古不断的生命力,需要新声乐章来配合,使之为不同年龄、不同地域的观众喜爱。
《经典咏流传》由经典传唱人用“新声”重新演唱旧词,使得流行元素与传统文化彼此融合、彼此促进。
其次,明星与素人共同登台,展示出诗词广泛的群众基础以及蓬勃的生命力。
经典传唱人来自不同的领域,既有老一辈歌唱家、青春偶像等专业人士,也有外籍友人、大学教授、乡村教师、残障人士等业余人士。
这些传唱人将各自独特的人生际遇及生命体验融入了诗词中。
“新旧结合”还催生出新的诗歌体式。
如青少年中影响力很大的“古风”体。
此类歌曲声调唯美,注重旋律,多用民族乐器。
2020届安徽省江南十校联考高考英语4月模拟试题第一部分听力(共两节,满分7.5分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话.每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项.听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题.每段对话仅读一遍.例:How much is the shirt?A.£19. 15. B.£9.18. C.£9.15.答案是C.1.(1.5分)Where does the conversation probably take place?A.In a telephone booth.B.In a clothes shop.C.In a post office.2.(1.5分)Why does the woman dislike the movie?A.It's too long.B.It's a foreign movie.C.It's too violent.3.(1.5分)How does the man learn about animals?A.By surfing the Internet.B.By reading a few books.C.By watching a TV program.4.(1.5分)What is the probable relationship between the speakers?A.Husband and wife.B.Salesman and buyer.C.Customer and waiter.5.(1.5分)What does the man want the woman to get for him?A.Hard drinks.B.Mineral water.C.Some medicine.第二节(共5小题;每小题1.5分,满分22.5分)听下面5段对话或独白.每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项.听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间.每段对话或独白读两遍.6.(3分)(1)What will the woman do?A.Take up a new job.B.Have the man promoted.C.Start her own company.(2)When did the man get a pay raise last time?A.Three years ago.B.Five years ago.C.Eight years ago.7.(4.5分)(1)Why did the man have an operation?A.He took drugs mistakenly.B. He had a stomach problem.C. He felt painful all the time.(2)How did the man feel shortly after the operation?A.Relieved.B.Puzzled.C.Uncomfortable.(3)Where does the woman suggest the man go with her?A.To a hospital.B.To a restaurant.C.To a grocery store.8.(4.5分)(1)What's the man's attitude towards the indoor wildlife center?A.Favorable.B.Ambiguous.C.Uninterested.(2)What animal did the man fail to see?A.Sharks.B.Butterflies.C.Tree frogs.(3)What is the woman eager to do?A. Visit the indoor wildlife center again.B. Read more about the wildlife animals.C. Go home and have a rest immediately.9.(6分)(1)Why does the man talk to the woman?A.To consult about an association.B.To invite her to act as a president.C.To ask for help with his school work.(2)What year is the woman in?A.The first year.B.The second year.C.The fourth year.(3)How much is the four﹣vear membership fee?A.£10.B.£35.C.£40.(4)What is peer coaching?A.A challenging sport.B.An activity about study.C.An international conference.10.(4.5分)(1)What is the speaker volunteering as in the organization?A.A doctor.B.An engineer.C.A food expert.(2)What is required to become a volunteer for MSF?A. The skills of designing websites.B. The ability to work independently.C. The great interest in leading a team.(3)What is the speaker's purpose?A. To introduce a demanding position.B. To share her volunteering experience.C. To look for volunteers for an organization.第二部分阅读理解(共两节,满分30分)第一节(共4小题;每小题6分,满分30分)阅读下列短文,从每题所给的A、B、C和D四个选项中,选出最佳选项.11.(6分)New York's best classes for after﹣school kids include sports classes,performing arts classes, art classes and language programs. Make sure your kids are ready for new adventures with these super﹣cool offerings l92nd Street Y ClassesAt this institution your musicians can learn how to play instruments. After ﹣school classes examine different musical pieces and encourage teamwork in a group setting. At the end of the program, mini Mozarts can impress their family and friends at open﹣house concerts. Plus, when they're not jamming,kids can take advantage of homework help in the Clubhouse, where they are divided up by grade level. Ages 5﹣15.The Cliffs at LICAfter a day of fighting academic courses at school, your favorite achievers can reach heights on a rock﹣climbing wall.The Cliffs' offerings allow developing bodies to build muscle strength. For example, introductory sessions teach climbers how to safely tie knots(结) as well as other basics, mastering them with hands﹣on games and activities. The Cliffs at I_IC,Long Island City. Ages 6﹣18.Staten Island Skating PavilionThis large area maintains(维持) its year﹣round frosty temperatures for ice﹣skating fun. Courses are offered every day for a variety of interests and skill levels, and public and freestyle sessions are available to children who want to spend some afternoons there without instruction. Ages 4﹣15. West Side YMCAIf your children want to learn how to swim, you'd be hard﹣pressed to find more options than those offered here.Kids are grouped by age and ability. The courses cover personal safety and swimming techniques. If your children prefer dry land, the West Side YMCA also offers dance. basketball and football.Visit our website for class descriptions and priceinformation. Ages 5﹣18.(1)Which of the following offers homework help?A. The Cliffs at LIC.B. West Side YMCA.C. 92nd Street Y Classes.D. Staten Island Skating Pavilion.(2)What can participants do at Staten Island Skating Pavilion?A. Learn basic climbing skills.B. Enjoy skating all year around.C. Try a variety of outdoor sports.D. Start skating at the age of three.(3)Who is the text intended for?A. Senior high school teachers.B. Children around school age.C. Adults looking for relaxation.D. Parents with children of school age.12.(8分)Deciding to get her money's worth out of the wedding dress on which she spent over $1,000, an Australian woman has been wearing her wedding dress, a year after her wedding.43﹣year﹣old Tammy Hall adopted a new lifestyle﹣anti﹣consumerism(反消费主义) lifestyle in 2016. after a trip to India opened her eyes to how much we as a society consumed. She decided not to buy any new clothes or footwear for a whole year after she returned home to Adelaide. in Southern Australia,and she managed to make it.But last year, as her wedding day approached, she faced a dilemma. She wanted to look good on the most important day of her life. but how could she spend a small fortune on the wedding dress she would only wear on that day?"In the end I decided that if I was going to get a wedding dress. I'd make sure I could get my money's worth, " Hall tells PA Real Life."The first time I wore it after the wedding was to vote in the Australian election in early2019." the 43﹣year﹣old adds. "Since then. it's been to all sorts of places. Wearing it on a crowded train was especially funny, but I've worn it to do housework. to football games and to the gym. "Hall says that she has gotten some strange looks from people,but no irritating comments. It may have something to do with the fact that the dress is not the fanciest, but she believes people are just too reserved to say anything. Anyway, she doesn't really care. because she knows she has to hit the goal she has set and wearing the dress multiple times is the most reasonable way she could think of to make the most of her wedding dress.Hall now plans to wear her wedding dress on a trip to Iceland that she and her partner will take next summer.(1)Why did Tammy Hall adopt a new lifestyle?A. To adapt herself to Indian life.B. To cut down her consumption.C. To save money for her next trip.D. To get prepared for her wedding.(2)What did Tammy Hall do to get her money's worth out of her wedding dress?A. She brought fun to people with it.B. She tried to wear it to earn money.C. She wore it repeatedly in daily life.D. She got it exchanged again and again.(3)Which of the following best explains the word "irritating" underlined in paragraph 6?A. Thrilling.B. Annoying.C. Amusing.D. Confusing.(4)What can we infer about Tammy Hall?A. She is determined to turn her ideas into practice.B. She values her wedding dress less than her trips.C. She has been struggling to make the ends meet.D. She has influenced people's lifestyle widely.13.(8分)Ants keep traffic flowing by changing their behavior to meet changing conditions, according to new research.For their experiment, researchers from the University of Toulouse and the University of Arizona focused on Argentine ants.which are only 2﹣3 millimeters long and frequently move from colony(栖息地) to colony depending on how far food is. Tapping into the ants' talent for fast commutes (通勤), the researchers constructed bridges between their colonies. The bridges varied in width from a fifth to three﹣quarters of an inch.Then the researchers sat back and monitored the traffic. To their surprise,even when those narrower bridges were nearly overloaded. there were n0 20﹣ant pile﹣ups.And traffic remained steady regardless of how crowed the bridges were because ants could adjust to the flow of road conditions."When crowding on the path increased. ants assessed it locally and adjusted their speed accordingly to avoid any interruption of traffic flow." the researchers said. "Moreover. ants avoided entering a crowded path and made sure the bridge was never overloaded. "The lesson for humans? The traffic problem mostly lies in our loss of the quality that the ants have. You've probably noticed it on your own commute to work. Driving is fun when there're few cars on the road﹣a lane﹣change (车道变换) here. a little acceleration there. Then traffic slows down. But some impatient drivers still constantly move between lanes."Traffic jams are common in human society where some people are focusing on their own personal objectives," the researchers said. "In contrast, ants share a common goal: the survival of the colony, thus they're expected to act cooperatively to get food. "The research also suggests that the ever﹣widening of highways may neverfree us from traffic jams. As long as we drive along with our own agendas,no matter how many other people are on the road, we'll always end up in a traffic jam. Indeed, less space may be a good thing. It leaves less room for personal choices and forces us to take a page from the driving handbook of ants.(1)What did the researchers do to the ants in the experiment?A. They fed them with much delicious food.B. They trained them to avoid heavy traffic.C. They built bridges linking their colonies.D. They improved their colonies constantly.(2)How did the ants behave during the experiment?A. They worked together to remove the road blocks.B. They sped up to get out of the traffic jam quickly.C. They made their way carefully in the given direction.D. They adjusted themselves for the flow of the traffic.(3)What is the biggest cause of the traffic jam in human society?A. Poor road construction.B. People's inability to adjust.C. People's selfish driving.D. Too many vehicles on roads.(4)What is the text mainly about?A. What ants help us do for driving safety.B. What ants can teach us about traffic jams.C. Why ants drive much better than humans.D. Why ants are best at handling traffic jams.14.(8分)A new device(设备) works like a solar panel, except it doesn't harvest energy from the sun to produce electricity. Instead, it uses energy from the cold night sky.In the center of this device is a thermoelectric generator(热电发电机),which uses the temperature difference between Earth and outer space to create electricity.As long as one side of it is cooler than the other, the generator can produce electricity.The cooler side faces the sky and is attached to an aluminum plate. That plate is sealed under a transparent cover and surrounded with materials that keep heat out. It stays cooler than the surrounding air by getting rid of any heat it absorbs as infrared(红外线) radiation. That radiation can zip up through the transparent cover and on toward outer space. The bottom of the generator is attached to an exposed aluminum plate,which is warmed by the local air. At night, the top plate can get several degrees centigrade cooler than the bottom of the generator.Researchers tested the device one clear December night in Stanford,Calif. The generator produced up to about 25 mill watts of power per square meter of the device. That was just enough power to light a small electric lamp. Further improvements might develop its production to at least 500 mill watts per square meter."It's a very clever idea," says Yuan Yang, a materials scientist who works at Columbia University in New York City."The device still needs improving," he notes. "But this new device may be useful for backup power," Yang says. "It might also provide a bit of energy to people living in areas that lack electricity."The device could help power remote weather stations or other environmental devices." says Aaswath Raman. a materials scientist who worked on the device at the University of California,Los Angeles.What's more,this may be useful in areas that don't see sunlight for months at a time. Raman adds.(1)How is the device designed?A. It includes two aluminum plates with different functions.B. It is equipped with a heat﹣resistant generator in the center.C. Its two aluminum plates are exposed to air to keep heat out.D. Its generator is sealed by a transparent cover to remain cool.(2)What is the limitation with the tested device?A. It won't be expanded to be much larger.B. It fails to produce electricity fast enough.C. It is unable to power small electric lamps.D. It produces a limited amount of electricity.(3)In paragraph 6. Yuan Yang mainly intends to .A. evaluate the device on a positive basisB. point out the problems with the deviceC. explain the research work for the deviceD. comment on A swath Raman's prediction(4)What can be a suitable title for the text?A. Lamps Are Powered by the Energy From the Cold Night SkyB. A Generator Producing Electricity Has Been Applied in Many AreasC. Scientists Have Made a Breakthrough in Harvesting Green EnergyD. A Device Uses Energy From the Cold Night Sky to Produce Electricity第二节(共1小题;每小题10分,满分10分)根据短文内容,从短文后的选项中选出能填人空白处的最佳选项.选项中有两项为多余选项.15.(10分)It can be difficult to start a hobby. You may not know where to begin or you may have come across one that requires costly equipment.(1)To find a low﹣cost hobby, pick something that is interesting to you, doesn't require a lot of materials. and is available to you in your area.Begin a collection. Many different collections can be started with little or no cost.(2)Look for rocks, plant leaves and flowers, or insects you can preserve and keep. Another way is to begin to collect an object in your house, such as saving bottle﹣caps.(3) Youtube contains quantities of music you can listen to for free. Besides, you can discover music you like by using online radio stations or services including Pandora and Spotify. By exposing yourself to new music,you can turn music into a relaxing hobby without having to buy albums.Learn a game. Games are similar to sports and often benefit from being shared in the community(团体). Game groups will often supply board games at no cost to you. In addition,libraries and schools may have video game groups for children and adults.You can also play a wide variety of free online games with people around you.(4)If these things fail to attract you, ask experts about how to begin. Find hobbyists and ask those who are experienced in your potential hobby for the minimum cost of materials you need to start.(5)You'll be surprised that you don't need as much equipment as you imagined.A. Listen to music.B. One way to do this is to go outside.C. Ask yourself what your favorite music is.D. How and where to find one collection is up to you.E. Use the site meetup. com to see what groups are in your area.F. The truth is that many hobbies can be started without much money.G. This will help you judge whether or not a hobby fits into your budget.第三部分语言知识运用(共两节,满分 45分)第一节(共 20小题;每小题 1. 5分,满分 30分)阅读下面短文,从短文后各题所给的 A、B、C和 D四个选项中,选出可以填入空白处的最佳选项.16.(30分)Jeremy Locke, 25,has his own roofing company in Bridgeport, Nova Scotia. For a couple of years before he began his (1), he would drive past the home of Jeanette MacDonald, noticing the(2)state of her roof. He was (3)not just for the elderly woman but also for the children living with her. So Locke(4)to lend a helping hand.The young man knocked on MacDonald's door and(5)to fix her roof for nothing, "I didn't know who the woman was, but I wanted to (6)this for her and her grandchildren, " he explained to The Chronicle Herald. However,despite his kind(7), the woman politely turned him down.MacDonald and her(8) left an impression on Locke. He saw(9)between the woman and his own grandmother. and couldn't bear to see her in this (10). He had also grown up without much and felt that he should use his skills to (11).A year after Locke set up his own roofing company, seeing that the roofwas (12)in a state of disrepair, Locke returned to MacDonald's home and asked MacDonald if she wanted to enter a raffle(抽奖) his company was doing for a(13)roof.The 70﹣year﹣old woman (14)the chance, but little did she know that there was no (15).MacDonald's relief (16)Locke's kindness is immeasurable, "I could win $1 million but it wouldn't make me as(17)as knowing I'm gettinga new roof on. Jeremy is (18) something. He's a guardian angel(守护天使) sent from God. "The(19)should cost about $9,000 in terms of materials and manpower. However, the only thing Locke wants in return is a home﹣cooked meal for his staff from the woman who (20)him of his grandmother.(1)A. journey B. business C. research D. life(2)A. average B. unexpected C. special D. terrible(3)A. frightened B. embarrassed C. concerned D. disappointed (4)A. decided B. appeared C. agreed D. happened(5)A. declined B. offered C. managed D. pretended (6)A. catch up with B. take care of C. get rid of D. put up with (7)A. application B. reaction C. theory D. intention (8)A. hesitation B. shame C. regret D. difficulty (9)A. symbols B. conditions C. similarities D. beliefs(10)A. situation B. occupation C. incident D. direction (11)A. respond B. give C. help D. develop(12)A. still B. even C. already D. just(13)A. temporary B. delicate C. random D. free(14)A. went over B. jumped at C. laughed off D. looked into (15)A. competition B. cheating C. dilemma D. chance(16)A. comparing B. withdrawing C. following D. contradicting (17)A. strong B. lucky C. happy D. rich(18)A. partly B. possibly C. generally D. really(19)A. room B. job C. meal D. decoration (20)A. reminds B. warns C. convinces D. informs第二节(共1小题;每小题1.5分,满分15分)阅读下面短文,在空白处填人1个适当的单词或括号内单词的正确形式.17.(15分)The Palace Museum. also known as the Forbidden City, is a much﹣visited and much﹣photographed tourist (1)(attract). This Chinese palace with a history of about 600 years receives millions of visits every year and lots of TV programs have showed the place in recent years.However, it still(2)(have) secrets. and a new program (3)(design) to explore those unknown areas and the stories within is set to show the palace in a new light. The variety show, Shang Xin Le Gu Gong,broadcast its first episode(一集) on Beijing TV and online streaming media site, iQiyi. com. on November 9. That first episode won wide acceptance from audiences and (4)(think) highly of on Douban. com. "It brings many elements(元素)together,and everything in the show is(5)(perfect) matched and turns out amazing, " said(6) 0nline user. "lt brings me the thrill I felt when I stepped into the Palace Museum for the first time. "In each one﹣hour﹣long episode, the actors and actresses switch between playing guides and historical figures (7) emperors and royal family members of the Qing Dynasty(1644﹣1911). They focus on areas (8)are still not accessible to the public and the stories (9)(surround)them. In the show, the actors and actresses are also joined by designers whowill create (10)(product) based on what they see. The most popular ones. based on an online vote, are to be turned into souvenirs for sale.第四部分写作(共两节,满分10分)第一节短文改错(共1小题;每小题10分,满分10分)18.(10分)假定英语课上老师要求同桌之间交换修改作文,请你修改你同桌写的以下作文.文中共有10处语言错误,每句中最多有两处.每处错误仅涉及一个单词的增加、删除或修改.增加:在缺词处加一个漏字符号(∧),并在其下面写出该加的词.删除:把多余的词用斜线(\)划掉.修改:在错的词下划一横线,并在该词下面写出修改后的词.注意:l.每处错误及其修改均仅限一词;2.只允许修改10处,多者(从第11处起)不计分.About eighth years ago,I went to visit my grandfather during the summer holiday, who lived in a small village. One Saturdav afternoon, my grandfather asked me climb a nearby mountain with him. At first, I ran fast, leaving my grandfather behind. However, about twenty minute later.I felt so tired that I stopped run and eventually chose to sit down for a rest. Soon, my grandfather reached when I was. He looked for me and asked, "Have I noticed the beautiful flowers along the way?" I kept silently.My grandfather smiled."My dear, you are not in a race and on a Journey." After that, my grandfather and I had walked slowly, appreciating the scenery and laughing along the way.第二节书面表达(满分25分)19.(25分)假定你是学生会主席李华,你校的交换生Peter已学习中国象棋长达一年,特发邮件向你询问将由学生会举办的中国象棋大赛的情况.请你回复邮件,内容包括:1.举办比赛的目的;2.比赛的时间和地点;3.建议他报名参加并说明理由.注意:1.词数100左右;2.可以适当增加细节,以使行文连贯;3.开头和结尾已为你写好.参考词汇:中国象棋大赛Chinese Chess ContestDear Peter.________Yours,Li Hua2020届安徽省江南十校联考高考英语4月模拟试题答案第一部分听力(共两节,满分7.5分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话.每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项.听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题.每段对话仅读一遍.例:How much is the shirt?A.£19. 15. B.£9.18. C.£9.15.答案是C.1.; 2.; 3.; 4.; 5.;第二节(共5小题;每小题1.5分,满分22.5分)听下面5段对话或独白.每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项.听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间.每段对话或独白读两遍.6.; 7.; 8.; 9.; 10.;第二部分阅读理解(共两节,满分30分)第一节(共4小题;每小题6分,满分30分)阅读下列短文,从每题所给的A、B、C和D四个选项中,选出最佳选项.11.C;B;D; 12.B;C;B;A; 13.C;D;C;B; 14.A;D;A;D;第二节(共1小题;每小题10分,满分10分)根据短文内容,从短文后的选项中选出能填人空白处的最佳选项.选项中有两项为多余选项.15.F;B;A;E;G;第三部分语言知识运用(共两节,满分 45分)第一节(共 20小题;每小题 1. 5分,满分 30分)阅读下面短文,从短文后各题所给的 A、B、C和 D四个选项中,选出可以填入空白处的最佳选项.16.B;D;C;A;B;B;D;D;C;A;C;A;D;B;A;C;C;D;B;A;第二节(共1小题;每小题1.5分,满分15分)阅读下面短文,在空白处填人1个适当的单词或括号内单词的正确形式.17.attraction;has;designed;was thought;perfectly;an;like;which;surrounding;products;第四部分写作(共两节,满分10分)第一节短文改错(共1小题;每小题10分,满分10分)18.;第二节书面表达(满分25分)19.;2020年新型冠状病毒10个经典时评标题及观点既过年关,也过难关以非常之役应对非常之疫,这是负责也是尽责,没有人会觉得多此一举。
2020届全国百校联盟I卷高考语文4月模拟试题一、现代文阅读(36分)(一)论述类文本阅读(本题共1小题,9分)1.(9分)阅读下面的文字,完成各题。
随着电视、网络等传播媒体的普及,作为民族文化瑰宝的诗词也得到了新的应用及传播。
央视《经典咏流传》《中国诗词大会》等文化类节目,将传统文化与当下生活紧密联系起来,受到大众的喜爱。
《经典咏流传》以传统诗词名篇配乐为主,新歌词创作为辅,体现出“新旧结合”的文化生态,不仅提升了传统诗词的传播度,还催生了新的诗词体式的出现,对于诗词当代化具有深刻意义。
这些节目降低了诗词欣赏的门槛,使之贏得了更为广泛的受众。
节目中,作为内容的诗词与多种传播形式呈现出互动关系,体现出以下创新点:首先,诗歌与音乐再次紧密结合,呈现出“万口相传”的盛况。
自古以来,诗词的创作与传播都与音乐密不可分。
《诗经》《乐府》中的大部分篇章都来自于民间歌谣。
经过文人的改造,民间歌谣的艺术性得以提升,从而获得更广泛传播并经典化的可能。
可以说,中华民族的诗与乐,从一开始就是相互配合、相互成就的。
中华诗词千古不断的生命力,需要新声乐章来配合,使之为不同年龄、不同地域的观众喜爱。
《经典咏流传》由经典传唱人用“新声”重新演唱旧词,使得流行元素与传统文化彼此融合、彼此促进,其次,明星与素人共同登台,展示出诗词广泛的群众基础以及蓬勃的生命力。
经典传唱人来自不同的领域,既有老一辈歌唱家、青春偶像等专业人士,也有外籍友人、大学教授、乡村教师、残障人士等业余人士,这些传唱人将各自独特的人生际遇及生命体验融入了诗词中。
“新旧结合”还催生出新的诗歌体式。
如青少年中影响力很大的“古风”体。
此类歌曲声调唯美,注重旋律,多用民族乐器。
歌词方面则多以白话诗逻辑来组织传统诗词片段,呈现出介于传统诗词与白话诗之间的新特性。
《经典咏流传》中的部分篇目,如《少年狂》《别董大》新词部分吸納了“古风”元素,使之与经典名篇相结合。
作为一种青春的文体,此类作品多有欠成熟之处,但将古典意境与当下流行元素结合的尝试,使得诗作呈现出一种新的语言风貌。
百校联盟2020年4月高考文科数学模拟试卷文科数学试题一、选择题(共12小题).1.已知集合A={x∈Z|x2≤1},B={x|x•ln(x+3)=0},则A∪B=()A.{﹣1,0,1}B.{﹣2,﹣1,1}C.{﹣2,0,1}D.{﹣2,﹣1,0,1}2.设是复数z的共轭复数,若•i=1+i,则z•=()A.B.2C.1D.03.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x sin x B.y=xlnxC.D.4.数列{a n}是等比数列,S n是其前n项和,a n>0,a2+a3=4,a3+3a4=2,则S3=()A.B.12C.D.135.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.2C.D.6.已知函数f(x)=2cos2x﹣cos(2x﹣),则下列结论正确的个数是()①函数f(x)的最小正周期为π;②函数f(x)在区间[0,]上单调递增;③函数f(x)在[0,]上的最大值为2;④函数f(x)的图象关于直线x=对称.A.1B.2C.3D.47.如图,在△ABC中,AB=2,AC=3,∠BAC=,M、N分别为BC、AM的中点,则=()A.﹣2B.﹣C.﹣D.8.改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是()A.B.C.D.9.已知函数在(,+∞)上为减函数,则实数a的取值范围是()A.(﹣∞,1]B.[﹣,1]C.(﹣,1]D.(﹣,+∞)10.若x,y满足约束条件,则z=|x﹣y+1|的最大值为()A.2B.C.D.311.如图所示,在三棱锥P﹣ABC中,AB⊥BC,AB=3,BC=2,点P在平面ABC内的投影D恰好落在AB上,且AD=1,PD=2,则三棱锥P﹣ABC外接球的表面积为()A.9πB.10πC.12πD.14π12.已知函数f(x)=(x>0),若a=>0,则f(x)的取值范围是()A.[﹣﹣1,﹣1)B.(﹣2,﹣1)C.[﹣2,﹣1)D.(﹣,0)二、填空题13.从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为.14.已知函数f(x)=x3﹣5x+a,直线2x+y+b=0与函数f(x)的图象相切,a,b为正实数,则a+b的值为.15.已知实数x,y满足y≥2x>0,则的最小值为.16.F1、F2是双曲线C:的左、右焦点.过F2作直线l⊥x轴,交双曲线C于M、N两点,若∠MF1N为锐角,则双曲线C的离心率e的取值范围是.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A、B、C所对的边分别是a、b、c,a2=b2+bc,且sin C+tan B cos C =1.(1)求角A;(2)b=2,P为△ABC所在平面内一点,且满足=0,求BP的最小值,并求BP 取得最小值时△APC的面积S.18.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产品在不同电商平台的销售情况,统计了A、B两个电商平台各十个网络销售店铺的销售数据:A电商平64718170796982737560台B电商平60809777968776839496台(1)作出A、B两个电商平台销售数据的茎叶图,根据茎叶图判断哪个电商平台的销售更好,并说明理由;(2)填写下面关于店铺个数的2×2列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;销售量>80销售量≤80总计A电商平台B电商平台总计(3)生产商要从这20个网络销售店铺销售量前五名的店铺中,随机抽取三个店铺进行销售返利,则其中恰好有两个店铺的销售量在95以上的概率是多少?附:,n=a+b+c+d.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828 19.如图①,平行四边形ABCD中,AB=4,AD=2,∠ABC=,E为CD中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到如图②所示的四棱锥P﹣ABCE.(1)求证:平面PAE⊥平面PBE;(2)求点B到平面PEC的距离.20.动圆P过定点A(2,0),且在y轴上截得的弦GH的长为4.(1)若动圆圆心P的轨迹为曲线C,求曲线C的方程;(2)在曲线C的对称轴上是否存在点Q,使过点Q的直线l'与曲线C的交点S、T满足为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由.21.已知函数f(x)=ax+,g(x)=﹣1.(1)讨论函数f(x)在(0,+∞)上的单调性;(2)若对任意的x∈(0,+∞),f(x)<g(x)恒成立,求实数a的取值范围.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(φ+)+=0,P为直线l上的任意一点(1)Q为曲线C上任意一点,求P、Q两点间的最小距离;.(2)过点P作曲线C的两条切线,切点为A、B,曲线C的对称中心为点C,求四边形PACB面积的最小值.[选修4-5:不等式选讲]23.已知函数.(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,设a的最大值为s,当正数m,n满足=s时,求3m+4n的最小值.参考答案与详解一、选择题:共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x∈Z|x2≤1},B={x|x•ln(x+3)=0},则A∪B=()A.{﹣1,0,1}B.{﹣2,﹣1,1}C.{﹣2,0,1}D.{﹣2,﹣1,0,1}【分析】可以求出集合A,B,然后进行并集的运算即可.解:∵A={﹣1,0,1},B={0,﹣2},∴A∪B={﹣2,﹣1,0,1}.故选:D.2.设是复数z的共轭复数,若•i=1+i,则z•=()A.B.2C.1D.0【分析】把已知等式变形,再由复数代数形式的乘除运算化简,结合求解.解:∵•i=1+i,∴,则.故选:B.3.下列函数中,既不是奇函数,也不是偶函数的是()A.y=x sin x B.y=xlnxC.D.【分析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.解:根据题意,依次分析选项:对于A,y=x sin x,其定义域为R,有f(﹣x)=x sin x=f(x),即函数f(x)为偶函数;对于B,y=xlnx,其定义域为(0,+∞),既不是奇函数,也不是偶函数;对于C,y=x•,其定义域为R,有f(﹣x)=(﹣x)•=x•=f (x),即函数f(x)为偶函数;对于D,y=xln(﹣x),其定义域为R,有f(﹣x)=(﹣x)ln(+x)=xln(﹣x)=f(x),即函数f(x)为偶函数;故选:B.4.数列{a n}是等比数列,S n是其前n项和,a n>0,a2+a3=4,a3+3a4=2,则S3=()A.B.12C.D.13【分析】利用等比数列通项公式列出方程组,求出,由此能求出S3的值.解:∵数列{a n}是等比数列,S n是其前n项和,a n>0,a2+a3=4,a3+3a4=2,∴,解得,∴S3==13.故选:D.5.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.2C.D.【分析】根据三视图可知几何体为四棱锥,画出直观图,利用体积公式求解.解:根据三视图,可知几何体为四棱锥P﹣ABCD,体积V=.故选:C.6.已知函数f(x)=2cos2x﹣cos(2x﹣),则下列结论正确的个数是()①函数f(x)的最小正周期为π;②函数f(x)在区间[0,]上单调递增;③函数f(x)在[0,]上的最大值为2;④函数f(x)的图象关于直线x=对称.A.1B.2C.3D.4【分析】先根据函数化简得f(x)=,根据,可判断①;先求出所以单调递增区间,然后可以判断②;可求f(x)在在[0,]上的最大值,可以判断③;可求出f(x)的所有对称轴,可判断④.解:f(x)=2cos2x﹣cos(2x﹣)=cos2x+1﹣﹣==,∴,①对;由2kπ﹣π≤2x+≤2kπ,得x∈[kπ﹣,kπ﹣],k∈Z,所以函数f(x)单调递增区间为[kπ﹣,kπ﹣],②错;∵x∈[0,]时,2x+∈[,],cos(2x+)∈[﹣1,],函数f(x)在[0,]上的最大值为,③错,∵2x+=kπ,x=,k∈Z,④对,故选:B.7.如图,在△ABC中,AB=2,AC=3,∠BAC=,M、N分别为BC、AM的中点,则=()A.﹣2B.﹣C.﹣D.【分析】根据已知条件把所求问题转化,即可求得结论.解:因为在△ABC中,AB=2,AC=3,∠BAC=,M、N分别为BC、AM的中点,则=()•=(﹣+)=[﹣+()]=(﹣)==×22﹣×=﹣.故选:C.8.改编自中国神话故事的动画电影《哪吒之魔童降世》自7月26日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在7:30,8:00,8:30开始放映,小明和同学大约在7:40至8:30之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是()A.B.C.D.【分析】由满足条件的时间段为7:50~8:00,8:20~8:30共20分钟,结合与长度有关的几何概率公式可求.解:由题意可知,满足条件的时间段为7:50~8:00,8:20~8:30共20分钟,由几何概型知所求的概率P=.故选:C.9.已知函数在(,+∞)上为减函数,则实数a的取值范围是()A.(﹣∞,1]B.[﹣,1]C.(﹣,1]D.(﹣,+∞)【分析】由复合函数的单调性法则可知y=x2﹣ax+a在上为增函数,由对数函数的真数大于0可知,y>0恒成立,则实数a应满足,解不等式组即可得到答案.解:∵在(0,+∞)上为减函数,∴y=x2﹣ax+a在上为增函数,且y>0恒成立,∴,解得.故选:B.10.若x,y满足约束条件,则z=|x﹣y+1|的最大值为()A.2B.C.D.3【分析】作出不等式组对应的平面区域,令t=x﹣y+1,利用目标函数t的几何意义,结合图象得到结论.解:作出不等式组对应的平面区域如图:令t=x﹣y+1,得y=x+1﹣t表示,斜率为1纵截距为1﹣t的一组平行直线,⇒C(,﹣);平移直线y=x+1﹣t,当直线y=x+1﹣t经过点C(,﹣)时,直线y=x+1﹣t的截距最小,此时t max=﹣(﹣)+1=,当直线y=x+1﹣t与AB重合时,直线y=x+1﹣t的截距最大,A(0,)此时t min=0﹣+1=,∴z=|x﹣y+1|的取值范围是:[,].故z=|x﹣y+1|的最大值为.故选:C.11.如图所示,在三棱锥P﹣ABC中,AB⊥BC,AB=3,BC=2,点P在平面ABC内的投影D恰好落在AB上,且AD=1,PD=2,则三棱锥P﹣ABC外接球的表面积为()A.9πB.10πC.12πD.14π【分析】结合已知构造直三棱柱PAB﹣MNC,则直三棱柱PAB﹣MNC的外接球即为所求,球心O为直直三棱柱底面三角形外接圆圆心连心线连心的中点,结合球的性质及勾股定理可求.解:由题意可知,PD⊥平面ABC,所以平面PAB⊥平面ABC,又因为AB⊥BC,所以BC⊥平面PAB,构造直三棱柱PAB﹣MNC,则直三棱柱PAB﹣MNC的外接球即为所求,球心O为直直三棱柱底面三角形外接圆圆心连心线连心的中点,△PAB中,由正弦定理可得,r==,故R==,故S=4=14π故选:D.12.已知函数f(x)=(x>0),若a=>0,则f(x)的取值范围是()A.[﹣﹣1,﹣1)B.(﹣2,﹣1)C.[﹣2,﹣1)D.(﹣,0)【分析】依题意,a2+x2=1,采用三角换元设a=cosα,x=sinα,可得,再令,可得在上为减函数,由此求出f(x)的取值范围.解:由得,a2+x2=1,不妨设a=cosα,x=sinα,其中,则,令,,∴在上为增函数,∴在上为减函数,∴.故选:C.二、填空题:共4小题,每小题5分.13.从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为.【分析】根据在系统抽样中,每个个体被抽到的概率是相等的,得出结论.解:从一个有53名学生的班级中,随机抽取5人去参加活动,若采用系统抽样的方法抽取,则班长被抽中的概率为,故答案为:.14.已知函数f(x)=x3﹣5x+a,直线2x+y+b=0与函数f(x)的图象相切,a,b为正实数,则a+b的值为2.【分析】先对f(x)求导,根据条件设切点的坐标为(x0,y0),然后由f'(x0)=﹣2求出切点坐标,进一步求出a+b的值.解:由f(x)=x3﹣5x+a,得f'(x)=3x2﹣5,∵直线2x+y+b=0与函数f(x)的图象相切,设切点的坐标为(x0,y0),则,∴x0=1或x0=﹣1,∴y0=a﹣4或y0=a+4,即切点坐标为(1,a﹣4)或(﹣1,a+4),代入直线中,得a+b=2或a+b=﹣2,∵a,b为正实数,∴a+b=2.故答案为:2.15.已知实数x,y满足y≥2x>0,则的最小值为.【分析】先令t=,可转化成f(t)=t+,t≥2,因为不满足不等式取等号时的条件,使用单调性求最值.解:设t=,由题意知t≥2,则=t+,令f(t)=t+,t≥2,∵f'(x)=1﹣>0,∴f(t)在t≥2上单调递增,∴f(t)≥f(2)=,故答案为:.16.F1、F2是双曲线C:的左、右焦点.过F2作直线l⊥x轴,交双曲线C于M、N两点,若∠MF1N为锐角,则双曲线C的离心率e的取值范围是(1,1+).【分析】求出交点M,N的坐标,只要∠MF1F2<45°即可,利用斜率公式进行求解即可.解:解:当x=c时,,可得y=故M(c,)如图只要∠MF1F2<45°即可,则tan∠MF1F2<tan45°=1,即,即b2<2ac,则c2﹣a2<2ac,即c2﹣2ac﹣a2<0,则e2﹣2e﹣1<0,解得:1﹣又e>1,∴故答案为:(1,1+)三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知△ABC中,角A、B、C所对的边分别是a、b、c,a2=b2+bc,且sin C+tan B cos C =1.(1)求角A;(2)b=2,P为△ABC所在平面内一点,且满足=0,求BP的最小值,并求BP 取得最小值时△APC的面积S.【分析】(1)先根据已知条件得到b+c=2a cos B;再结合正弦定理得到A=2B,结合sin C+tan B cos C=1即可求得结论;(2)根据数量积为0推得点P在以CA为直径的圆上,进而得到当点P在BO上时,BP 取得最小值,求出最小值以及△APC的面积S即可.解:(1)因为a2=b2+bc⇒a2+c2﹣b2=c2+bc;∴=;∴b+c=2a cos B;由正弦定理得:sin B+sin C=2sin A cos B,∴sin B+sin(A+B)=2sin A cos B⇒sin B=sin(A﹣B);因为都是三角形内角;∴A=2B;又由sin C+tan B cos C=1.得sin(B+C)=cos B;∴sin A=cos B;∴sin B=.∴B=,A=.(2)由(1)可知C=.∴△ABC为直角三角形.又因为=0⇒PA⊥PC;所以点P在以CA为直径的圆上,如图:∵b=2,所以:BC=2,AB=4,设O为AC的中点,连接BO,则当点P在BO上时,BP取得最小值,此时BP=BO﹣PO=﹣1=﹣1.设∠OCP=α,则∠COP=π﹣2α,∴sinα==PA;cosα==PC;∴S=PA•PC=2sinαcosα=sin2α;在直角三角形BOC中,sin∠COB=sin(π﹣2α)=sin2α===.∴当BP取得最小值时(﹣1)时,△APC的面积S为:.18.双十一购物狂欢节,是指每年11月11日的网络促销日,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,已成为中国电子商务行业的年度盛事.某生产商为了了解其生产的产品在不同电商平台的销售情况,统计了A、B两个电商平台各十个网络销售店铺的销售数据:A电商平64718170796982737560台B电商平60809777968776839496台(1)作出A、B两个电商平台销售数据的茎叶图,根据茎叶图判断哪个电商平台的销售更好,并说明理由;(2)填写下面关于店铺个数的2×2列联表,并根据列联表判断是否有95%的把握认为销售量与电商平台有关;销售量>80销售量≤80总计A电商平台B电商平台总计(3)生产商要从这20个网络销售店铺销售量前五名的店铺中,随机抽取三个店铺进行销售返利,则其中恰好有两个店铺的销售量在95以上的概率是多少?附:,n=a+b+c+d.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【分析】(1)根据题意画茎叶图,(2)根据数据填表,代公式,比较,判断,(3)根据题意找出店铺销售量前五名,然后求事件,求概率.解:(1)A、B两个电商平台销售数据的茎叶图如图,由茎叶图可知B电商平台的销售更好,因为B整体数据集中比A高,(2)填表如下;销售量>80销售量≤80总计A电商平台2810B电商平台6410总计81220≈3.333<3.841,没有95%的把握认为销售量与电商平台有关.(3)从这20个网络销售店铺销售量前五名为97,96,96,94,87.分别设为A,B,C,D,E,随机抽取三个店铺共有10种可能,如下:(A,B,C),(A,B,D),(A,B,E),(A,C,D),(A,C,E),(A,D,E),(B,C,D),(B,C,E),(B,D,E),(C,D,E),恰好有两个店铺的销售量在95以上有6种,恰好有两个店铺的销售量在95以上的概率为.19.如图①,平行四边形ABCD中,AB=4,AD=2,∠ABC=,E为CD中点.将△ADE沿AE折起,使平面ADE⊥平面ABCE,得到如图②所示的四棱锥P﹣ABCE.(1)求证:平面PAE⊥平面PBE;(2)求点B到平面PEC的距离.【分析】(1)求解三角形可得AE=2,BE=2,结合AB=4,得到BE⊥AE,再由平面APE⊥平面ABCE,结合平面与平面垂直的性质可得BE⊥平面PAE,进一步得到平面PAE⊥平面PBE;(2)设O为AE的中点,连接PO,CO,求得PO=,进一步求解三角形可得OC、PC的值,求解三角形PEC与BEC的面积,利用等体积法可求得点B到平面PEC的距离.【解答】(1)证明:在图①中连接BE,由平面几何知识,求得AE=2,BE=2,又∵AB=4,∴BE⊥AE,在图②中,∵平面APE⊥平面ABCE,且平面APE∩平面ABCE=AE,∴BE⊥平面PAE,又∵BE⊂平面PBE,∴平面PAE⊥平面PBE;(2)解:设O为AE的中点,连接PO,CO,由已知可得△PAE为等边三角形,∴PO=.∵平面PAE⊥平面ABCE,∴PO⊥平面ABCE,得PO⊥CO.在△OEC中,OE=1,EC=2,.由余弦定理得OC=.∴PC=.在△PEC中,PE=EC=2,PC=.∴,又∵.设点B到平面PEC的距离为d,由V P﹣BCE=V B﹣PCE,得,解得d=.∴点B到平面PEC的距离为.20.动圆P过定点A(2,0),且在y轴上截得的弦GH的长为4.(1)若动圆圆心P的轨迹为曲线C,求曲线C的方程;(2)在曲线C的对称轴上是否存在点Q,使过点Q的直线l'与曲线C的交点S、T满足为定值?若存在,求出点Q的坐标及定值;若不存在,请说明理由.【分析】(1)设P(x,y),过P作PB⊥GH,交GH于点B,则B为GH的中点,GB=GH=2,PG=,PA==,整理可得y2=4x(x≠0);(2)假设存在Q(a,0)满足题意,设S(x1,y1),T(x2,y2),设其方程为x=t1y+a (t1≠0),联立,利用根与系数关系表示出QS2,QT2,进而表示出即可.解:(1)设P(x,y),由题意知:PA=PG,当P点不在y轴上时,过P作PB⊥GH,交GH于点B,则B为GH的中点,∴GB=GH=2,∴PG=,又∵PA==,整理可得y2=4x(x≠0);当点P在y轴上时,易知P点与O点重合,P(0,0)也满足y2=4x,∴曲线C的方程为y2=4x,(2)假设存在Q(a,0)满足题意,设S(x1,y1),T(x2,y2),根据题意可知直线l′的斜率必不为0,设其方程为x=t1y+a(t1≠0),联立,整理可得y2﹣4t1y﹣4a=0,∴y1+y2=﹣4t1,y1y2=﹣4a,∴x1+x2=t1(y1+y2)+2a=4t12+2ax1x2==a2,∵QS2=(x1﹣a)2+=(x1﹣a)2+4x1=x12+(4﹣2a)x1+a2,QT2=(x2﹣a)2+=(x2﹣a)2+4x2=x22+(4﹣2a)x2+a2,∴QS2+QT2=x12+(4﹣2a)x1+a2+x22+(4﹣2a)x2+a2=(x1+x2)2+(4﹣2a)(x1+x2)﹣2x1x2+2a2=(x1+x2)(x1+x2+4﹣2a)﹣2x1x2+2a2=(4+2a)(4++4),QS2•QT2=16a2(+1)2,则==,当a=2时,上式=与t1无关为定值,所以存在Q(2,0)使过点Q的直线与曲线交于点S、T满足为定值.21.已知函数f(x)=ax+,g(x)=﹣1.(1)讨论函数f(x)在(0,+∞)上的单调性;(2)若对任意的x∈(0,+∞),f(x)<g(x)恒成立,求实数a的取值范围.【分析】(1)对f(x)求导得,,然后分a≤0和a>0两个类别,讨论f'(x)的正负,即可得f(x)的单调性;(2)构造函数h(x)=e x﹣ax2﹣x﹣1(x>0),求出h'(x),令H(x)=h'(x)=e x﹣2ax﹣1,再求H'(x)=e x﹣2a,当时,易证得h(x)在(0,+∞)上为增函数,h(x)>h(0)=0成立,即f(x)<g(x)成立;当时,由H'(x)=e x ﹣2a=0,解得x=ln2a,可得函数H(x)的单调性即h'(x)的单调性,于是h'(x)≥h'(ln2a)≥2a﹣1﹣2aln2a,再令t(a)=2a﹣1﹣2aln2a(),求导可知t(a)在上为减函数,t(a)<,即h'(ln2a)<0,最后结合隐零点的思维可证得当时,对x∈(0,+∞),f(x)<g(x)不恒成立,因此得解.解:(1)∵f(x)=ax+,∴,当a≤0时,f'(x)<0,函数f(x)在(0,+∞)上单调递减;当a>0时,由f'(x)=0,得(舍负),当时,f'(x)<0,函数f(x)单调递减,当时,f'(x)>0,函数f(x)单调递增.(2)由f(x)<g(x),得e x﹣ax2﹣x﹣1>0,设h(x)=e x﹣ax2﹣x﹣1(x>0),则h'(x)=e x﹣2ax﹣1,令H(x)=e x﹣2ax﹣1,则H'(x)=e x﹣2a,当时,∵x∈(0,+∞),∴H'(x)>0,H(x)为增函数,∴H(x)=h'(x)>h'(0)=0,∴h(x)在(0,+∞)上为增函数,∴h(x)>h(0)=0成立,即f(x)<g(x)成立.当时,由H'(x)=e x﹣2a=0,解得x=ln2a,x∈(0,ln2a)时,H'(x)<0,H(x)为减函数,x∈(ln2a,+∞)时,H'(x)>0,H(x)为增函数,∴h'(x)≥h'(ln2a)≥2a﹣1﹣2aln2a,设t(a)=2a﹣1﹣2aln2a(),则t'(a)=﹣2ln2a<0,∴t(a)在上为减函数,∴t(a)<,即h'(ln2a)<0∴∃x0∈(0,+∞),当x∈(0,x0)时,h'(x)<0,h(x)为减函数,当x∈(x0,+∞)时,h'(x)>0,h(x)为增函数,又h(0)=0,∴当x∈(0,x0)时,h(x)<0,∴当时,对x∈(0,+∞),f(x)<g(x)不恒成立,综上所述,.请考生从第22、23题中任选一题作答,并用2B铅笔将答题卡上所选题目对应的方框涂黑,按所选涂题号进行评分;多涂、多答,按所涂的首题进行评分;不涂,按本选考题的首题进行评分.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(θ为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(φ+)+=0,P为直线l上的任意一点(1)Q为曲线C上任意一点,求P、Q两点间的最小距离;.(2)过点P作曲线C的两条切线,切点为A、B,曲线C的对称中心为点C,求四边形PACB面积的最小值.【分析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间的进行转换.(2)利用点到直线的距离公式的应用和三角形的面积公式的应用求出结果.解:(1)曲线C的参数方程为(θ为参数),转换为直角坐标方程为(x ﹣1)2+(y﹣1)2=1.直线l的极坐标方程为ρsin(φ+)+=0,转换为直角坐标方程为x+y+2=0.所以圆心(1,1)到直线x+y+2=0的距离d=,所以最小距离.(2)由于圆心到直线的最小距离d=2,所以构成的切线长为,所以四边形PACB面积的最小值为S=.[选修4-5:不等式选讲]23.已知函数.(1)当a=4时,求函数f(x)的定义域;(2)若函数f(x)的定义域为R,设a的最大值为s,当正数m,n满足=s时,求3m+4n的最小值.【分析】(1)a=4时,得出f(x)需满足|x+2|+|x﹣1|﹣4≥0,然后讨论x的取值,去掉绝对值号求出x的范围即可得出f(x)的定义域;(2)根据题意可知a≤|x+2|+|x﹣1|对x∈R恒成立,从而可得出a≤3,进而得出s=3,从而得出,然后即可得出,然后根据基本不等式即可得出3m+4n的最小值.解:(1)a=4时,|x+2|+|x﹣1|﹣4≥0,当x<﹣2时,﹣x﹣2﹣x+1﹣4≥0,解得;当﹣2≤x≤1时,x+2﹣x+1﹣4≥0,解得x∈∅;当x>1时,x+2+x﹣1﹣4≥0,解得,∴函数f(x)的定义域为{x|或x};(2)∵函数f(x)的定义域为R,∴|x+2|+|x﹣1|﹣a≥0对任意的x∈R恒成立,∴a≤|x+2|+|x﹣1|,又|x+2|+|x﹣1|≥|x+2﹣x+1|=3,∴a≤3,∴s=3,∴,且m>0,n>0,∴3m+4n=(2m+n)+(m+3n)==,当且仅当时取等号,∴3m+4n的最小值为.。
百校联盟2020届TOP20四月联考全国一卷数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}02|{2<--=x x x A ,}01|{<-=x x B ,则=B A ( ) A .)1,1(- B .)1,(-∞ C .)2,1( D .)2,(-∞2.设复数z 满足i ziz +=-3,则=z ( ) A .i 5251+ B .i 5251+- C .i 5251- D .i 5251--3.已知P 是ABC ∆所在平面内一点,且2ACAB PB +=,AP BC λ=,则=λ( ) A .2 B .1 C .2- D .1-4.把不超过实数x 的最大整数记作][x ,则函数][)(x x f =称作取整函数,又叫高斯函数.在]4,1[上任取x ,则]2[][x x =的概率为( ) A .41 B .31 C .21 D .32 5.执行如图所示的程序框图,则t 的值变动时,输出的x 值不可能是( )A .5B .9C .11D .136.已知点21,F F 是双曲线C :)0(1122>=-+a ay a x 的左,右焦点,点P 是以21,F F 为直径的圆与双曲线C 的一个交点,若21F PF ∆的面积为4,则双曲线C 的渐近线方程为( ) A .x y 54±= B .x y 45±= C .x y 552±= D .x y 25±=7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .58248++B .2424+C .2208+D .28 8.已知定义域为R 的函数)(x f 满足)()2(x f x f =-,且1≥x 时,22)(2+-+=x x x f x ,若0(6)2(log ><a a f a 且)1≠a ,则实数a 的取值范围是( )A.)2,1()1,21(B.),2()21,0(+∞C.)2,1()21,0( D.),2()1,21(+∞ 9.已知实数y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+-≥-+0220101y x y x y x ,若y mx z +=,z 的取值范围为集合A ,且]6,31[⊆A ,则实数m 的取值范围是( )A .]32,31[B .]32,911[-C .]31,911[-D .]6,32[10.已知数列}{n a 满足048,102141=+-<<a a a n ,且数列}4{22nn a a +是以8为公差的等差数列,设}{n a 的前n 项和为n S ,则满足10>n S 的n 的最小值为( )A .60B .61C .121D .12211.已知x A x f cos )(=,若直线π-=x y 2与)(x f 的图象有3个交点,且交点横坐标的最大值为t ,则( )A .1tan )(),,2(=-∈t t A ππB .1tan )2(),,2(=-+∞∈t t A ππC .1tan )(),,2(=-∈t t A ππD .1tan )2(),,2(=-+∞∈t t A ππ12.在三棱锥BCD A -中,BD AB DB AB DC DB AC AB ⊥=+==,4,,,则三棱锥BCD A -外接球的体积的最小值为( ) A .3264π B .332π C .328π D .34π二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知⎪⎩⎪⎨⎧≤+>-=1,11,11)(x x x x x f ,若)0)(1()1(>+=-a a f a f ,则实数a 的值为 .14.已知nx )3(+的展开式中所有偶数项系数之和为496,则展开式中第3项的系数为 . 15.已知B A ,是椭圆C 上关于原点对称的两点,若椭圆C 上存在点P ,使得直线PB PA ,斜率的绝对值之和为1,则椭圆C 的离心率的取值范围是 .16.已知四边形ABCD 中,133====DA CD BC AB ,设ABD ∆与BCD ∆面积分别为21,S S ,则2221S S +的最大值为 .三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列}{n a 满足31a a =,11232++=-n n n a a ,设n n n a b 2=. (1)求数列}{n b 的通项公式; (2)求数列}{n a 的前n 项和n S .18.每年的寒冷天气都会带热“御寒经济”,以餐饮业为例,当外面太冷时,不少人都会选择叫外卖上门,外卖商家的订单就会增加,下表是某餐饮店从外卖数据中抽取的5天的日平均气温与外卖订单数.(1)经过数据分析,一天内平均气温)(0C x 与该店外卖订单数y (份)成线性相关关系,试建立y关于x 的回归方程,并预测气温为C 012-时该店的外卖订单数(结果四舍五入保留整数); (2)天气预报预测未来一周内(七天),有3天日平均气温不高于C 010-,若把这7天的预测数据当成真实数据,则从这7天任意选取3天,预测外卖订单数不低于160份的天数为X ,求X 的分布列与期望.附注:回归方程a x b yˆˆˆ+=中斜率和截距的最小二乘估计公式分别为:x b y ax xy y x xbni ini i iˆˆ,)())((ˆ121-=---=∑∑==. 19.如图,在几何体ABCDEF 中,底面CDEF 是平行四边形,CD AB //,4,52,2,1====DF DE CD AB ,⊥DB 平面CDEF ,CE 与DF 交于点O .(1)求证://OB 平面ACF ;(2)若平面CAF 与平面DAF 所成的锐二面角余弦值为1030,求线段DB 的长度. 20.已知动圆M 与直线03=+x 相切,且与圆015822=+-+x y x 外切. (1)求动圆M 圆心轨迹C 的方程;(2)若直线l :m x y +=与曲线C 交于B A ,两点,且曲线C 上存在两点E D ,关于直线l 对称,求实数m 的取值范围及||||DE AB -的取值范围. 21.已知e ax x g ax e x f x -=-=2)(,)(.(1)若)(x f 的图象在1=x 处的切线与)(x g 的图象也相切,求实数a 的值;(2)若)()()(x g x f x F -=有两个不同的极值点)(,2121x x x x <,求证:2421a e e x x <.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+=+=ααsin 1cos 1t y t x (t 为参数,πα<≤0),以原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为θθρsin 2cos 2+=. (1)若直线l 过点)0,2(,求直线l 的极坐标方程;(2)若直线l 与曲线C 交于B A ,两点,求||||OB OA +的最大值. 23.选修4-5:不等式选讲 已知函数|2|)(2-+=x x x f . (1)解不等式||2)(x x f >;(2)若22232)(c b a x f ++≥(0,0,0>>>c b a )对任意R x ∈恒成立,求证:3227<⋅c ab .数 学(理科)参考答案一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共4小题,每小题5分,共20分. 把答案填在答题卡中对应题号后的横线上. 13.1 14.270 15.)1,23[16.87 三、解答题:本大题共70分,解答应写出文字说明、证明过程或演算步骤.17.解:(Ⅰ)由n nn a b 2=,得n n n b a 2=,代入11232++=-n n n a a 得 1112322+++=-n n n n a b ,即31=-+n n b b , 所以数列}{n b 是公差为3的等差数列, 又31a a =,所以8231b b =,即86211+=b b ,所以21=b , 所以13)1(31-=-+=n n b b n . (Ⅱ) 由13-=n b n 得nnn n n b a 2132-==, 所以n n n S 21328252232-++++=, 143221328252221+-++++=n n n S , 两式相减得113225325213)212121(3121+++-=--++++=n n n n n n S 所以nn n S 2535+-=. 18.(Ⅰ) 由题意可知65108642-=-----=x ,11051601401158550=++++=y ,40)4()2(024)(22222512=-+-+++=-∑=i ix x,55050)4(30)2(50)25(2)60(4))((1-=⨯-+⨯-+⨯+-⨯+-⨯=--∑=ni i iy y x x,所以75.1340550)())((ˆ12401-=-=---=∑∑==ni ini iix xy y x x b, 5.27)6(75.13110ˆˆ=-⨯+=-=x b y a, 所以y 关于x 的回归方程为5.2775.13ˆ+-=x y当12-=x 时,1935.1925.27)12(75.135.2775.13ˆ≈=+-⨯-=+-=x y. 所以可预测当平均气温为C 012-时,该店的外卖订单数为193份. (Ⅱ)由题意知,X 的取值可能为0,1,2,3.354)0(3734===C C X P ,3518)1(372413===C C C X P ,3512)2(371423===C C C X P ,351)3(3733===C C X P 所以X 的分布列为79351335122351813540)(=⨯+⨯+⨯+⨯=X E . 19.解:(Ⅰ)取CF 中点G ,连接OG AG ,, 在CDF ∆中,O 是DF 的中点,G 是CF 的中点, 所以CD OG CD OG 21,//=, 又2,1,===CD AB CD AB , 所以AB OG AB OG =,//所以四边形ABOG 为平行四边形, 所以AG OB //,又因为⊂AG 平面ACF ,⊄OB 平面ACF , 故//OB 平面ACF .(Ⅱ)由2=CD ,52==DE CF ,4=DF 可得222CF DF CD =+,所以DF CD ⊥,又⊥DB 平面CDEF ,故以D 为坐标原点,直线DB DC DF ,,分别为z y x ,,轴建立如图所示的空间直角坐标系xyz D -,则)0,0,0(D ,)0,0,4(F ,)0,2,0(C ,设a DB =,则),0,0(a B ,),1,0(a A , 所以)0,2,4(-=CF ,),1,4(a AF --=,)0,0,4(=DF . 设平面CAF 的一个法向量),,(111z y x m =,则⎪⎩⎪⎨⎧=⋅=⋅00AF m CF m 即⎩⎨⎧=--=-0402411111az y x y x ,取21=z 得)2,2,(a a m =,设平面DAF 的一个法向量),,(222z y x n =,则⎪⎩⎪⎨⎧=⋅=⋅00AF n DF n 即⎩⎨⎧=--=04042222az y x x ,取12=z 得)1,,0(a n -=,设平面CAF 与平面DAF 所成的锐二面角为θ, 则1030145|22|||||cos 222=++-==a a a n m n m θ, 整理得0281072524=+-a a , 解得42=a 或2572=a ,所以2=DB 或57.20.解:(Ⅰ)圆015822=+-+x y x 化为标准方程为1)4(22=+-y x ,设动圆M 圆心坐标为),(y x P ,由动圆M 与直线03=+x 相切,且与圆015822=+-+x y x 外切, 得41|3|)4(22+=++=+-x x y x , 两边平方整理得x y 162=.所以动圆M 圆心轨迹C 的方程为x y 162=. (Ⅱ)m x y +=与x y 162=联立得,0)162(22=+-+m x m x ,因为直线l 与曲线C 交于B A ,两点, 所以04)162(22>--m m ,解得4<m ,① 设),(),,(2211y x B y x A ,则16221+-=+m x x ,221m x x =, 所以m x x x x x x AB -=-+=-=4284)(2||2||2122121,因为点E D ,关于直线l 对称, 设直线DE 方程为n x y +-=,与x y 162=联立得,0)162(22=++-n x n x ,由04)162(22>-+n n ,得4->n , 设),(),,(4433y x E y x D ,DE 中点),(00y x G 则8,8200430-=+-=+=+=n x y n x x x , 因为点G 也在直线m x y +=上,所以m n ++=-88, 所以m n --=16,代入4->n 得12-<m ,②由①②得,实数m 的取值范围为)12,(--∞. 又12284284)(2||2||4324343--=+=-+=-=m n x x x x x x DE ,所以mm m m DE AB --+-=----=-1242128)124(28||||,因为12-<m ,所以4124>--+-m m , 所以23212421280<--+-<mm ,所以||||DE AB -的取值范围是)232,0(. 21.解:(Ⅰ) 因为ax e x f x -=)(,所以a e x f x-=)('所以a e f -=)1(,a e f -=)1(',所以)(x f 的图象在1=x 处的切线方程为)1)(()(--=--x a e a e y ,即x a e y )(-=,与e ax x g -=2)(联立得,0)(2=---e x a e ax ,因为直线x a e y )(-=与)(x g 的图象相切, 所以04)(2=+-ea a e ,解得e a -=.(Ⅱ) e ax ax e x g x f x F x +--=-=2)()()(,a ax e x F x --=2)(',若0≤a ,)('x F 是增函数,0)('=x F 最多有一个实根,)(x F 最多有一个极值点,不满足题意,所以0>a ,由题意知02,022121=--=--a ax ea ax e x x,两式相减得21212x x e e a x x --=,由21221222124212121212121x x e e x x e e ea ea ee x x x x x x x x x x x x --<⇔--<⇔<⇔<--++,设t x x =-221,则0<t , 要证2421a e e x x <,即证0<t 时,t e e t t212-<恒成立, 即te e tt 21--<恒成立,即02<---t e e t t 恒成立, 设t e e t h t t 2)(--=-,则02)('>-+=-t t e e t h ,所以)(t h 在)0,(-∞上是增函数,所以0)0()(=<h t h ,所以0<t 时,02<---t e e t t 恒成立,即2421a ee x x <.22.解:(Ⅰ)由直线l 过点)0,2(,得所以1tan -=α,结合πα<≤0, 得43πα=,所以直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 221221(t 为参数),消去t ,得2=+y x , 把θρθρsin ,cos ==y x ,代入2=+y x 得直线l 的极坐标方程为2)sin (cos =+θθρ.(Ⅱ)曲线C 的普通方程为2)1()1(22=-+-y x ,所以曲线C 是以)1,1(为圆心且经过原点的圆, 因为直线l 过圆心)1,1(,所以OB OA ⊥,所以8||||22=+OB OA ,16|)||(|2||||2|||||)||(|2222=+≤⋅++=+OB OA OB OA OB OA OB OA所以4||||≤+OB OA (当且仅当2||||==OB OA 时取等号),故||||OB OA +的最大值为4.23.解:(Ⅰ) ||2|2|||2)(2x x x x x f >-+⇔> ⎩⎨⎧>-+≥⇔x x x x 2222或⎩⎨⎧>-+<<x x x x 22202或⎩⎨⎧->-+≤xx x x 22022>⇔x 或10<<x 或20>⇔≤x x 或1<x所以不等式||2)(x x f >的解集为),2()1,(+∞-∞ .(Ⅱ)当2≥x 时,42222)(22=-+≥-+=x x x f ,当2<x 时,4747)21(2)(22≥+-=+-=x x x x f ,所以)(x f 的最小值为47,因为22232)(c b a x f ++≥对任意R x ∈恒成立, 所以4732222≤++c b a , 又222222222442)(232abc bc ac c b c a c b a ≥+≥+++=++,且等号不能同时成立, 所以47242<abc ,即3227<⋅c ab .“”——。
安徽省达标名校2020年高考四月大联考化学试卷一、单选题(本题包括15个小题,每小题4分,共60分.每小题只有一个选项符合题意)1.某学习小组设计实验探究H2S的性质,装置如图所示。
下列说法正确的是()A.若E中FeS换成Na2S,该装置也可达到相同的目的B.若F中产生黑色沉淀,说明硫酸的酸性比氢硫酸强C.若G中产生浅黄色沉淀,说明H2S的还原性比Fe2+强D.若H中溶液变红色,说明氢硫酸是二元弱酸2.下列实验操作、现象与对应的结论或解释正确的是选项操作现象结论或解释A 用洁净铂丝蘸取某溶液进行焰色反应火焰吴黄色原溶液中有,无B将与乙醇溶液共热产生的气体通入盛有少量酸性溶液中溶液紫色褪去发生消去反应,且气体产物有乙烯C 向溶液中滴加过量氨水得到澄清溶液与能大量共存D向盛有少量溴水的分液漏斗中加入裂化汽油,充分振荡,静置上、下层液体均近无色裂化汽油不可用作溴的萃取溶剂A.A B.B C.C D.D3.25℃,将浓度均为0.1mol/L的HA溶液V a mL和BOH溶液V b mL混合,保持V a+V b=100mL,生成物BA 易溶于水。
V a、V b与混合液pH的关系如下图。
下列叙述错误的是A.HA一定是弱酸B.BOH可能是强碱C.z点时,水的电离被促进D.x、y、z点时,溶液中都存在c(A-)+c(OH-)=c(B+)+c(H+)4.纪录片《我在故宫修文物》表现了文物修复者穿越古今与百年之前的人进行对话的职业体验,让我们领略到历史与文化的传承。
下列文物修复和保护的过程中涉及化学变化的是()A.A B.B C.C D.D5.有一瓶无色、有特殊气味的液体,是甲醇(CH3OH)或乙醇(C2H5OH)。
通过测定该液体充分燃烧后生成的二氧化碳和水的质量,再根据二氧化碳和水的质量可确定是那种物质,对原理解释错误的是A.求出碳、氢元素的质量比,与甲醇和乙醇中碳氢质量比对照,即可确定B.求出碳、氢原子的个数比,与甲醇和乙醇中碳氢个数比对照,即可确定C.求出碳、氢原子的物质的量比,与甲醇和乙醇中的碳氢物质的量比对照,即可确定D.求出碳、氢、氧原子的个数比,与甲醇和乙醇中的碳、氢、氧个数比对照,即可确定6.下列离子方程式书写正确的是A.食醋除水垢2H++CaCO3=Ca2++CO2↑+H2O:B.稀硝酸中加入少量亚硫酸钠:2H++SO32-=SO2↑+H2OC.处理工业废水时Cr(Ⅵ)的转化:Cr2O72-+3SO32-+8H+=3SO42-+2Cr3++4H2OD.用酸性KMnO4测定草酸溶液浓度:5C2O42-+2MnO4-+16H+=2Mn2++10CO2↑+8H2O7.向新制氯水中逐滴滴加NaOH溶液,溶液pH随时间的变化如图所示。