定积分与微积分基本定理最新衡水中学精品自用资料
- 格式:doc
- 大小:54.31 KB
- 文档页数:2
第三节定积分和微积分基本定理考纲解读1.认识定积分的实质背景、基本思想及观点.2.认识微积分基本定理的含义.命题趋向研究定积分的考察以计算为主,其应用主假如求一个曲边梯形的面积,题型主要为选择题和填空题.知识点精讲一、基本观点1.定积分的极念一般地,设函效 f x 在区间[a,b]上连续.用分点a = x0< x1< x2< L< x i- 1 < x i< L< x n = b 将区间 [ a, b] 平分红 n 个小区间,每个小区间长度为b-a),D x(D x =n在每个小区间 [x i- 1 , x i]上任取一点i i 1,2, L ,nn,作和式: S n f ( i ) xi1n b af (i ) ,当D x无穷靠近于0(亦即 n)时,上述和式 S n无穷趋近于常数S ,i 1n那么称该常数 S 为函数 f ( x)在区间[ a, b]上的定积分.记为:S bf ( x )dx ,f (x)为a被积函数, x 为积分变量, [ a, b] 为积分区间,b为积分上限, a 为积分下限.需要注意以下几点:(1)定积分bf x dx是一个常数,即S n无穷趋近的常数S(n时),称为( )aba f ( x )dx ,而不是 S n.(2)用定义求定积分的一般方法 .n ①切割: n 平分区间a,b;②近似取代:取点;③乞降:[ ]i x i 1 , x ii 1b af ( i ) ;nb n b a④取极限:lim ff ( x)dx ia nni 1(3)曲边图形面积:S bx dx ;变速运动行程S t2bf v(t )dt ;变力做功S F (x) dx a t1a2.定积分的几何意义从几何上看,假如在区间 [a,b ]上函数f(x)连续且恒有 f ( x) 0,那么定积分b f x dx 表a示由直线 x a, x b(a b), y0 和曲线y = f (x ) 所围成的曲边梯形(如图 3-13 中的暗影b部分所示 )的面积,这就是定积分 f x dx的几何意义.ab( )x 轴、函数一般状况下,定积分f的值的几何意义是介于 f ( x)的图像以及直线dxax = a , x = b 之间各部分面积的代数和,在 x 轴上方的面积取正号,在 x 轴下方的面积取负号.二、基天性质b性质 11dx b a .abb 性质 2kf (x) dx kf ( x)dx (此中 k 是不为 0的常数 ) (定积分的线性性质) .aab [ f 1 ( x) f 2 (x)]dxb ( x)dxb性质 3f 1f 2 ( x) dx (定积分的线性性质) .aaab( )c( )b ( )(此中)性质 4(定积分对积分区间的可加性)f x dxf x dxf x dxa c baa cbbbb推行 1[ f 1 ( x) f 2 ( x) Lf m (x)]dxf 1 ( x)dxf 2 (x)dx Lf m (x)aaaa推行 2bf (x)dxc 1f ( x)dxc 2 f (x)dx bf ( x)dxc 1L.aac k 三、基本定理设函数 f ( x) 是在区间 [ a,b] 上连续,且 F x是 f (x) 是在 [a,b] 上的随意一个原函数,即 F ' (x)f (x) ,则ba f ( x)dxF (b)F (a),或记为ba f ( x)dxF bxaF (b) F ( a) ,称为牛顿 — 莱布尼兹公式,也称为微积分基本定理.该公式把计算定积分归纳为求原函数的问题,只需求出被积函数f x 的一个原函数F x .而后计算原函数 F x 在区间 a,b 上的增量 F (b) F (a) 即可,这必定理提示了定积分与不定积分之间的内在联系.题型概括及思路提示题型 51 定积分的计算思路提示关于定积分的计算问题,若该定积分拥有明显的几何意义,如圆的面积等(例 3.26 及其变式),则利用圆面积计算,不然考虑用牛顿-莱布尼茨公式计算.1 sin x dx =例 3.25( 2012 江西 11)计算x2.-11x 2 sin x dx= 1x 311cos11cos12 . 分析cos x-131 333A.B. C.D.变式 1 4 1dx2xA. -2ln 2B.2ln 2 C. -ln2D.ln 212x) dx变式 2(exA.1B e 1 .C. eD.e+11设函数 fx ax2c a0 ,若x dxf x 0 0x 0 1 ,则 x 0 的值变式 3 f为.变式 4 设函数 y f x 的定义域为 R, 若关于给定的正数k ,定义函数f k xk, f ( x) k,则当函数 fx1, k 1时,定积分2 f k x dx 的值为fx , f x1kx4()A. 2ln 2 2B. 2ln2 1C. 2ln2D. 2ln2 1例 3.26 依据定积分的几何意义计算以下定积分42 x dx ;1(1)( 2)1 x 2dx1剖析 依据定积分的几何意义,利用图形的面积求解.分析 依据定积分的几何意义,所求的定积分是直线所围成图形(如图3-14 所示)的面积的 代数和,很明显这是两个面积相等的等腰直角三角形,如图 3-14 所示,其面积代数和是 0,4x dx0 .故 2(2)依据定积分的几何意义, 所求的定积分是曲线 x 2y 21 y0 和 x 轴围成图形 (如图 3-15 所示)的面积,明显是半个单位圆,其面积是,故1 1 x2 dx= .122评注 定积分bx dx 的几何意义是函数和直线xa, xb 以及 x 轴所围成的图形面积的a代数和, 面积是正当 ,但积分值却有正当和负值之分, 当函数时 , fx0 面积是正当, 当函数 fx0 时,积分值是负值.变式 1 依据定积分的几何几何意义计算以下定积分.4x 2dx ;103x 2 dx ; 4 4sin xdx .(1)( 2)2 ( 3)sin xdx ;( 4)4题型 52 求曲边梯形的面积思路提示函数 y f x , yg x 与直线 xa, x b a b 围成曲边梯形的面积为Sb xg x | dx ,详细思路是:先作出所波及的函数图象,确立出它们所围成图形|fa的上、下曲线所对应函数,被积函数左、右界限分别是积分下、上限.例 3.27 由曲线 yx 2 , y x 3 围成的关闭图形的面积为( )1B.11D.7A.4C.12123分析 由 x 2x 3 得 x 0或x 1,则由 yx 2 和 y x 3 围成的关闭图形的面积为 1 2 31 3 1 4 1 1 1 1 x x dx x x 0 ,应选 A . 03 4 3 4 12所求,则它与 x 轴所围成变式( 2012 湖北理 )已知二次函数 y f x的图象如图3-1613图形的面积为( )2 4 3A.B.C.D.532 2y11O1x图 3-16变式 2 由曲线 yx 2 和直线 x 0, x 1, y t 2 , t 0,1 所围成的图形(如图3-17 中暗影部分所示)面积的最小值为()2 1 1 1A.B.C.D.3324变式 3 求抛物线 y 24x 与 y 2x 4 围成的平面图形的面积. 变式 4 求由两条曲线y 4x 2, y1x 2 和直线 y 4 所围成的面积.4最有效训练题 16(限时 45 分钟)1.已知函数A. -2B.f x x22x 3 ,则1f x dx ()116 16C.-4D.33 2.定积分 1 x 121x dx ()A,211 D.14B.2C.42f xx 2 , x0,12 ()设,则f x dx3.2 x, x (1,2]3 4 C.5A.B.D. 不存在4562 xdx, b 224. a e xdx, csin xdx ,则 a,b,c 的大小关系是()A, a c b B. a b c C. c b a D. c a b5.曲线 ysin x, y cos x 与直线 x 0, x2所围成的平面地区的面积为()A, 1 B. 2 C.2 1D. 2 2 16.由直线 x, x , y 0 与曲线 ycos所围成的平面图形的面积为()33A,1 B. 13 D.32C.27.抛物线 y 2 2x 与直线 y4 x 围成的平面图形的面积为.8.已知 fx5 x dx5 x dx是偶函数,且f6 ,则f.52 |1 x | dx9.2 .10.已知函数 yf x 的图象是折线段, 1 .函数ABC ,此中,5 , C 1,0 A0,0 B2y xf x0 x1 的图象与 x 轴所围成的图形的面积为.11.依据定积分的几何意义计算以下定积分.122 12(1)|x|dx ;(2)x(3)x 1 x dx ;x 4 dx ;111(4)2x (5)2cos 2xcosdx ;dx2cos x sin x12.有一条直线与抛物线 y x 2 订交于A,B两点,线段AB与抛物线所围成图形的面积恒等于 4,求线段AB的中点P的轨迹方程.3。
定积分与微积分基本定理
主标题:定积分与微积分基本定理
副标题:为学生详细的分析定积分与微积分基本定理的高考考点、命题方向以及规律总结。
关键词:定积分,应用
难度:4
重要程度:5
考点剖析:
了解定积分的实际背景,初步掌握定积分的相关概念,体会定积分的基本方法.了解微积分基本定理的含义,能利用微积分基本定理计算简单的定积分,解决一些简单的几何和物理问题.
命题方向:定积分及其应用是新课标中的新增内容,常考查:①依据定积分的基本运算求解简单的定积分;②根据定积分的几何意义和性质求曲边梯形面积.关键在于准确找出被积函数的原函数,利用微积分基本定理求解.各地考纲对定积分的要求不高.学习时以掌握基础题型为主.
规律总结:
1.求定积分常用的方法
(1)利用微积分基本定理.
(2)运用定积分的几何意义(曲边梯形面积易求时)转化为求曲边梯形的面积.
2.定积分计算应注意的问题+
(1)利用微积分基本定理,关键是准确求出被积函数
知 识 梳 理
1.定积分的定义:如果函数()f x 在区间[,]a b 上连续,用分点01a x x =<< 1i i n x x x b -<<<<= 将区间[,]a b 等分成个小区间,在每个小区间1[,]i i x x -上任取一点(1,2,)i i n ξ= ,当n →∞时,和式1()n i i b a f n
ξ=-∑无限接近某个常数,这个常数叫做函数()f x 在区间[,]a b 上的定积分,记做:()b a f x dx ⎰.记:()b a f x dx ⎰=lim n →∞1()n
i i b a f n ξ=-∑,,a b 分别叫做积分下限和积分上限,区间[,]a b 叫做积分区间.
2.定积分几何意义:如果函数()f x 在区间[,]a b 上连续且恒有()0f x ≥ ,那么定积分
()b
a f x dx ⎰表示由直线,,0x a x
b y ===和曲线()y f x =所围成的曲边梯形的面积,这就
是定积分分几何意义.
3.定积分性质:(1)
()()()()b c b a a c f x dx f x dx f x dx a c b =+<<⎰⎰⎰ (2)()()(b b
a
a kf x dx k f x dx k =⎰⎰为常数)1212(3)[()()]()()
b b b a a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ 4.微积分基本定理
一般地,如果函数()f x 是区间[,]a b 上的连续函数,并且()()F x f x '=,那么()()()b a f x dx F a F b =-⎰。