2018年高考数学二轮专题复习课件第一部分 第1讲
- 格式:ppt
- 大小:505.52 KB
- 文档页数:5
第一讲 函数的图象与性质A 组 基础题组1.函数f(x)=+的定义域为( )1x -1x A.[0,+∞)B.(1,+∞)C.[0,1)∪(1,+∞)D.[0,1)2.已知函数f(x)=3x -,则f(x)( )(13)xA.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数3.(2018湖北武汉调研)函数f(x)=log 2(x 2-4x-5)的单调递增区间是( )A.(-∞,-2) B.(-∞,-1)C.(2,+∞)D.(5,+∞)4.(2018河北石家庄模拟)已知f(x)=(0<a<1),且f(-2)=5, f(-1)=3,则f(f(-3))=( ){log 3x,x >0,a x+b,x ≤0A.-2B.2C.3D.-35.(2018湖南益阳、湘潭调研)函数f(x)=的图象大致是( )x 1-x26.(2018陕西质量检测一)设x ∈R,定义符号函数sgn x=则函数f(x)=|x|sgn x 的图{1,x >0,0,x =0,-1,x <0,象大致是( )7.(2018贵州贵阳模拟)已知函数f(x)是定义在R 上的奇函数,且当x ≥0时, f(x)=log 2(x+2)-1,则f(-6)=( )A.2 B. 4C.-2D.-48.已知函数f(x)=则下列结论正确的是( ){x 4+1,x >0,cos2x ,x ≤0,A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1,+∞)9.奇函数f(x)的定义域为R,若f(x+2)为偶函数,则f(8)=( )A.-1B.0C.1D.-210.已知函数f(x)=,则下列结论正确的是( )2x -1A.函数f(x)的图象关于点(1,0)中心对称B.函数f(x)在(-∞,1)上是增函数C.函数f(x)的图象关于直线x=1对称D.函数f(x)的图象上至少存在两点A,B,使得直线AB ∥x 轴11.(2018四川成都模拟)已知定义在R 上的奇函数f(x)的图象关于直线x=1对称,且当x ∈[0,1]时, f(x)=log 2(x+1),则下列不等式正确的是( )A.f(log 27)<f(-5)<f(6)B.f(log 27)<f(6)<f(-5)C.f(-5)<f(log 27)<f(6)D.f(-5)<f(6)<f(log 27)12.(2018广东惠州模拟)已知函数f(x)=若函数f(x)的图象上关于原点对称的{kx -1,x ≥0,-ln(-x ),x <0,点有2对,则实数k 的取值范围是( )A.(-∞,0)B.(0,12)C.(0,+∞)D.(0,1)13.已知函数f(x)=若f(a)+f(1)=0,则实数a 的值为 .{2x,x >0,x +1,x ≤0,14.(2018广东惠州模拟)已知f(x)=x+-1,f(a)=2,则f(-a)= .1x 15.(2018河南洛阳第一次统考)若函数f(x)=ln(e x +1)+ax 为偶函数,则实数a= . 16.设函数f(x)=|x+a|,g(x)=x-1,对于任意的x ∈R,不等式f(x)≥g(x)恒成立,则实数a 的取值范围是 .B 组 提升题组 1.(2018重庆六校联考)函数f(x)=的大致图象为( )sin πx x22.已知函数f(x)=e |ln x|-,则函数y=f(x+1)的大致图象为( )|x -1x|3.某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示.已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t 之间的函数关系的是( )4.函数f(x)=的图象如图所示,则下列结论成立的是( )ax +b (x +c )2A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<05.(2018河南开封模拟)已知f(x)是定义在R 上周期为4的奇函数,当x ∈(0,2]时, f(x)=2x +log 2x,则f(2 015)=( )A.5 B. C.2 D.-2126.设函数f(x)=若f =2,则实数n 的值为( ){2x +n ,x <1,log 2x,x ≥1,(f(34)) A.-B.-C.D.541314527.∀x ∈,8x ≤log a x+1恒成立,则实数a 的取值范围是( )(0,13)A. B. C. D.(0,23)(0,12][13,1)[12,1)8.设曲线y=f(x)与曲线y=x 2+a(x>0)关于直线y=-x 对称,且f(-2)=2f(-1),则a=( )A.0B.C.D.113239.(2018福建福州模拟)已知函数f(x)=e x +e 2-x ,若关于x 的不等式[f(x)]2-af(x)≤0恰有3个整数解,则实数a 的最小值为( )A.1 B.2eC.e 2+1D.e 3+1e310.已知函数f(x)的定义域为R,且满足下列三个条件:①对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0;f (x 1)-f(x 2)x 1-x 2②f(x+4)=-f(x);③y=f(x+4)是偶函数.若a=f(6),b=f(11),c=f(2 017),则a,b,c 的大小关系正确的是( )A.a<b<cB.b<a<cC.a<c<bD.c<b<a 11.已知函数f(x)=的值域为R,则实数a 的取值范围是 . {(1-2a )x +3a ,x <1,ln x ,x ≥112.已知函数f(x)是定义在R 上的奇函数,当x ≥0时, f(x)=x 2,若对任意的x ∈[m-2,m],不等式f(x+m)-9f(x)≤0恒成立,则实数m 的取值范围是 .13.已知函数f(x)=若f(x-1)<f(2x+1),则x 的取值范围{3x 2+ln(1+x 2+x),x ≥0,3x 2+ln(1+x 2-x),x <0,为 .14.(2018陕西西安八校联考)函数f(x)在定义域R 内可导,若f(x)=f(2-x),且(x-1)f '(x)<0,设a=f(0),b=f,c=f(3),则a,b,c 的大小关系是 .(12)答案精解精析A 组 基础题组1.C 由题意知即0≤x<1或x>1.{x -1≠0,x ≥0,∴f(x)的定义域为[0,1)∪(1,+∞).2.B 易知函数f(x)的定义域为R,∵f(-x)=3-x -=-3x =-=-f(x),(13)-x (13)x[3x-(13)x ]∴f(x)为奇函数.又∵y=3x 在R 上为增函数,y=-在R 上为增函数,∴f(x)=3x -在R 上是增函数.故选B.(13)x(13)x3.D 由x 2-4x-5>0得x ∈(-∞,-1)∪(5,+∞).原函数f(x)=log 2(x 2-4x-5)由t=x 2-4x-5与y=log 2t 复合而成,当x ∈(-∞,-1)时,t=x 2-4x-5为减函数;当x ∈(5,+∞)时,t=x 2-4x-5为增函数.又y=log 2t 为增函数,所以函数f(x)=log 2(x 2-4x-5)的单调递增区间是(5,+∞).故选D.4.B 由题意得f(-2)=a -2+b=5①, f(-1)=a -1+b=3②.联立①②,结合0<a<1,得a=,b=1,所以f(x)=则f(-3)=+1=9,所以f(f(-12{log 3x,x >0,(12)x +1,x ≤0,(12)-33))=f(9)=log 39=2.故选B.5.B 易知函数f(x)的定义域为{x|x ≠±1}, f(-x)==-=-f(x),所以函数f(x)为奇函数.-x 1-(-x )2x 1-x 2当x ∈(0,1)时, f(x)=>0,排除D;当x ∈(1,+∞)时, f(x)=<0,排除A,C.故选B.x 1-x2x1-x26.C 函数f(x)=|x|sgn x=即f(x)=x,{x ,x ≠0,0,x =0,故函数f(x)=|x|sgn x 的图象为直线y=x.故选C.7.C 由题意,知f(-6)=-f(6)=-(log 28-1)=-3+1=-2,故选C.8.D 由f(-x)≠f(x)知f(x)不是偶函数,当x ≤0时, f(x)不是增函数,显然f(x)也不是周期函数,故选D.9.B 由奇函数f(x)的定义域为R,可得f(0)=0,由f(x+2)为偶函数,可得f(-x+2)=f(x+2),故f(x+4)=f((x+2)+2)=f(-(x+2)+2)=f(-x)=-f(x),则f(x+8)=f((x+4)+4)=-f(x+4)=-[-f(x)]=f(x),即函数f(x)的周期为8,所以f(8)=f(0)=0.故选B.10.A 由题知,函数f(x)=的图象是由函数y=的图象向右平移1个单位长度得到的,可得2x -12x 函数f(x)的图象关于点(1,0)中心对称,选项A 正确;函数f(x)在(-∞,1)上是减函数,选项B 错误;易知函数f(x)=的图象不关于直线x=1对称,选项C 错误;由函数f(x)的单调性及函数f(x)2x -1的图象可知函数f(x)的图象上不存在两点A,B,使得直线AB ∥x 轴,选项D 错误.11.C 因为奇函数f(x)的图象关于直线x=1对称,所以函数f(x)是以4为周期的周期函数,所以f(-5)=f(-1)=-f(1)=-1, f(6)=f(2)=f(0)=0.于是,结合题意可画出函数f(x)在[-2,4]上的大致图象,如图所示.又2<log 27<3,所以结合图象可知-1<f(log 27)<0,故f(-5)<f(log 27)<f(6).故选C.12.D 依题意,函数f(x)的图象上存在关于原点对称的点,可作出函数y=-ln(-x)(x<0)的图象关于原点对称的函数y=ln x(x>0)的图象,使得它与直线y=kx-1(x>0)的交点个数为2即可,当直线y=kx-1与函数y=ln x 的图象相切时,设切点为(m,ln m),又y=ln x 的导函数为y'=,则1x解得可得切线的斜率为1,结合图象可知k ∈(0,1)时,函数y=ln x 的图{km -1=ln m ,k =1m ,{m =1,k =1,象与直线y=kx-1有2个交点,即函数f(x)的图象上关于原点对称的点有2对.故选D.13.答案 -3解析 ∵f(1)=2>0,且f(1)+f(a)=0,∴f(a)=-2<0,故a ≤0.依题知a+1=-2,解得a=-3.14.答案 -4解析 因为f(x)=x+-1,所以f(a)=a+-1=2,所以a+=3,所以f(-a)=-a--1=--1=-3-1=-4.1x 1a 1a 1a (a +1a )15.答案 -12解析 ∵函数f(x)是偶函数,∴f(x)-f(-x)=ln(e x +1)+ax-ln(e -x +1)+ax=ln+2ax=lne x+1e -x +1e x +2ax=(1+2a)x=0恒成立.∴1+2a=0,即a=-.1216.答案 [-1,+∞)解析 如图,要使f(x)≥g(x)恒成立,则-a ≤1,∴a ≥-1.B 组 提升题组1.D 易知函数f(x)=为奇函数且定义域为{x|x ≠0},只有选项D 满足,故选D.sin πx x22.A 根据已知函数关系式可得f(x)=作出其图象,然后将其向左{e-ln x+(x -1x )=x,0<x ≤1,e ln x-(x -1x )=1x ,x >1.平移1个单位即得函数y=f(x+1)的图象,结合选项知A 正确.3.A 若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10 ℃,所以当t=12时,平均气温应该为10 ℃,故排除B;因为在靠近12月份时其温度小于10 ℃,因此12月份前的一小段时间内的平均气温应该大于10℃,故排除C;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D.故选A.4.C 函数f(x)的定义域为{x|x ≠-c},由题中图象可知-c=x P >0,即c<0,排除B.令f(x)=0,可得x=-,则x N =-.又x N >0,所以<0.所以a,b 异号,排除A,D.故选C.ba ba ba 5.D 由题意得f(2 015)=f(4×504-1)=f(-1)=-f(1).又当x ∈(0,2]时, f(x)=2x +log 2x,故f(1)=2+log 21=2,所以f(2 015)=-2.故选D.6.D 因为f=2×+n=+n,当+n<1,即n<-时, f =2+n=2,解得n=-,不符合题意;(34)34323212(f(34))(32+n )13当+n ≥1,即n ≥-时, f =log 2=2,即+n=4,解得n=.故选D.3212(f(34))(32+n )32527.C 由各选项及题意可得解得≤a<1.{0<a <1,log a 13+1≥2,138.C 依题意得曲线y=f(x)即为-x=(-y)2+a(其中-y>0,即y<0,注意到点(x 0,y 0)关于直线y=-x 的对称点是点(-y 0,-x 0)),化简后得y=-,即f(x)=-,于是有-=-2,由此解得-x -a -x -a 2-a 1-a a=.故选C.239.C 因为f(x)=e x +e 2-x >0,所以由[f(x)]2-af(x)≤0可得0<f(x)≤a.令t=e x ,g(t)=t+(t>0),画出函e2t数g(t)的大致图象,如图所示,结合图象分析易知原不等式有3个整数解可转化为0<g(t)≤a 的3个解分别为1,e,e 2.又当t=e x 的值分别为1,e,e 2时,x=0,1,2.画出直线y=e 2+1,故结合函数图象可知a 的最小值为e 2+1.故选C.10.B ∵对任意的x 1,x 2∈[4,8],当x 1<x 2时,都有 >0,f (x 1)-f(x 2)x 1-x 2∴函数f(x)在区间[4,8]上为增函数.∵f(x+4)=-f(x),∴f(x+8)=-f(x+4)=f(x),∴函数f(x)是周期为8的周期函数.∵y=f(x+4)是偶函数,∴函数f(x)的图象关于直线x=-4对称,又函数f(x)的周期为8,∴函数f(x)的图象也关于直线x=4对称.∴b=f(11)=f(3)=f(5),c=f(2 017)=f(252×8+1)=f(1)=f(7).又a=f(6),函数f(x)在区间[4,8]上为增函数,∴b<a<c.故选B.11.答案 [-1,12)解析 要使函数f(x)的值域为R,则有∴{1-2a >0,ln1≤1-2a +3a ,{a <12,a ≥-1,∴-1≤a<.1212.答案 [4,+∞)解析 依题意知函数f(x)在R 上单调递增,且当x ∈[m-2,m]时, f(x+m)≤9f(x)=f(3x),所以x+m ≤3x,即x ≥恒成立,于是有≤m-2,解得m ≥4,即实数m 的取值范围是[4,+∞).m 2m213.答案 (-∞,-2)∪(0,+∞)解析 若x>0,则-x<0, f(-x)=3(-x)2+ln(+x)=3x 2+ln(+x)=f(x),同理可得,当x<01+x 21+x 2时, f(-x)=f(x),且x=0时,f(0)=f(-0),所以f(x)是偶函数.因为当x>0时,函数f(x)单调递增,所以不等式f(x-1)<f(2x+1)等价于|x-1|<|2x+1|,整理得x(x+2)>0,解得x>0或x<-2.14.答案 b>a>c解析 因为f(x)=f(2-x),所以函数f(x)的图象关于直线x=1对称.因为(x-1)f '(x)<0,所以当x>1时, f '(x)<0,所以函数f(x)在(1,+∞)上单调递减;当x<1时, f '(x)>0,所以函数f(x)在(-∞,1)上单调递增.取符合题意的函数f(x)=-(x-1)2,则a=f(0)=-1,b=f=-,c=f(3)=-4,故b>a>c.(12)14。
专题一 集合、常用逻辑用语、函数与导数、不等式第1节 集合、常用逻辑用语自主学习导引真题感悟1.(2012·浙江)设集合A ={x | 1<x <4},集合B ={x | x 2-2x -3≤0},则A ∩(∁R B )=A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)解析 首先用区间表示出集合B ,再用数轴求A ∩(∁R B ).解x 2-2x -3≤0得-1≤x ≤3,∴B =[-1,3],则∁R B =(-∞,-1)∪(3,+∞),∴A ∩(∁R B )=(3,4). 答案 B2.(2012·福建)下列命题中,真命题是A .∃x 0∈R ,0e x≤0 B .∀x ∈R,2x >x 2C .a +b =0的充要条件是ab =-1 D .a >1,b >1是ab >1的充分条件 解析 应用量词和充要条件知识解决.对于∀x ∈R ,都有e x >0,故选项A 是假命题;当x =2时,2x =x 2,故选项B 是假命题;当a b =-1时,有a +b =0,但当a +b =0时,如a =0,b =0时,ab 无意义,故选项C 是假命题;当a >1,b >1时,必有ab >1,但当ab >1时,未必有a >1,b >1,如当a =-1,b =-2时,ab >1,但a 不大于1,b 不大于1,故a >1,b >1是ab >1的充分条件,选项D 是真命题. 答案 D考题分析高考对集合的考查主要集中在集合的运算与集合间关系的判定与应用,常用逻辑用语考查知识面十分广泛,可以涵盖函数、立体几何、不等式、向量、三角函数等内容.考查的形式多为选择题,难度不大,但需掌握基本知识与方法.网络构建高频考点突破考点一:集合的概念与运算【例1】(1)(2012·朝阳二模)已知集合A={0,1},B={-1,0,a+3},且A⊆B,则a等于A.1B.0C.-2D.-3(2)(2012·西城二模)已知集合A={x| log2x<1},B={x| 0<x<c,其中c>0}.若A∪B=B,则c的取值范围是A.(0,1] B.[1,+∞) C.(0,2] D.[2,+∞)(3)(2012·宜春模拟)设全集U=R,A={x| 2x(x-2)<1},B={x| y=ln(1-x)},则图中阴影部分表示的集合为A.{x| x≥1} B.{x| 1≤x<2}C.{x| 0<x≤1} D.{x| x≤1}[审题导引](1)利用子集的定义求解;(2)解出A,然后借助于数轴解决;(3)观察图形,求得阴影部分表示的集合,解出A,B并求解.[规范解答](1)∵A⊆B,∴a+3=1,∴a=-2.(2)解不等式log2x<1,得0<x<2,∴A={x| 0<x<2}.∵A ∪B =B ,∴A ⊆B ,∴c ≥2. (3)解不等式2x (x -2)<1=20得0<x <2, ∴A ={x | 0<x <2}.又易知B ={x | x <1},图中阴影部分表示的集合为A ∩(∁U B )={x | 0<x <2}∩{x | x ≥1}={x | 1≤x <2}.[答案] (1)C (2)D (3)B 【规律总结】解答集合间的关系判定与运算问题的一般思路(1)正确理解各个集合的含义,认清集合元素的属性、代表的意义. (2)根据集合中元素的性质化简集合.(3)在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化. 一般规律为:①若给定的集合是不等式的解集,用数轴求解; ②若给定的集合是点集,用数形结合法求解; ③若给定的集合是抽象集合,用Venn 图求解.[易错提示] (1)准确理解集合中代表元素的属性,以求解有关不等式(如例1中的第(3)题,集合B 表示函数y =ln(1-x )的定义域). (2)在借助于数轴进行集合的运算时,要标清实点还是虚点,避免漏解或增解(如例1中的第(2)题).【变式训练】1.(2012·三明模拟)已知集合M ={m ,-3},N ={x | 2x 2+7x +3<0,x ∈Z },如果M ∩N ≠∅,则m 等于A .-1B .-2C .-2或-1D .-32 解析 由2x 2+7x +3<0,得-3<x <-12, 又x ∈Z ,∴N ={-2,-1}, 又M ∩N ≠∅,∴m =-2或-1.答案 C2.(2012·海淀二模)设全集为R ,集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x 24+y 2=1,N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -3x +1≤0,则集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎝⎛⎭⎪⎫x +322+y 2=14可表示为 A .M ∪N B .M ∩NC .(∁R M )∩ND .M ∩(∁R N )解析 根据椭圆的有界性知M ={x | -2≤x ≤2},解不等式x -3x +1≤0,得N ={x | -1<x ≤3}.由圆的定义可得⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎝⎛⎭⎪⎫x +322+y 2=14 ={x | -2≤x ≤-1},即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪⎝⎛⎭⎪⎫x +322+y 2=14=M ∩(∁R N ). 答案 D考点二:命题与逻辑联结词【例2】(1)(2012·潍坊模拟)命题:“若x 2<1,则-1<x <1”的逆否命题是 A .若x 2≥1,则x ≥1,或x ≤-1B .若-1<x <1,则x 2<1C .若x >1,或x <-1,则x 2>1D .若x ≥1,或x ≤-1,则x 2≥1 (2)若p 是真命题,q 是假命题,则A .p ∧q 是真命题B .p ∨q 是假命题C .⌝p 是真命题D .⌝q 是真命题[审题导引] (1)按照四种命题的定义即可解决;(2)由复合命题的真值表判定. [规范解答] (1)∵“-1<x <1”的否定是x ≥1, 或x ≤-1.又由逆否命题的定义,∴原命题的逆否命题为:若x ≥1,或x ≤-1,则x 2≥1. (2)由条件知,⌝p 是假命题,⌝q 是真命题,故选D. [答案] (1)D (2)D 【规律总结】命题真假的判定方法(1)一般命题p 的真假由涉及到的相关交汇知识辨别.(2)四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无必然联系.(3)形如p 或q 、p 且q 、⌝p 命题的真假根据真值表判定. 【变式训练】3.(2012·衡水模拟)命题A :若函数y =f (x )是幂函数,则函数y =f (x )的图象不经过第四象限.那么命题A 的逆命题、否命题、逆否命题这三个命题中假命题的个数是 A .0 B .1 C .2 D .3解析 易知命题A 是真命题,其逆否命题也是真命题,A 的逆命题与否命题都是假命题. 答案 C 4.(2012·石家庄模拟)有下列命题:p :函数f (x )=sin 4x -cos 4x 的最小正周期是π;q :已知向量a =(λ,1),b =(-1,λ2),c =(-1,1),则(a +b )∥c 的充要条件是λ=-1; r :若111a dx x=⎰(a >1),则a =e . 其中所有的真命题是A .rB .p ,qC .q ,rD .p ,r 解析 ∵f(x)=sin 4x -cos 4x=(sin 2x +cos 2x )(sin 2x -cos 2x )=-cos 2x , ∴T =π,故p 是真命题;∵a +b =(λ-1,λ2+1),(a +b )∥c , 则λ2+λ=0,即λ=-1或λ=0, 故q 是假命题; ⎠⎛1a1x d x =ln x 1|a=ln a =1, ∴a =e ,故r 是真命题. 答案 D考点三:量词、含有量词的命题的否定【例3】下列命题中是假命题的是 A .∀x ∈⎝ ⎛⎭⎪⎫0,π2,x >sin xB .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R, 3x >0D .∃x 0∈R ,lg x 0=0[审题导引] 对全称命题与特称命题真假的判定,要结合具体的知识进行,要特别注意思维的严谨性.[规范解答] ∀x ∈⎝ ⎛⎭⎪⎫0,π2,设单位圆与角x 的终边交于点P (m ,n ),与m 轴正半轴交于点A (1,0),作PM ⊥m 轴于M ,由正弦函数的定义,知MP =sin x ,»AP 的长l =x ,由S 扇形OAP >S △OAP ⇒x >sin x ,故∀x ∈⎝ ⎛⎭⎪⎫0,π2,x >sin x ,即选项A 是真命题;sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4≤2,所以不存在x 0∈R ,使sin x 0+cos x 0=2,故选项B 是假命题.故选B.(事实上,由指数函数的值域∀x ∈R,3x >0是真命题;取x 0=1,lg x 0=lg 1=0,故∃x 0∈R ,lg x 0=0是真命题.) [答案] B【规律总结】全称命题与特称命题的判断方法对于特称命题的判断,只要能找到符合要求的元素使命题成立,即可判断该命题成立;对于全称命题的判断,必须对任意元素证明这个命题为真,也就是证明一个一般性的命题成立时,方可证明该命题成立,而只要找到一个特殊元素使命题为假,即可判断该命题不成立. [易错提示] 注意对数函数、指数函数、三角函数、不等式、方程等知识在解题中的应用,在判断由这些知识组成的全称或者特称命题时,要特别注意对数函数的定义域、指数函数的值域、三角函数的定义域和周期性、不等式成立的条件等. 【变式训练】5.(2012·朝阳二模)若命题p :∀x ∈R ,1x 2+x +1>0,则其否定是_______________.解析 ∵不等式1x 2+x +1>0的隐含条件为1x 2+x +1>0且x 2+x +1≠0,∴綈p :∃x ∈R ,1x 2+x +1<0,或x 2+x +1=0. 答案 綈p :∃x ∈R ,1x 2+x +1<0,或x 2+x +1=0 6.命题p 1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13x;p 2:∃x ∈(0,1),12log x >13log x ;p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >12log x ;p 4:∀x ∈⎝ ⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <13log x ,其中的真命题是A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析 取x =12,则12log x =1,13log x =log 32<1,p 2正确;当x ∈⎝ ⎛⎭⎪⎫0,13时,⎝ ⎛⎭⎪⎫12x <1,而13log x >1,p 4正确. 答案 D考点四:充分必要条件【例4】(1)(2012·黄冈模拟)已知条件p :x ≤1,条件q :<1,则綈p 是q 的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件(2)(2012·丰台二模)已知p :⎪⎪⎪⎪⎪⎪1-x -13≤2,q :x 2-2x +1-m 2≤0(m >0),若⌝p 是⌝q 的充分不必要条件,则实数m 的取值范围是A .(0,9)B .(0,3)C .(0,9]D .(0,3][审题导引] (1)求出綈p 与q 中x 的范围后,再判断; (2)先解p 与q 中的不等式,然后利用数轴求解. [规范解答] (1)⌝p :x >1,又易知q :x <0或x >1,∴⌝p 是q 的充分不必要条件.(2)解不等式⎪⎪⎪⎪⎪⎪1-x -13≤2得p :-2≤x ≤10, 又x 2-2x +1-m 2=[x -(1-m )][x -(1+m )]≤0, 且m >0,∴q :1-m ≤x ≤1+m .∵⌝p 是⌝q 的充分不必要条件,∴q 是p 的充分不必要条件.由图得⎩⎨⎧1-m >-21+m ≤10m >0或⎩⎨⎧1-m ≥-21+m <10m >0∴0<m ≤3.[答案] (1)A (2)D 【规律总结】充分必要条件的判定方法(1)充要关系的判断就是在两个条件之间互推,当问题为A 是B 的什么条件时,如果A ⇒B ,反之不成立的话,则A 是B 的充分不必要条件(B 是A 的必要不充分条件);如果B ⇒A ,反之不成立的话,则A 是B 的必要不充分条件(B 是A 的充分不必要条件);若A ⇔B ,则A ,B 互为充要条件.(2)充要关系可以从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件[易错提示] 充分必要条件的判断应注意问题的设问方式,我们知道:①A 是B 的充分不必要条件是指:A ⇒B 且B ¿A ;②A 的充分不必要条件是B 是指:B ⇒A 且A ¿B .在解题中一定要弄清它们的区别,以免出现错误. 【变式训练】7.(2012·咸阳二模)下面四个条件中,使a >b 成立的充分而不必要的条件是 A .a >b +1 B .a >b -1 C .a 2>b 2 D .a 3>b 3解析 ∵a >b +1>b ,∴a >b +1是a >b 的充分条件, 但当a >b 时不能推出a >b +1,故选A. 答案 A8.(2012·成都模拟)已知p :|x -10|+|9-x |≥a 的解集为R ,q :1a <1,则綈p 是q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件解析 ∵|x -10|+|9-x |≥1,且|x -10|+|9-x |≥a 的解集为R , ∴p :a ≤1,则⌝p :a >1;解不等式1a <1,得q :a <0或a >1, ∴⌝p 是q 的充分不必要条件.答案 A名师押题高考【押题1】设全集U =R ,集合A =⎩⎨⎧⎭⎬⎫x ∈Z ⎪⎪⎪x3-x ≥0,B ={x ∈Z | x 2≤9},则图中阴影部分表示的集合为A .{1,2}B .{0,1,2}C .{x | 0≤x <3}D .{x | 0≤x ≤3}解析 图中阴影表示的是A ∩B ,化简集合:A =⎩⎨⎧⎭⎬⎫x ∈Z ⎪⎪⎪xx -3≤0=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪⎪⎩⎨⎧ x (x -3)≤0,x -3≠0={x ∈Z | 0≤x <3}={0,1,2},B ={x ∈Z | -3≤x ≤3}={-3,-2,-1,0,1,2,3},所以A ∩B ={0,1,2},故选B.答案 B[押题依据] 高考对集合的考查集中在三个方面:集合的表示方法,元素的性质特征与集合的运算.本题与不等式的解法交汇命题、综合性较强.重点考查集合的运算,难度不大,但重点突出,立意新颖,故押此题.【押题2】已知命题p 1:当x ,y ∈R 时,|x +y |=|x |+|y |成立的充要条件是xy ≥0. p 2:函数y =2x +2-x 在R 内为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(⌝p 1)∨p 2和q 4:p 1∧(⌝p 2)中,真命题是 A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析 解法一 p 1是真命题,事实上:(充分性)若xy ≥0,则x ,y 至少有一个为0或两者同号,∴|x +y |=|x |+|y |一定成立.(必要性)若|x +y |=|x |+|y |,两边平方,得x 2+2xy +y 2=x 2+2|xy |+y 2,∴xy =|xy |.∴xy ≥0.故p 1为真.而对于p 2:y ′=2x ln 2-12x ln 2=ln 2⎝ ⎛⎭⎪⎫2x -12x ,当x ∈[0,+∞)时,2x ≥12x ,又ln 2>0,∴y ′≥0,函数单调递增;同理得当x ∈(-∞,0)时,函数单调递减,故p 2是假命题. 由此可知,q 1真,q 2假,q 3假,q 4真.故选C.解法二 p 1是真命题,同解法一.对p 2的真假可以取特殊值来判断,如取x 1=1<x 2=2,得y 1=52<y 2=174;取x 3=-1>x 4=-2,得y 3=52<y 4=174,即可得到p 2是假命题,由此可知,q 1真,q 2假,q 3假,q 4真.故选C.解法三 p 1是真命题,同解法一.对p 2:由于y =2x +2-x ≥22x ·2-x =2(等号在x =0时取得),故函数在R 上有最小值2,故这个函数一定不是单调函数,p 2是假命题,由此可知,q 1真,q 2假,q 3假,q 4真.故选C. 答案 C[押题依据] 常用逻辑用语重要的数学基础知识,是高考考查的热点,本题综合考查了命题的真假判断,充分必要条件及逻辑联结词,题目难度适中,体现了对基础知识,重点知识的考查,故押此题.必记内容: 高中数学三角函数公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
第一讲集合、常用逻辑用语年份卷别考查角度及命题位置命题分析2018Ⅰ卷集合的补集运算·T2本部分作为高考必考内容,多年来命题较稳定,多以选择题形式在第1、2题的位置进行考查,难度较低.命题的热点依然会集中在集合的运算上.对常用逻辑用语考查的频率不高,且命题点分散,多为几个知识点综合考查,难度中等,其中充分必要条件的判断近几年全国卷虽未考查,但为防高考“爆冷”考查,在二轮复习时不可偏颇.该考点多结合函数、向量、三角、不等式、数列等内容命题.Ⅱ卷集合中元素个数问题·T2Ⅲ卷集合交集运算·T12017Ⅰ卷集合的交、并运算与指数不等式解法·T1Ⅱ卷已知集合交集求参数值·T2Ⅲ卷已知点集求交点个数·T12016Ⅰ卷集合的交集运算·T1Ⅱ卷集合的并集运算、一元二次不等式的解法·T2Ⅲ卷集合的交集运算、一元二次不等式的解法·T1集合的概念及运算授课提示:对应学生用书第3页[悟通——方法结论]1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解. (2)若已知的集合是点集,用数形结合法求解. (3)若已知的集合是抽象集合,用Venn 图求解.(1)(2018·南宁模拟)设集合M ={x |x <4},集合N ={x |x 2-2x <0},则下列关系中正确的是( )A .M ∪N =MB .M ∪∁R N =MC .N ∪∁R M =RD .M ∩N =M解析:∵M ={x |x <4},N ={x |0<x <2},∴M ∪N ={x |x <4}=M ,故选项A 正确;M ∪∁R N =R ≠M ,故选项B 错误;N ∪∁R M ={x |0<x <2}∪{x |x ≥4}≠R ,故选项C 错误;M ∩N ={x |0<x <2}=N ,故选项D 错误.故选A.答案:A(2)(2018·宜昌模拟)已知两个集合A ={x ∈R |y =1-x 2},B ={x |x +11-x≥0},则A ∩B =( )A .{x |-1≤x ≤1}B .{x |-1≤x <1}C .{-1,1}D .∅解析:∵A ={x |-1≤x ≤1},B ={x |-1≤x <1},∴A ∩B ={x |-1≤x <1}. 答案:B破解集合运算需掌握2招第1招,化简各个集合,即明确集合中元素的性质,化简集合;第2招,借形解题,即与不等式有关的无限集之间的运算常借助数轴,有限集之间的运算常用Venn图(或直接计算),与函数的图象有关的点集之间的运算常借助坐标轴等,再根据集合的交集、并集、补集的定义进行基本运算.[练通——即学即用]1.(2018·高考全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为( )A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案:A2.(2018·德州模拟)设全集U=R,集合A={x∈Z|y=4x-x2},B={y|y=2x,x>1},则A∩(∁U B)=( )A.{2} B.{1,2}C.{-1,0,1,2} D.{0,1,2}解析:由题意知,A={x∈Z|4x-x2≥0}={x∈Z|0≤x≤4}={0,1,2,3,4},B={y|y>2},则∁U B={y|y≤2},则A∩(∁U B)={0,1,2},故选D.答案:D3.(2018·枣庄模拟)已知集合A={|m|,0},B={-2,0,2},若A⊆B,则∁B A=( ) A.{-2,0,2} B.{-2,0}C.{-2} D.{-2,2}解析:由A⊆B得|m|=2,所以A={0,2}.故∁B A={-2}.答案:C命题及真假判断授课提示:对应学生用书第4页[悟通——方法结论]1.全称命题和特称命题的否定归纳∀x∈M,p(x) ∃x0∈M,綈p(x0).简记:改量词,否结论.2.“或”“且”联结词的否定形式“p或q”的否定形式是“非p且非q”,“p且q”的否定形式是“非p或非q”.3.命题的“否定”与“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论.[全练——快速解答]1.(2018·西安质检)已知命题p:∃x0∈R,log2(3x0+1)≤0,则( )A.p是假命题;綈p:∀x∈R,log2(3x+1)≤0B.p是假命题;綈p:∀x∈R,log2(3x+1)>0C.p是真命题;綈p:∀x∈R,log2(3x+1)≤0D.p是真命题;綈p:∀x∈R,log2(3x+1)>0解析:∵3x>0,∴3x+1>1,则log2(3x+1)>0,∴p是假命题;綈p:∀x∈R,log2(3x +1)>0.答案:B2.给出下列3个命题:p1:函数y=a x+x(a>0,且a≠1)在R上为增函数;p2:∃a0,b0∈R,a20-a0b0+b20<0;p3:cos α=cos β成立的一个充分不必要条件是α=2kπ+β(k ∈Z).则下列命题中的真命题为( ) A .p 1∨p 2 B .p 2∨(綈p 3) C .p 1∨(綈p 3) D .(綈p 2)∧p 3解析:对于p 1,令f (x )=a x +x (a >0,且a ≠1),当a =12时,f (0)=⎝ ⎛⎭⎪⎫120+0=1,f (-1)=⎝ ⎛⎭⎪⎫12-1-1=1,所以p 1为假命题;对于p 2,因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -12b 2+34b 2≥0,所以p 2为假命题;对于p 3,因为cos α=cos β⇔α=2k π±β(k ∈Z ),所以p 3为真命题,所以(綈p 2)∧p 3为真命题,故选D.答案:D3.命题“若xy =1,则x ,y 互为倒数”的否命题为________;命题的否定为________. 答案:若xy ≠1,则x ,y 不互为倒数 若xy =1,则x ,y 不互为倒数判断含有逻辑联结词命题真假的方法方法一(直接法):(1)确定这个命题的结构及组成这个命题的每个简单命题;(2)判断每个简单命题的真假;(3)根据真值表判断原命题的真假.方法二(间接法):根据原命题与逆否命题的等价性,判断原命题的逆否命题的真假性.此法适用于原命题的真假性不易判断的情况.充分、必要条件的判断授课提示:对应学生用书第4页[悟通——方法结论]充分、必要条件的判断:考查形式多与其他知识交汇命题.常见的交汇知识点有:函数性质、不等式、三角函数、向量、数列、解析几何等,有一定的综合性.(1)“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当a=-2时,直线l1:2x+y-3=0,l2:2x+y+4=0,所以直线l1∥l2;若l1∥l2,则-a(a+1)+2=0,解得a=-2或a=1.所以“a=-2”是“直线l1:ax-y+3=0与l2:2x-(a+1)y+4=0互相平行”的充分不必要条件.答案:A(2)(2018·南昌模拟)已知m,n为两个非零向量,则“m与n共线”是“m·n=|m·n|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:当m与n反向时,m·n<0,而|m·n|>0,故充分性不成立.若m·n=|m·n|,则m·n=|m|·|n|cos〈m,n〉=|m|·|n|·|cos 〈m,n〉|,则cos〈m,n〉=|cos〈m,n〉|,故cos〈m,n〉≥0,即0°≤〈m,n〉≤90°,此时m与n不一定共线,即必要性不成立.故“m与n共线”是“m·n=|m·n|”的既不充分也不必要条件,故选D.答案:D快审题看到充分与必要条件的判断,想到定条件,找推式(即判定命题“条件⇒结论”和“结论⇒条件”的真假),下结论(若“条件⇒结论”为真,且“结论⇒条件”为假,则为充分不必要条件).用妙法根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy≠1”是“x≠1”或y≠1的某种条件,即可转化为判断“x=1且y=1”是“xy=1”的某种条件.避误区“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B的充分不必要条件”则是指A能推出B,且B不能推出A.[练通——即学即用]1.(2018·胶州模拟)设x,y是两个实数,命题“x,y中至少有一个数大于1”成立的充分不必要条件是( )A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1解析:当⎩⎪⎨⎪⎧x≤1y≤1时,有x+y≤2,但反之不成立,例如当x=3,y=-10时,满足x+y≤2,但不满足⎩⎪⎨⎪⎧x≤1y≤1,所以⎩⎪⎨⎪⎧x≤1y≤1是x+y≤2的充分不必要条件.所以“x+y>2”是“x,y中至少有一个数大于1”的充分不必要条件.答案:B2.(2018·合肥模拟)祖暅原理:“幂势既同,则积不容异”,它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如果在等高处的截面积恒相等,那么体积相等.设A,B为两个同高的几何体,p:A,B的体积不相等,q:A,B在等高处的截面积不恒相等,根据祖暅原理可知,p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:根据祖暅原理,“A,B在等高处的截面积恒相等”是“A,B的体积相等”的充分不必要条件,即綈q是綈p的充分不必要条件,即命题“若綈q, 则綈p”为真,逆命题为假,故逆否命题“若p,则q”为真,否命题“若q,则p”为假,即p是q的充分不必要条件,选A.答案:A授课提示:对应学生用书第115页一、选择题1.(2018·高考全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.答案:B2.(2017·高考山东卷)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.3.设A ={x |x 2-4x +3≤0},B ={x |ln(3-2x )<0},则图中阴影部分表示的集合为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <32 B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32 C.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1≤x <32 D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪32<x ≤3解析:A ={x |x 2-4x +3≤0}={x |1≤x ≤3},B ={x |ln(3-2x )<0}={x |0<3-2x <1}=⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 1<x <32,结合Venn 图知,图中阴影部分表示的集合为A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1<x <32. 答案:B4.(2017·高考全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.答案:B5.(2018·合肥模拟)已知命题q :∀x ∈R ,x 2>0,则( ) A .命题綈q :∀x ∈R ,x 2≤0为假命题 B .命题綈q :∀x ∈R ,x 2≤0为真命题 C .命题綈q :∃x 0∈R ,x 20≤0为假命题 D .命题綈q :∃x 0∈R ,x 20≤0为真命题解析:全称命题的否定是将“∀”改为“∃”,然后再否定结论.又当x =0时,x 2≤0成立,所以綈q 为真命题.6.(2018·郑州四校联考)命题“若a>b,则a+c>b+c”的否命题是( )A.若a≤b,则a+c≤b+cB.若a+c≤b+c,则a≤bC.若a+c>b+c,则a>bD.若a>b,则a+c≤b+c解析:命题的否命题是将原命题的条件和结论均否定,所以题中命题的否命题为“若a ≤b,则a+c≤b+c”,故选A.答案:A7.(2018·石家庄模拟)“x>1”是“x2+2x>0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由x2+2x>0,得x>0或x<-2,所以“x>1”是“x2+2x>0”的充分不必要条件.答案:A8.已知集合A={x|x2≥4},B={m}.若A∪B=A,则m的取值范围是( )A.(-∞,-2) B.[2,+∞)C.[-2,2] D.(-∞,-2]∪[2,+∞)解析:因为A∪B=A,所以B⊆A,即m∈A,得m2≥4,所以m≥2或m≤-2.答案:D9.(2018·石家庄模拟)已知a,b∈R,下列四个条件中,使“a>b”成立的必要不充分条件是( )A.a>b-1 B.a>b+1C.|a|>|b| D.2a>2b解析:由a>b-1不一定能推出a>b,反之由a>b可以推出a>b-1,所以“a>b-1”是“a>b”的必要不充分条件.故选A.答案:A10.已知命题p:“x=0”是“x2=0”的充要条件,命题q:“x=1”是“x2=1”的充要条件,则下列命题为真命题的是( )A.p∧q B.(綈p)∨qC.p∧(綈q) D.(綈p)∧q解析:易知命题p为真命题,q为假命题,根据复合命题的真值表可知p∧(綈q)为真命题.答案:C11.(2018·济宁模拟)已知命题p:“x<0”是“x+1<0”的充分不必要条件,命题q:若随机变量X~N(1,σ2)(σ>0),且P(0<X<1)=0.4,则P(0<X<2)=0.8,则下列命题是真命题的是( )A.p∨(綈q) B.p∧qC.p∨q D.(綈p)∧(綈q)解析:因为“x<0”是“x+1<0”的必要不充分条件,所以p为假命题,因为P(0<X<1)=P(1<X<2)=0.4,所以P(0<X<2)=0.8,q为真命题,所以p∨q为真命题.答案:C12.下列命题是假命题的是( )A.命题“若x2+x-6=0,则x=2”的逆否命题为“若x≠2,则x2+x-6≠0”B.若命题p:∃x0∈R,x20+x0+1=0,则綈p:∀x∈R,x2+x+1≠0C.若p∨q为真命题,则p、q均为真命题D.“x>2”是“x2-3x+2>0”的充分不必要条件解析:由复合命题的真假性知,p、q中至少有一个为真命题,则p∨q为真,故选项C 错误.答案:C二、填空题13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :________. 解析:全称命题的否定为特称(存在性)命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案:∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎨⎧(x ,y )⎪⎪⎪⎭⎬⎫y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析:集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M ∪P ={(x ,y )|x ∈R ,y ∈R ,且x ≠2,y ≠3},则∁U (M ∪P )={(2,3)}.答案:{(2,3)}15.已知A ={x |x 2-3x +2<0},B ={x |1<x <a },若A ⊆B ,则实数a 的取值范围是________.解析:因为A ={x |x 2-3x +2<0}={x |1<x <2}⊆B ,所以a ≥2.答案:[2,+∞)16.若关于x 的不等式|x -m |<2成立的充分不必要条件是2≤x ≤3,则实数m 的取值范围是________.解析:由|x -m |<2得-2<x -m <2,即m -2<x <m +2.依题意有集合{x |2≤x ≤3}是{x |m -2<x <m +2}的真子集,于是有⎩⎪⎨⎪⎧m -2<2m +2>3,由此解得1<m <4,即实数m 的取值范围是(1,4).答案:(1,4)。