1.行列式复习
- 格式:ppt
- 大小:401.00 KB
- 文档页数:15
线性代数复习提纲第一章行列式本章重点是行列式的计算,对于n阶行列式的定义只需了解其大概的意思。
要注重学会利用行列式的各条性质及按行(列)展开等基本方法来简化行列式的计算,对于计算行列式的技巧毋需作过多的探索。
1、行列式的性质D D。
(1)行列式与它的转置行列式相等,即 T (2)互换行列式的两行(列),行列式变号。
(3)行列式中如有两行(列)相同或成比例,则此行列式为零。
(4)行列式的某一行(列)中所有元素都乘以同一数k,等于用数k乘此行列式;换句话说,若行列式的某一行(列)的各元素有公因子k,则k可提到行列式记号之外。
(5)把行列式某一行(列)的各元素乘以同一数k,然后加到另一行(列)上,行列式的值不变。
(6)若行列式的某一行(列)的各元素均为两项之和,则此行列式等于两个行列式之和。
2、行列式的按行(按列)展开(1)代数余子式:把n 阶行列式中(),i j 元ij a 所在的第i 行和第j 列划掉后所剩的1-n 阶行列式称为(),i j 元ij a 的余子式,记作ij M ;记()1+=-i j ij ij A M ,则称ij A 为(),i j 元ij a 的代数余子式。
(2)按行(列)展开定理:n 阶行列式等于它的任意一行(列)的各元素与对应于它们的代数余子式的乘积之和,即可按第i 行展开:1122...,(1,2,...,)=+++=i i i i in in D a A a A a A i n 也可按第j 列展开:1122...,(1,2,...,)=+++=j j j j nj nj D a A a A a A j n(3)行列式中任意一行(列)的各元素与另一行的对应元素的代数余子式乘积之和等于零,即1122...0,()+++=≠i j i j in jn a A a A a A i j ; 或1122...,()+++≠i j i j ni nj a A a A a A i j 。
行列式知识点行列式是线性代数中的重要概念之一,广泛应用于数学、物理、工程和计算机科学等领域。
本文将介绍行列式的基本概念、性质和计算方法,帮助读者更好地理解和应用行列式知识。
一、行列式的定义行列式是一个与矩阵相关的数值。
对于一个n阶方阵A,它的行列式表示为det(A),其中n表示方阵的阶数。
行列式的计算涉及到矩阵的元素和排列的概念,下面将详细介绍。
二、行列式的性质1. 行列式的对角线规则:对于一个n阶方阵A,行列式det(A)等于主对角线元素相乘的积减去次对角线元素相乘的积。
2. 行列式的性质之一:交换行(列)位置,行列式的值不变。
3. 行列式的性质之二:若行(列)中有两行(列)元素成比例,行列式的值为0。
4. 行列式的性质之三:行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。
三、行列式的计算方法1. 二阶和三阶行列式的计算:对于二阶行列式A,可以用交叉相乘法计算,即ad-bc。
对于三阶行列式A,可以用Sarrus法则计算。
2. 高阶行列式的计算:对于n阶行列式A,可以利用拉普拉斯展开定理进行计算。
具体步骤是选择一行(列)作为展开行(列),将行列式展开为以该行(列)元素为首的n个代数余子式的乘积之和。
四、行列式的应用1. 线性方程组的解:行列式可以用于求解线性方程组的解。
若系数矩阵的行列式不为0,则方程组有唯一解;若行列式为0,则方程组无解或有无穷解。
2. 矩阵的逆:若一个n阶方阵A的行列式不为0,则矩阵A可逆,且其逆矩阵A^{-1}的元素可以用A的伴随矩阵元素和行列式的倒数表示。
3. 坐标变换:在几何学中,行列式可以用于坐标变换。
例如,二维平面上坐标变换时,坐标的旋转、平移和缩放可以用行列式进行表示。
五、总结本文介绍了行列式的基本概念、性质和计算方法,并提供了行列式在线性方程组、矩阵逆和坐标变换中的应用。
行列式作为线性代数中的基础知识,对于深入理解和应用相关领域的知识具有重要作用。
通过学习和掌握行列式的知识点,读者可以更好地理解相关的数学和科学问题,并灵活运用行列式进行问题求解和分析。
线性代数复习要点第一部分行列式1. 排列的逆序数2. 行列式按行(列)展开法则3. 行列式的性质及行列式的计算行列式的定义1.行列式的计算:①(定义法)1212121112121222()1212()nnnnn j j jn j j njj j jn n nna a aa a aD a a aa a aτ==-∑1②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.1122,,0,.i j i j in jnA i ja A a A a Ai j⎧=⎪++=⎨≠⎪⎩③ (化为三角型行列式)上三角、下三角、主对角行列式等于主对角线上元素的乘积.11221122***0**0*0nnnnb b A b b b b ==④ 若A B 与都是方阵(不必同阶),则==()mn A O A A OA B O B O B B O A AA B B O B O*==**=-1⑤ 关于副对角线:(1)211212112111()n n nnn n n n n n n a O a a a a a a a Oa O ---*==-1⑥ 范德蒙德行列式:()1222212111112nijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏111⑦ ab -型公式:1[(1)]()n a b b b b a bba nb a b bb ab b b ba-=+-- ⑧ (升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨ (递推公式法) 对n 阶行列式n D 找出n D 与1n D -或1n D -,2n D -之间的一种关系——称为递推公式,其中 n D ,1n D -,2n D -等结构相同,再由递推公式求出n D 的方法称为递推公式法.(拆分法) 把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和, 使问题简化以例计算. ⑩ (数学归纳法)2. 对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;3. 证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解;④、利用秩,证明()r A n <; ⑤、证明0是其特征值.4. 代数余子式和余子式的关系:(1)(1)i j i j ij ijij ij M A A M ++=-=-第二部分 矩阵1. 矩阵的运算性质2. 矩阵求逆3. 矩阵的秩的性质4. 矩阵方程的求解1. 矩阵的定义 由m n ⨯个数排成的m 行n 列的表111212122212n n m m mn a a a a a a A a a a ⎛⎫⎪ ⎪= ⎪⎪⎝⎭称为m n ⨯矩阵. 记作:()ijm nA a ⨯=或m n A ⨯同型矩阵:两个矩阵的行数相等、列数也相等. 矩阵相等: 两个矩阵同型,且对应元素相等. 矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数λ与矩阵A 的乘积记作A λ 或A λ,规定为()ij A a λλ=.c. 矩阵与矩阵相乘:设()ij m s A a ⨯=, ()ij s n B b ⨯=,则()ij m n C AB c ⨯==, 其中12121122(,,,)j j ij i i is i j i j is sj sj b b c a a a a b a b a b b ⎛⎫ ⎪ ⎪==+++ ⎪ ⎪ ⎪⎝⎭注:矩阵乘法不满足:交换律、消去律, 即公式00AB BAAB A ==⇒=或B=0不成立.a. 分块对角阵相乘:11112222,A B A B A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭⇒11112222A B AB A B ⎛⎫= ⎪⎝⎭,1122nn n A A A ⎛⎫= ⎪⎝⎭b. 用对角矩阵Λ○左乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○行向量;11112111111211221222221222221212000000n n n n m m m mn m m m m m mn a b b b a b a b a b ab b b a b a b a b B a b b b a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦c. 用对角矩阵Λ○右乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的○列向量.11121111121212122221212222121122000000n m n n m n m m mn m m m m mn b b b a a b a b a b b b b a a b a b a b B b b b a a b a b a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥Λ==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦d. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. ④ 方阵的幂的性质:mnm nA A A+=, ()()m n mnA A =⑤ 矩阵的转置:把矩阵A 的行换成同序数的列得到的新矩阵,叫做A 的转置矩阵,记作TA . a. 对称矩阵和反对称矩阵: A 是对称矩阵TA A =.A 是反对称矩阵T A A =-.b. 分块矩阵的转置矩阵:TTT TT A B A C C D BD ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭⑥ 伴随矩阵: ()1121112222*12n Tn ijnnnn A A A A A A A A A A A ⎛⎫ ⎪ ⎪== ⎪ ⎪⎝⎭,ij A 为A 中各个元素的代数余子式. **AA A A A E ==,1*n A A-=, 11AA--=.分块对角阵的伴随矩阵:***A BA B AB ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ *(1)(1)mn mn A A B BB A**⎛⎫-⎛⎫= ⎪ ⎪⎪-⎝⎭⎝⎭2. 逆矩阵的求法 方阵A 可逆 0A ≠.①伴随矩阵法 1A A A *-= ○注: 1a b d b c d c a ad bc --⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1 主换位副变号② 初等变换法 1()()A E E A -−−−−→初等行变换③ 分块矩阵的逆矩阵:111A A B B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭ 111A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111A C A A CB O B OB ----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭ 1111A O A O CB B CA B ----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭④1231111213a a a a a a -⎛⎫⎛⎫⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 3211111213a a a a a a -⎛⎫⎛⎫⎪⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⑤ 配方法或者待定系数法 (逆矩阵的定义1AB BA E A B -==⇒=)3. 行阶梯形矩阵 可画出一条阶梯线,线的下方全为0;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖 线后面的第一个元素非零. 当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是0时, 称为行最简形矩阵4. 初等变换与初等矩阵 对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵 初等矩阵的逆 初等矩阵的行列式↔i j r r (↔i j c c )(,)E i j 1(,)(,)E i j E i j -=(,)E i j =-1⨯i r k (⨯i c k ) (())E i k11[()][()]k E i k E i -= [()]E i k k = +⨯i j r r k (+⨯i j c c k )(,())E i j k1[,()][,()]E i j k E i j k -=-[,()]E i j k =1☻矩阵的初等变换和初等矩阵的关系:对A 施行一次初等○行变换得到的矩阵,等于用相应的初等矩阵○左乘A ;对A 施行一次初等○列变换得到的矩阵,等于用相应的初等矩阵○右乘A .注意: 初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.5. 矩阵的秩 关于A 矩阵秩的描述:①、()=r A r ,A 中有r 阶子式不为0,1+r 阶子式 (存在的话) 全部为0; ②、()<r A r ,A 的r 阶子式全部为0; ③、()≥r A r ,A 中存在r 阶子式不为0;☻矩阵的秩的性质:① ()A O r A ≠⇔≥1; ()0A O r A =⇔=;0≤()m n r A ⨯≤min(,)m n② ()()()TTr A r A r A A ==③ ()()r kA r A k =≠ 其中0④ ()(),,()0m n n s r A r B n A B r AB B Ax ⨯⨯+≤⎧=⇒⎨=⎩若若0的列向量全部是的解⑤ ()r AB ≤{}min (),()r A r B⑥ 若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===; 即:可逆矩阵不影响矩阵的秩.⑦ 若()()()m n Ax r AB r B r A n AB O B O A AB AC B C ο⨯⇔=⎧⎪=⎧⎪=⎨⎪⇒=⇒=⎧⎨⎪⎨⎪⎪=⇒=⎩⎩⎩ 只有零解在矩阵乘法中有左消去律;若()()()n s r AB r B r B n B ⨯=⎧=⇒⎨⎩ 在矩阵乘法中有右消去律.⑧ ()r rE O E O r A r A A OO OO ⎛⎫⎛⎫=⇒⎪ ⎪⎝⎭⎝⎭若与唯一的等价,称为矩阵的等价标准型. ⑨ ()r A B ±≤()()r A r B +, {}max (),()r A r B ≤(,)r A B ≤()()r A r B + ⑩ ()()A O O A r r A r B O B B O ⎛⎫⎛⎫==+⎪ ⎪⎝⎭⎝⎭, ()()A C r r A r B O B ⎛⎫≠+ ⎪⎝⎭☻求矩阵的秩:定义法和行阶梯形阵方法6 矩阵方程的解法(0A ≠):设法化成AX B XA B ==(I) 或 (II)A B E X −−−−→初等行变换(I)的解法:构造()() A E B X ⎛⎫⎛⎫⎪ ⎪−−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等列变换(II)的解法:构造T T T TA XB X X=(II)的解法:将等式两边转置化为, 用(I)的方法求出,再转置得第三部分 线性方程组1. 向量组的线性表示2. 向量组的线性相关性3. 向量组的秩4. 向量空间5.线性方程组的解的判定6. 线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系) (2)非齐次线性方程组的解的结构(通解) 1.线性表示:对于给定向量组12,,,,n βααα,若存在一组数12,,,n k k k 使得1122n n k k k βααα=+++,则称β是12,,,n ααα的线性组合,或称称β可由12,,,n ααα的线性表示.线性表示的判别定理:β可由12,,,n ααα的线性表示由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩有解②、1112111212222212⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭n n m m mn m m a a a x b a a a x b Ax a a a x b β③、()1212n n x x aa a x β⎛⎫⎪⎪= ⎪⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭); ④、1122n n a x a x a x β+++=(线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数) 2. 设,,m n n s A B ⨯⨯A 的列向量为12,,,n ααα⋅⋅⋅,B 的列向量为12,,,s βββ⋅⋅⋅,则m sAB C ⨯=⇔()()1112121222121212,,,,,,s s n s n n ns b b b b bb c c c b b b ααα⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪⎪⎝⎭⇔i i A c β= ,(,,)i s =1,2⇔i β为i Ax c =的解⇔()()()121212,,,,,,,,,s s s A A A A c c c ββββββ⋅⋅⋅=⋅⋅⋅=⇔12,,,s c c c 可由12,,,n ααα⋅⋅⋅线性表示.即:C 的列向量能由A 的列向量线性表示,B 为系数矩阵. 同理:C 的行向量能由B 的行向量线性表示,A 为系数矩阵.即: 1112111212222212n n n n mn n m a a a c a a a c a a a c βββ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪⎪ ⎪= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⇔111122*********22211222n n m m mn ma a a c a a a c a a a c βββββββββ+++=⎧⎪+++=⎪⎨⎪⎪+++=⎩3. 线性相关性判别方法:法1法2法3推论♣线性相关性判别法(归纳)♣ 线性相关性的性质① 零向量是任何向量的线性组合,零向量与任何同维实向量正交. ② 单个零向量线性相关;单个非零向量线性无关.③ 部分相关,整体必相关;整体无关,部分必无关. (向量个数变动)④ 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. (向量维数变动) ⑤ 两个向量线性相关⇔对应元素成比例;两两正交的非零向量组线性无关. ⑥ 向量组12,,,n ααα⋅⋅⋅中任一向量i α(1≤i ≤)n 都是此向量组的线性组合.⑦ 若12,,,n ααα⋅⋅⋅线性无关,而12,,,,n αααβ⋅⋅⋅线性相关,则β可由12,,,n ααα⋅⋅⋅线性表示,且表示法唯一 4. 最大无关组相关知识向量组的秩 向量组12,,,n ααα的极大无关组所含向量的个数,称为这个向量组的秩.记作12(,,,)n r ααα矩阵等价 A 经过有限次初等变换化为B .向量组等价 12,,,n ααα⋅⋅⋅和12,,,n βββ⋅⋅⋅可以相互线性表示. 记作:()()1212,,,,,,n n αααβββ⋅⋅⋅=⋅⋅⋅ ① 矩阵的行向量组的秩=列向量组的秩=矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.② 矩阵的初等变换不改变矩阵的秩,且不改变行(列)向量间的线性关系③ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且s n >,则12,,,s βββ⋅⋅⋅线性相关.向量组12,,,s βββ⋅⋅⋅线性无关,且可由12,,,n ααα⋅⋅⋅线性表示,则s ≤n .④ 向量组12,,,s βββ⋅⋅⋅可由向量组12,,,n ααα⋅⋅⋅线性表示,且12(,,,)s r βββ⋅⋅⋅12(,,,)n r ααα=⋅⋅⋅,则两向量组等价; ⑤ 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. ⑥ 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. ⑦ 若两个线性无关的向量组等价,则它们包含的向量个数相等. ⑧ 设A 是m n ⨯矩阵,若()r A m =,A 的行向量线性无关;5. 线性方程组理论线性方程组的矩阵式Ax β= 向量式 1122n n x x x αααβ+++=1112111212222212,,n n m m mn n m a a a x b a a a x b A x a a a x b β⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 其中 12,,2,,j j j mj j n αααα⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎝⎭1(1)解得判别定理(2)线性方程组解的性质:1212121211221212(1),,(2),,(3),,,,,,,,(4),,(5),,(6k k k k Ax Ax k k Ax k Ax Ax Ax Ax Ax ηηοηηηοηηηηολλλληληληγβηογηβηηβηηο=+⎫⎪=⎪⎬=⎪⎪++⎭==+==-= 是的解也是它的解 是的解对任意也是它的解齐次方程组 是的解对任意个常数 也是它的解 是的解是其导出组的解是的解 是的两个解是其导出组的解211212112212112212),(7),,,,100k k k k k k k Ax Ax Ax Ax Ax ηβηηηοηηηβληληληβλλλληληληλλλ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪=⇔-=⎪=⎪⎪+++=⇔+++=⎪⎪+++=⇔+++=⎩ 是的解则也是它的解是其导出组的解 是的解则也是的解 是的解(3) 判断12,,,s ηηη是Ax ο=的基础解系的条件:① 12,,,s ηηη线性无关;② 12,,,s ηηη都是Ax ο=的解; ③ ()s n r A =-=每个解向量中自由未知量的个数.(4) 求非齐次线性方程组Ax = b 的通解的步骤12112(1()(2)()()(3)(4)10,,...,(5)A b r A b r A r n n r Ax b Ax Ax b x k k ααααααα==<-====++0n-r 0) 将增广矩阵通过初等行变换化为;当时,把不是首非零元所在列对应的个变量作为自由元;令所有自由元为零,求得的一个;不计最后一列,分别令一个自由元为,其余自由元 为零,得到的{};写出非齐次线性方程组的阶梯形矩阵特解基础 解系 通解 212...,,...,n r n rn r k k k k α---++其中为任意常数.(5)其他性质一个齐次线性方程组的基础解系不唯一. √ 若η*是Ax β=的一个解,1,,,s ξξξ是Ax ο=的一个解⇒1,,,,s ξξξη*线性无关√ Ax ο=与Bx ο=同解(,A B 列向量个数相同)⇔()()A r r A r B B ⎛⎫==⎪⎝⎭, 且有结果: ① 它们的极大无关组相对应,从而秩相等; ② 它们对应的部分组有一样的线性相关性; ③ 它们有相同的内在线性关系.√ 矩阵m n A ⨯与l n B ⨯的行向量组等价⇔齐次方程组Ax ο=与Bx ο=同解⇔PA B =(左乘可逆矩阵P ); 矩阵m n A ⨯与l n B ⨯的列向量组等价⇔AQ B =(右乘可逆矩阵Q ).第四部分 方阵的特征值及特征向量1. 施密特正交化过程2. 特征值、特征向量的性质及计算3. 矩阵的相似对角化,尤其是对称阵的相似对角化1. 标准正交基 n 个n 维线性无关的向量,两两正交,每个向量长度为1. 向量()12,,,Tn a a a α=与()12,,,Tn b b b β=的内积 11221(,)ni i n n i a b a b a b a b αβ===+++∑αβ与正交 (,)0αβ=. 记为:αβ⊥ ④ 向量()12,,,Tn a a a α=的长度 2222121(,)ni n i a a a a ααα====+++∑⑤ α是单位向量(,)1ααα==. 即长度为1的向量.2. 内积的性质: ① 正定性:(,)0,(,)0αααααο≥=⇔=且 ② 对称性:(,)(,)αββα=③ 线性性:1212(,)(,)(,)ααβαβαβ+=+ (,)(,)k k αβαβ=3. 设A 是一个n 阶方阵, 若存在数λ和n 维非零列向量x , 使得 Ax x λ=,则称λ是方阵A 的一个特征值,x 为方阵A 的对应于特征值λ的一个特征向量. A 的特征矩阵0E A λ-=(或0A E λ-=).A 的特征多项式 ()E A λϕλ-=(或()A E λϕλ-=).④ ()ϕλ是矩阵A 的特征多项式⇒()A O ϕ= ⑤ 12n A λλλ= 1ni A λ=∑tr ,A tr 称为矩阵A 的迹.⑥ 上三角阵、下三角阵、对角阵的特征值就是主对角线上的n 各元素.⑦ 若0A =,则λ=0为A 的特征值,且Ax ο=的基础解系即为属于λ=0的线性无关的特征向量.⑧ ()1r A =⇔A 一定可分解为A =()1212,,,n n a a b b b a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭、21122()n n A a b a b a b A =+++,从而A 的特征值为:11122n n A a b a b a b λ==+++tr , 23n λλλ====0.○注()12,,,Tn a a a 为A 各行的公比,()12,,,n b b b 为A 各列的公比.⑨ 若A 的全部特征值12,,,n λλλ,()f A 是多项式,则:① 若A 满足()f A O =⇒A 的任何一个特征值必满足()i f λ=0 ②()f A 的全部特征值为12(),(),,()n f f f λλλ;12()()()()n f A f f f λλλ=.⑩ A 与TA 有相同的特征值,但特征向量不一定相同. 4. 特征值与特征向量的求法(1) 写出矩阵A 的特征方程0A E λ-=,求出特征值i λ. (2) 根据()0i A E x λ-=得到 A 对应于特征值i λ的特征向量. 设()0i A E x λ-=的基础解系为 12,,,in r ξξξ- 其中()i i r r A E λ=-.则A 对应于特征值i λ的全部特征向量为1122,i i n r n r k k k ξξξ--+++其中12,,,i n r k k k -为任意不全为零的数.5. A 与B 相似 1P AP B -= (P 为可逆矩阵) A 与B 正交相似 1P AP B -= (P 为正交矩阵)A 可以相似对角化 A 与对角阵Λ相似.(称Λ是A 的相似标准形)6. 相似矩阵的性质: ①E A E B λλ-=-,从而,A B 有相同的特征值,但特征向量不一定相同.○注α是A 关于0λ的特征向量,1P α-是B 关于0λ的特征向量. ②A B =tr tr③A B = 从而,A B 同时可逆或不可逆 ④ ()()r A r B =⑤若A 与B 相似, 则A 的多项式()f A 与B 的多项式()f A 相似. 7. 矩阵对角化的判定方法① n 阶矩阵A 可对角化 (即相似于对角阵) 的充分必要条件是A 有n 个线性无关的特征向量. 这时,P 为A 的特征向量拼成的矩阵,1P AP -为对角阵,主对角线上的元素为A 的特征值. 设i α为对应于i λ的线性无关的特征向量,则有:121n P AP λλλ-⎛⎫⎪ ⎪=⎪ ⎪⎝⎭.② A 可相似对角化⇔()i i n r E A k λ--=,其中i k 为i λ的重数⇔A 恰有n 个线性无关的特征向量.○注:当iλ=0为A 的重的特征值时,A 可相似对角化⇔i λ的重数()n r A =-=Ax ο=基础解系的个数.③ 若n 阶矩阵A 有n 个互异的特征值⇒A 可相似对角化. 8. 实对称矩阵的性质:① 特征值全是实数,特征向量是实向量;② 不同特征值对应的特征向量必定正交;○注:对于普通方阵,不同特征值对应的特征向量线性无关; ③ 一定有n 个线性无关的特征向量. 若A 有重的特征值,该特征值i λ的重数=()i n r E A λ--; ④ 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; ⑤ 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; ⑥ 两个实对称矩阵相似⇔有相同的特征值. 9. 正交矩阵 TAA E =正交矩阵的性质:① 1T A A -=;② T TAA A A E ==;③ 正交阵的行列式等于1或-1;④ A 是正交阵,则TA ,1A -也是正交阵; ⑤ 两个正交阵之积仍是正交阵;⑥ A 的行(列)向量都是单位正交向量组.10. 11.施密特正交规范化123,,ααα线性无关,112122111313233121122(,)(,)(,)(,)(,)(,)βααββαβββαβαββαββββββ=⎧⎪⎪⎪=-⎨⎪⎪=--⎪⎩正交化单位化:111βηβ=222βηβ= 333βηβ=技巧:取正交的基础解系,跳过施密特正交化。
行列式大一知识点总结归纳行列式是线性代数中的一个重要概念,它在解决方程组、计算矩阵的逆、求解线性方程等方面有着广泛的应用。
在大一的线性代数学习中,行列式是必不可少的一部分。
本文将对大一学习中的行列式知识点进行总结和归纳。
一、行列式的定义行列式是一个实数或复数的方阵所特有的一个标量。
对于一个n阶的方阵A = [a_ij],其行列式记作det(A)或|A|,行列式的定义如下:det(A) = ∑(-1)^(i+j) * a_ij * det(A_ij)其中,(-1)^(i+j)是一个符号项,a_ij表示A的第i行第j列的元素,det(A_ij)为去掉第i行和第j列后的(n-1)阶方阵的行列式。
二、行列式的性质1. 行列式的转置等于其本身的行列式:det(A^T) = det(A)2. 互换行列式的两行(列)则行列式变号:若交换行列式A的第i行和第j行(列),则有:det(A) = -det(A')3. 行列式的某一行(列)的公因子可以提出:若A的第i行(列)的所有元素都乘以k,则有:det(A) = k * det(A')4. 行列式有一个相同的行(列)或有一个行(列)全为0,则行列式为0:若A的某一行(列)全为0,或A的某两行(列)相同,则det(A) = 0。
5. 行列式的两行(列)对换后不变:若交换A的某两行(列)位置,行列式不变:det(A) = det(A')三、行列式的计算方法1. 二阶行列式:对于二阶行列式A = [a11 a12; a21 a22],其行列式的值为: det(A) = a11 * a22 - a12 * a212. 三阶行列式:对于三阶行列式A = [a11 a12 a13; a21 a22 a23; a31 a32 a33],其行列式的值为:det(A) = a11 * a22 * a33 + a12 * a23 * a31 + a13 * a21 * a32 - a13 * a22 * a31 - a12 * a21 * a33 - a11 * a23 * a323. 多阶行列式:对于n阶行列式,可以利用代数余子式与余因子展开法进行计算。
行列式知识点汇总在数学中,行列式是一个重要的概念,用于描述线性代数中的一些性质和运算。
它在各个领域中都有广泛应用,如线性方程组的求解、矩阵的特征值和特征向量的计算等。
本文将对行列式的相关知识点进行汇总介绍,帮助读者更好地理解和应用行列式。
1. 行列式的定义行列式是一个用来对方阵进行运算的函数。
对于n阶方阵A,它的行列式记作det(A)或|A|,其中n表示方阵的阶数。
行列式的计算通常通过对方阵进行按行展开或按列展开的方式来进行,根据展开的元素进行递归计算。
2. 行列式的性质行列式具有以下性质:- 性质1:互换行(列)会改变行列式的符号,即det(A) = -det(A'),其中A'表示通过互换A的两行(两列)得到的新方阵。
- 性质2:如果行(列)中有零元素,则行列式的值为0。
- 性质3:行(列)成比例,则行列式的值为0。
- 性质4:行列式的某一行(列)的所有元素都乘以k,等价于行列式乘以k。
- 性质5:若A的某一行(列)元素都是两数之和,则行列式可以分解为两个行列式的和。
- 性质6:若A的某一行(列)元素都是两数之差,则行列式可以分解为两个行列式的差。
3. 行列式的计算方法行列式的计算可以根据方阵的阶数和具体性质来选择不同的方法,主要有以下几种方法:- 按行(列)展开法:通过按行(列)展开元素,并对展开的结果进行递归计算。
- 初等行变换法:通过初等行变换将矩阵转化为上(下)三角矩阵,再利用三角矩阵行列式的计算公式求解。
- 对角线法则:将方阵按对角线划分为若干小方阵,利用小方阵行列式的性质求解。
4. 行列式的重要应用行列式在线性代数中有广泛的应用,下面介绍几个重要的应用:- 线性方程组的求解:利用行列式可以判断线性方程组是否有唯一解、无解或无穷解,并可以通过克拉默法则求解方程组。
- 矩阵的逆:若方阵A的行列式不为0,则A可逆,且可以通过行列式求解矩阵的逆。
- 特征值和特征向量:方阵A的特征值为使得det(A-λI)=0成立的λ值,其中I为单位矩阵。
行列式知识点高考行列式是高中数学中的一个重要概念,也是高考中常常考察的知识点。
掌握行列式的相关知识对于应对高考数学题目是非常必要的。
本文将以深入浅出的方式介绍行列式的定义、性质和计算方法,帮助读者更好地理解和掌握行列式知识,提升高考数学应试能力。
一、行列式的定义行列式是由数和符号组成的一种代数形式。
对于一个n阶方阵A=[a_{ij}],如果将它的n个数按照一定的规律排列成一个n×n的数表,并标记符号,那么这个数表就是A的行列式,记作det(A)或|A|。
二、行列式的性质1. 行列互换性质:交换行列式中两行(或两列)的位置,行列式的值不变。
2. 行列式的倍数性质:如果行列式中所有的元素都乘以同一个数k,那么行列式的值也要乘以k。
3. 行列式的行(列)成比例性质:如果行列式中的某一行(或某一列)的元素都乘以同一个数k,得到新的行列式,那么新旧两个行列式的值成比例。
4. 行列式的行(列)有零元性质:如果行列式中某一行(或某一列)的元素全为0,则行列式的值为0。
5. 奇异行列式性质:如果行列式的某两行(或两列)完全相同,则行列式的值为0。
三、行列式的计算方法1. 二阶行列式的计算:对于一个二阶行列式A=[a b; c d],行列式的值为ad-bc。
2. 三阶行列式的计算:对于一个三阶行列式A=[a b c; d e f; g hi],行列式的值为a(ei-fh)-b(di-fg)+c(dh-eg)。
3. 高阶行列式的计算:高阶行列式的计算较为复杂,一般使用行列式的按行(列)展开法进行计算。
按行(列)展开法是通过选取某一行(或某一列)展开,将高阶行列式转化为低阶行列式的计算。
四、行列式在方程组中的应用行列式在解线性方程组中有重要的应用。
对于一个线性方程组Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量,方程组存在唯一解的充要条件是系数矩阵A的行列式不为0。
五、行列式的性质推导行列式的很多性质可以通过数学推导得到。
线性代数四五章知识点总结第四章:行列式1. 行列式的定义行列式是一个数学工具,它可以用来表示一个线性变换对体积的放大倍数。
对于一个n阶(n行n列)的方阵A,它的行列式记作det(A),行列式的元素通常用aij表示,其中i代表行号,j代表列号。
2. 行列式的性质(1)行列式中的行(列)互换,则行列式变号。
(2)行列式的某一行(列)乘以一个数k,那么行列式的值也要乘以k。
(3)行列式中的某一行(列)的元素都是两个数的和,那么行列式等于两个行列式的和。
(4)若行列式中有两行(列)完全相同,则行列式的值为0。
3. 行列式的计算(1)余子式和代数余子式对于一个n阶行列式A,如果去掉第i行和第j列的元素后,剩下来的(n-1)阶行列式就是A的余子式,用Mij表示。
而对应的代数余子式就是Mij乘上(-1)^(i+j)。
(2)拉普拉斯(Laplace)展开定理通过代数余子式的计算,可以利用拉普拉斯展开定理来计算n阶行列式的值。
即对于一个n阶行列式A,其中的元素aij乘以对应的代数余子式Mij后相加,即可得到行列式的值。
第五章:特征值和特征向量1. 特征值和特征向量的概念对于一个n阶方阵A,如果存在一个非零向量x和一个数λ,使得Ax=λx,那么λ称为A 的特征值,x称为A对应于特征值λ的特征向量。
2. 特征值和特征向量的计算寻找一个矩阵的特征值和特征向量可以通过求解方程组(A-λI)x=0来得到。
其中A是待求矩阵,λ是特征值,x是特征向量,I是单位矩阵。
3. 特征值和特征向量的性质(1)特征值的性质:一个n阶方阵A的n个特征值之和等于它的主对角线元素之和,即Tr(A)=λ1+λ2+...+λn。
(2)特征向量的性质:如果A有n个不同的特征值λ1,λ2,...,λn,那么这n个特征值对应的n个特征向量是线性无关的。
4. 特征值与对角化如果一个n阶方阵A有n个线性无关的特征向量,那么可以将它对角化成对角阵D,即找到一个可逆矩阵P,使得P^-1AP=D。
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++例1 已知,那么( )A.-24B.-12C.-6D.12 答案 B解析2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==例.设3阶矩阵()ij A a =的行列式12A =,ij A 为ij a 的代数余子式.那么313132323333a A a A a A ++=___12____; 213122322333a A a A a A ++=___0___.4. 行列式的计算(1)二阶行列式1112112212212122a a a a a a a a =- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)(一般选择有0元素的行或列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.例:思路:将有0的第三行化为只有一个非0元素a 33=1,按该行展开,D=a 33A 33,不用忘记a 33。