数控加工工艺规程的确定资料
- 格式:ppt
- 大小:3.74 MB
- 文档页数:84
OCCUPATION2011 5170数控车削加工工艺分析文/许新伟 韩长军零件数控车削加工工艺分析是制订车削工艺规程的重要内容之一,其主要包括选择各加工表面的加工方法、安排工序的先后顺序、确定刀具的走刀路线等。
技术人员应根据从生产实践中总结出来的一些综合性工艺原则,结合现场的实际生产条件,提出几种方案,通过对比分析,从中选择最佳方案。
一、拟定工艺路线1.加工方法的选择回转体零件的结构形状虽然是多种多样的,但它们都是由平面、内、外圆柱面、曲面、螺纹等组成,每一种表面都有多种加工方法,实际选择时应结合零件的加工精度、表面粗糙度、材料、结构形状、尺寸及生产类型等因素全面考虑。
2.加工顺序的安排在选定加工方法后,接下来就是划分工序和合理安排工序的顺序。
合理安排好切削加工、热处理和辅助工序的顺序,并解决好工序间的衔接问题,可以提高零件的加工质量、生产效率,降低加工成本。
在数控车床上加工零件,应按工序集中的原则划分工序,安排零件车削加工顺序一般遵循下列原则:(1)先粗后精。
按照粗车→(半精车)→精车的顺序进行,逐步提高零件的加工精度。
(2)先近后远。
这里所说的远与近,是按加工部位相对于换刀点的距离大小而言的。
(3)内外交叉。
对既有内表面(内型、腔),又有外表面的零件,安排加工顺序时,应先粗加工内外表面,然后精加工内外表面,加工内外表面时,通常先加工内型和内腔,然后加工外表面。
(4)刀具集中。
用一把刀加工完相应各部位,再换另一把刀,加工相应的其他部位,以减少空行程和换刀次数及换刀时间。
(5)基面先行。
用作精基准的表面应优先加工出来,原因是作为定位基准的表面越精确,装夹误差就越小。
例如加工轴类零件时,总是先加工中心孔,再以中心孔为精基准加工外圆表面和端面。
二、确定走刀路线走刀路线是指刀具从起刀点开始移动起,直至返回并结束加工程序所经过的路径,其包括刀具切削加工的路径及刀具引入、切出等非切削空行程,主要考虑以下几个问题:一是刀具引入、出。
数控铣床零件加⼯⼯艺设计说明书技师学院毕业论⽂题⽬:数控铣床零件加⼯⼯艺设计系部:机电⼯程系专业:数控加⼯姓名:指导教师:摘要随着科学技术飞速发展和经济竞争的⽇趋激烈,机械产品的更新速度越来越快,数控加⼯技术作为先进⽣产⼒的代表,在机械及相关⾏业领域发挥着重要的作⽤,机械制造的竞争,其实质是数控技术的竞争。
数控编程技术是数控技术重要的组成部分。
从数控机床诞⽣之⽇起,数控编程技术就受到了⼴泛关注,成为CAD/CAM系统的重要组成部分。
以数控编程中的加⼯⼯艺分析及设计为出发点,着⼒分析零件图,从数控加⼯的实际⾓度出发,以数控加⼯的实际⽣产为基础,以掌握数控加⼯⼯艺为⽬标,在了解数控加⼯铣削基础、数控铣床⼑具的选⽤、数控加⼯⼯件的定位与装夹、拟定加⼯⽅案、确定加⼯路线和加⼯内容以及对⼀些特殊的⼯艺问题处理的基础上,控制数控编程过程中的误差,从⽽⼤⼤缩短了加⼯时间,提⾼了效率,降低了成本。
本⽂主要研究了轮廓和孔的数控铣削⼯艺、⼯装以及在此基础上的数控铣床的程序编制。
侧重于设计该零件的数控加⼯夹具,主要设计内容有:完成该零件的⼯艺规程(包括⼯艺简卡、⼯序卡和数控⼑具卡)和主要⼯序的⼯装设计。
并绘制零件图。
⽤G代码编制该零件的数控加⼯程序。
关键词:FANUC、数控加⼯、数控编程⽬录摘要 (2)⽬录 (3)引⾔ (4)1.数控铣 (5)2.FANUC系统 (6)2.1 FANUC系统简介 (6)2.2G代码 (10)2.3M代码....... . . (12)3零件图⼯艺分析 (14)3.1零件结构和加⼯ (14)3.2基准选择 (14)3.3⽑坯和材料的选择 (15)3.4加⼯路线的设计 (16)3.5⼑具选择 (16)3.6切削⽤量的选择 (17)3.7拟定数控切削加⼯⼯序卡 (18)3.8⼯序设计 (19)4加⼯⼯序 (20)4.1确⽴编程原点 (20)4.2编辑程序 (22)5操作步骤 (24)5.1先开机床 (24)5.2回参考点 (25)5.3参数设定 (25)结束语 (26)致谢 (27)参考⽂献 (28)引⾔毕业实践⼯作对于每⼀个即将毕业的毕业⽣来说都是⾮常重要的,它对我们以后⾛上⼯作岗位很有帮助。
数控车床加工工艺设计资料一、引言二、数控车床加工工艺设计的步骤1.工件分析:对工件进行分析,了解工件的形状、尺寸和加工精度要求,确定是否适合数控车床进行加工。
2.加工工艺路线确定:根据工件的加工要求,设计出合理的加工工艺路线。
要考虑到加工的先后顺序、切削刀具的选择和加工方式等因素。
3.加工工艺参数确定:根据工件的材料特性和加工要求,确定数控车床的加工工艺参数。
包括主轴转速、进给速度、切削深度等关键参数。
4.切削刀具选择:根据工件材料和加工要求,选择合适的切削刀具。
要考虑到切削刃数、刃尖半径、刀柄形式等因素。
5.加工路径生成:根据工艺路线和加工要求,生成数控车床的加工路径。
要确保加工路径的合理性和加工效果。
6.编写数控程序:根据加工路径和加工工艺参数,编写数控程序。
程序中包括刀具的进给和退刀、主轴的转速控制等指令。
7.加工监控和调整:在实际加工过程中,要对加工进行监控,及时发现问题并进行调整。
如调整切削深度、进给速度等参数。
三、数控车床加工工艺设计的要求1.提高加工精度:合理选择刀具、确定加工参数和路径,保证工件的加工精度。
2.节约加工时间:通过合理的加工工艺设计,优化加工路径和参数,减少非加工时间,提高加工效率。
3.降低材料消耗:通过合理选择切削刀具、减小切削深度等措施,降低材料的消耗。
4.保证工艺的稳定性:加工工艺的稳定性对于提高产品质量和减少废品率非常重要。
要保证加工工艺的稳定,减少工艺变动的影响。
5.完善技术文件:加工工艺设计要形成技术文件,包括加工工艺卡、数控程序、加工工艺参数表等。
方便工艺的记录和传承。
四、加工工艺设计实例以一台数控车床加工圆柱零件为例,进行加工工艺设计。
1. 工件分析:工件是一个圆柱体,直径为50mm,长度为100mm,加工精度要求为IT82.加工工艺路线确定:先进行粗车,再进行精车。
切削刀具选择为硬质合金刀具。
3. 加工工艺参数确定:粗车中,主轴转速为800r/min,进给速度为200mm/min,切削深度为0.5mm。
数控加工由于其高精度、高效率的特点,被广泛应用于机械加工领域。
在运用数控设备加工工件的时候,由于加工参数较多且编程步骤较复杂,因此需要操作者具有相关工作经验。
而对于刚接触数控加工的新人来说,学会参数确定及编程十分重要。
本文就来具体介绍一下数控加工工艺中重要参数如何确定。
一、切削用量的确定在进行数控编程的过程中,需要确定每道工序的切削用量,并且使用指令的形式写入到程序中。
在生产中,切削用量包括主轴转速、进给速度以及背吃刀量等等。
而对于切削用量的选择来说,保证零件加工精度和表面粗糙度充分发挥刀具切削性能,保证合理刀具寿命是选择且销量的重要原则。
二、进给速度的确定进给速度是数控机床切削用量中的十分重要的一个参数,主要根据零件的加工精度、表面粗糙度、刀具、工件的材料来确定。
确定进给速度的原则主要有以下几个方面:(1)为了让生产效率提高,当工件的质量可以得到满足时,可选择较高的进给速度。
(2)在切断、加工深孔或用高速钢刀具加工时,可以适当选择较低的进给速度。
(3)当加工精度、表面粗糙度要求比较高的时候,可以适当选择小一些的进给速度。
(4)当刀具空行程,可以设定该机床数控系统最高进给速度。
三、背吃刀量的确定背吃刀量在确定的时候需要根据机床、工件和刀具的刚度作为主要参考因素,在刚度允许的条件下,让背吃刀量尽可能与工件的加工余量相等,这样做的好处是可以减少走刀次数,提高生产效率。
同时,为了保证加工表面质量,可以留少许加工余量。
切削用量的选择是否合理,对于发挥机床潜力与刀具的切削性能,实现优质、高产、低成本和安全操作具有很重要的作用。
在对车削用量进行选择时,要注意粗车时,可以选择一个尽可能大的背吃刀量,其次选择一个较大的进给量,最后确定一个合适的切削速度。
而在精车时,加工精度和表面粗糙度要求较高,加工余量不大且均匀,因此选择较小的背吃刀量和进给量。
数控铣削加工工艺参数的确定确定工艺参数是工艺制定中重要的内容,采用自动编程时更是程序成功与否的关键。
(一)用球铣刀加工曲面时与切削精度有关的工艺参数的确定1、步长l (步距)的确定步长l (步距)——每两个刀位点之间距离的长度,决定刀位点数据的多少。
曲线轨迹步长l 的确定方法:直接定义步长法:在编程时直接给出步长值,根据零件加工精度确定间接定义步长法:通过定义逼近误差来间接定义步长2、逼近误差e r 的确定逼近误差e r ——实际切削轨迹偏离理论轨迹的最大允许误差三种定义逼近误差方式(如图16-4所示):指定外逼近误差值:以留在零件表面上的剩余材料作为误差值(精度要求较高时一般采用,选为0.0015~0.03mm )指定内逼近误差值:表示可被接受的表面过切量同时指定内、外逼近误差3、行距S (切削间距)的确定行距S (切削间距)——加工轨迹中相邻两行刀具轨迹之间的距离。
行距小:加工精度高,但加工时间长,费用高行距大:加工精度低,零件型面失真性较大,但加工时间短。
两种方法定义行距:(1)直接定义行距算法简单、计算速度快,适于粗加工、半精加工和形状比较平坦零件的精加工的刀具运动轨迹的生成(2)用残留高度h 来定义行距残留高度h ——被加工表面的法矢量方向上两相邻切削行之间残留沟纹的高度。
大:表面粗糙度值大小:可以提高加工精度,但程序长,占机时间成倍增加,效率降低选取考虑:粗加工时,行距可选大些,精加工时选小一些。
有时为减小刀峰高度,可在原两行之间加密行切一次,即进行曲刀峰处理,这相当于将S 减小一半,实际效果更好些。
图3.2.6 指定逼近误差(二)与切削用量有关的工艺参数确定1、背吃刀量a p与侧吃刀量a e背吃刀量a p——平行于铣刀轴线测量的切削层尺寸。
侧吃刀量a e——垂直于铣刀轴线测量的切削层尺寸。
从刀具耐用度的角度出发,切削用量的选择方法是:先选取背吃刀量a p或侧吃刀量a e,其次确定进给速度,最后确定切削速度。
数控车床零件加工工艺分析一、数控车床的加工工艺1.数控车床主要加工对象数控车床的主要加工对象有:精度要求高的回转体零件、表面粗糙度要求高的回转体零件、表面形状复杂的回转体零件、带特殊螺纹的回转体零件。
2.数控车床加工工艺的主要内容选择适合在数控车床上加工的零件,确定工序内容;分析被加工零件的图样,明确加工内容和技术要求;确定零件的加工方案,制定数控加工工艺路线;加工工序的设计;数控加工程序的调整。
3.数控车床加工路线的拟订车削加工工艺路线的拟订是制定车削工艺规程的重要内容之一,其主要内容包括:选择各加工表面的加工方法、划分加工阶段、划分工序以及安排工序的先后顺序等。
(1)加工方法的选择。
每一种表面都有多种加工方法,具体选择时应根据零件的加工精度、表面粗糙度、材料、结构形状、尺寸及生产类型等因素,选用相应的加工方法和加工方案。
(2)加工阶段的划分。
粗加工阶段:其任务是切除毛坯上大部分多余的金属,使毛坯在形状和尺寸上接近零件成品;半精加工阶段:其任务是使主要表面达到一定精度,留有一定的精加工余量,为主要表面的精加工做好准备;精加工阶段:其主要任务是保证主要表面达到规定的尺寸精度和表面粗糙度要求,主要目标是全面保证加工质量;光整加工阶段:对零件精度和表面粗糙度要求很高的表面,需要进行光整加工,其主要目的是提高尺寸精度、减小表面粗糙度。
(3)工序的划分原则。
工序集中原则:指每一道工序包括尽可能多的加工内容,从而使工序的总数减少。
工序分散原则:就是将工件加工分散在较多的工序内进行,每道工序的加工内容很少。
(4)加工顺序的安排。
先粗后精、先远后近、内外交叉原则、基面先行原则。
二、零件加工工艺分析1.零件图的分析图1如图1,该零件是一个典型的螺纹轴(带内孔)零件。
零件长度中等,而且长度尺寸要求不高,均属于自由公差范围。
该工件右侧有一直径为28mm、公差为0.021mm、深度为14mm的内孔,表面粗糙度值为1.6μm,可以作为同轴配合的孔。