房室模型的确定
- 格式:ppt
- 大小:460.00 KB
- 文档页数:16
最简单的房室模型是一房室模型。
用一房室模型意味着将机体看成一个动力学单元,它适用于给药以后药物瞬即分布到血液、其它体液及各器官组织中,并达成动态平衡的情况。
二房室模型是从动力学角度把机体设想为两部分,分别称为中央室和周边室。
中央室一般包括血液及血流丰富的组织(如心、肝、肾、肺、脑、消化器官等),周边室一般指血流供应少,药物不易进入的组织(如肌肉、皮肤、脂肪、毛发等)。
尽管经典房室模型在临床中已有广泛的应用,但是这种模型并不能描述组织间浓度差异较大的生理系统。
对药理活性不高的药物而言,可以忽略房室之间的差异,但是对于具有高亲和力的药物,或对于某些组织具有毒性,有特殊的目标器官的药物,经典的房室模型就无法描述这种特殊的现象[1]。
经典房室模型还存在着一些明显的缺点,如:分析结果依赖于房室模型的选择,而房室模型的选择带有一定的不确定性。
同一种药物可用不同的房室模型来解释,相应的参数可以显著不同。
因而,要判断哪一个模型最适宜,有时是困难的,甚至是不可能的。
为了克服经典房室模型的缺点,近年来药物动力学研究继经典房室模型之后又提出了生理房室模型[2]。
生理房室模型简称生理模型,是一种整体模型。
它是根据生理学、生物化学和机体解剖学的知识,模拟机体循环系统的血液流向并将各器官或组织相互联结。
每一房室代表一种或一组特殊器官或组织,每一器官或组织(房室)在实际血流速率和组织/血液分配系数以及药物性质的控制下遵循物质平衡原理进行药物运转。
因此,生理模型可描述任何器官或组织内药物浓度的经时变化,以提供药物体内分布的资料,并可以模拟肝、肾等代谢、排泄功能,提供药物体内生物转化的资料,从而得到药物对靶器官作用的信息,有助于药物作用机理的探讨。
依据生理房室模型药物动力学,通过模拟可以验证、补充和预测体内药量的经时变化规律。
对新药研究开发、临床药物治疗均有理论指导意义和实用价值。
药动学通常用房室模拟人体,只要体内某些部位接受或消除药物的速率相似,即可归入一个房室。
房室模型的划分依据和动力学特征示例文章篇一:《房室模型的划分依据和动力学特征》嘿,你知道吗?在我们探索身体里那些奇妙的变化呀,有个特别有趣又超级有用的东西叫房室模型呢。
我就先说说啥是房室模型吧。
你可以把我们的身体想象成一个大城堡,这个城堡里呢,有不同的房间。
每个房间就像是一个房室。
房室模型就是科学家们想出来的一种办法,用来描述药物在我们身体这个大城堡里是怎么跑来跑去的。
那房室模型的划分依据是啥呢?这就好比我们要把城堡里的房间分类。
有些房间可能挨得特别近,药物在它们之间跑得就特别快,就像在同一个小院子里的屋子似的。
比如说,我们的血液就像城堡里的一条大河,那些和血液关系特别紧密的地方,药物一进去就能快速到达,这就可能被划分成一个房室。
像我们的心脏、血管这些地方,药物一下子就能在里面扩散开,那它们就可能被看作是一个房室。
还有啊,如果有一些组织器官,它们对药物的吸收啊、分布啊的速度差不多,那它们也能被划到同一个房室里。
就像城堡里的一些功能相似的小角落,它们对待客人(药物)的态度很相似,那就把它们归为一类啦。
这就好比厨房和餐厅,总是有很多东西在它们之间来来去去,速度也差不多,就可以算是一种类型的房室。
再讲讲房室模型的动力学特征吧。
这就像在城堡里,每个房间都有自己独特的规则来迎接和送走客人。
比如说一房室模型,药物进入身体这个城堡后,就像一个小探险家在一个大房间里跑来跑去。
这个小探险家(药物)在这个大房间(一房室)里的运动速度是有一定规律的。
它可能会均匀地分散在这个房室里,就像你把一把沙子撒在一个大盒子里,慢慢地沙子就会均匀分布一样。
这个时候呢,药物的浓度变化是按照一定的数学公式来的。
如果用一个简单的比喻,就像是一个小水滴在一个平静的小池塘里,慢慢地扩散开来,它的扩散速度是有规律可循的。
二房室模型就更有趣了。
就像城堡里有两个不同的区域,一个可能是中心区域,一个是边缘区域。
药物先进入中心区域,这个中心区域就像是城堡里的大厅,药物在大厅里一下子就能散开,浓度变化比较快。
§3 房室模型[问题的提出]药物进入机体后,在随血液输运到各个器官和组织的过程中,不断地被吸收、分布、代谢,最终排出体外.药物在血液中的浓度,即单位体积血液(毫升)中药物含量(毫克或微克),称血药浓度,随时间和空间(机体的各部分)而变化.血药浓度的大小直接影响到药物的疗效,浓度太低不能达到预期的效果,浓度太高又可能导致药物中毒、副作用太强或造成浪费.因此研究药物在体内吸收、分布和排除的动态过程,及这些过程与药理反应间的定量关系,对于新药研制、剂量确定、给药方案设计等药理学和临床医学的发展都具有重要的指导意义和实用价值.这个学科分支称药物动力学.建立房室模型(Compannlent Model)是药物动力学研究上述动态过程的基本步骤之一.所谓房室是指机体的一部分,药物在一个房室内呈均匀分布,即血药浓度是常数,而在不同房室之间则按照一定规律进行药物的转移.一个机体分为几个房室,要看不同药物的吸收、分布、排除过程的具体情况,以及研究对象所要求的精度而定.本节只讨论二室模型,即将机体分为血液较丰富的中心室(包括心、肺、肾等器官)和血液较贫乏的周边室(四肢、肌肉组织等).药物的动态过程在每个房室内是一致的,转移只在两个房室之间以及某个房室与体外之间进行.二室模型的建立和求解方法可以推广到多室模型.显然,将一个机体划分为若干房室是人们为了研究目的所做的简化.值得庆幸的是,这种简化在一定条下已由临床试验证明是正确的,为医学界和药理学界所接受.[模型的假设] 1.机体分为中心室( 室)和周边室( 室),两个室的容积(即血液体积或药物分布容积)在过程中保持不变;2.药物从一室向另一室的转移速率,及向体外的排除速率,与该室的血药浓度成正比;3.只有中心室与体外有药物交换,即药物从体外进人中心室,最后又从中心室排出体外.与转移和排除的数量相比药物的吸收可以忽略.在这些假设下的一种二室模型示意图如下,)(),(t x t c i i 和i V 分别表示第i 室)2,1(=i 的血药浓度、药量和容积,12k 和21k 是两室之间药物转移速率系数,13k 是药物从I 室向体外排除的速率系数.)(0t f 是给药速率,由给药方式和剂量确定.这种速率系数为常数的房室模型称乳突状模型.[模型的建立] 根据假设条件和上图可以写出两个房室中药量)(),(21t x t x 满足的微分方程.)(1t x 的变化率由I 室向Ⅱ室的转移12k -1x ,I 室向体外的排除113x k -,Ⅱ室向I 室的转移是221x k ,及给药)(0t f 组成;)(2t x 的变化率由I 室向Ⅱ室的转移112x k 及Ⅱ室向I 室的转移221,x k -组成.于是有)(t x i 与血药浓度)(t c i 、房室容积i V 之间显然有关系式(2)代人(1)式可得这是线性常系数非齐次方程,它的解由齐次方程的通解和非齐次方程的特解组成.其对应齐次方程的通解为:其中βα,由确定.为了得到非齐次方程的特解从而解出(3),需要设定给药速率)(0t f 和初始条件.我们考察下面几种常见的给药方式.1.快速静脉注射这种注射可简化为在0=t 的瞬时将剂量0D 的药物输入中心室,血药浓度立即上升为10/V D ,于是)(0t f 和初始条件为方程(3)在条件(6)下的解为其中βα,由(5)确定.可以看出当∞→t 时0)(,0)(21→→t c t c .2.恒速静脉滴注 当静脉滴注的速率为常数是0k 时,)(0t f 和初始条件为方程(3)在条件(9)下的解可表示为其中常数11,B A 由初始条件0)0()0(21==c c 确定. 当t 充分大时)(),(21t c t c 将趋向于(10)式右端第3项表示的常值.实际上,若T t =后停止滴注,那么)(),(21t c t c 在T t >以后将按指数规律衰减并趋于零.3.口服或肌肉注射这种给药方式相当于在药物输入中心室之前先有一个将药物吸收人血掖的过程,可以简化为有一个吸收室,如图16.)(0t x 为吸收室的药量,药物由吸收室进人中心室的转移速率系数为01k ,于是)(0t x 满足0D 是给药量.而药物进人中心室的速率为将方程(11)的解代人(12)式得在这种情况下方程(3)的解)(1t c 的一般形式为(设βα,01≠k ).其中系数A ,B ,,E 正由初始条件0)0()0(21==c c 确定.从以上的讨论可以看出,中心室的血药浓度)(1t c 取决于转移速率系数132112,,k k k ,房室容积21,V V 以及输入参数00,k D 等因素,而房室模型的用途恰是通过对)(1t c 的量测,确定对于药理学和临床医学最为重要的参数,如转移速率系数,特别是从中心室向体外排除的速率系数13k .下面介绍在快速静脉注射给药方式下估计诸参数的方法.[参数估计] 在0=t 瞬时快速注射剂量为0D 的药物以后,在一系列时刻),2,1(n i t i ,⋯=从中心室采取血样并获得血药浓度)(1t c ,根据这些数据利用 (7),(5)式估计参数132112,,k k k 的过程可分两步:先计算(7)式中的B A ,,,βα再确定132112,,k k k .1.计算B A ,,,βα 不妨设βα<,于是当t 充分大时(7)式近似为或对于适当大的i t 和相应的)(1t c ,用最小二乘法不难估计出α,1nA 和A .然后计算再利用(7)式得对于较小的i t 和由(17)式算出的)(1i t c ,仍用最小二乘法即可得到β和B .2.确定132112,,k k k因为∞→t 时0)(),(21→t c t c ,进人中心室的药物全部被排除,所以将(7)代人(19)式可得又因为联合(20),(21)式解出再利用(5)式即可确定这就完成了根据中心室血药浓度的量测数据,估计转移和排除速率系数的过程.[ 评注] 建立房室模型的目的是研究体内血药浓度的变化过程,确定诸如转移和排除速率系数等参数,为制订给药方案和剂量大小提供数量依据.建模过程是将机理分析和测试分析相结合,先由机理分析确定方程形式,再由测试数据估计参数.选用几个房室建模是一个重要问题,可以先选择一室模型,其计算非常简单.不满意时再采用二室或多室模型,甚至非线性房室模型.常见的一种非线性模型(以一室为例)是12111.)(c k c k t c +-=,当1c 较小时它近似于线性模型;称为一级排除过程,而当1c 较大时)(1.t c 近似于常数,称为零级排除过程,所以它表示了一种混合型的排除过程.。
08级药代动期末考参考资料名词解释1.清除率CL:单位时间,从体内消除的药物表观分布容积数,总清除率CL等于总消除速率dx/dt对全血或血浆药物浓度c的比值,也就是说消除速率dx/dt=cl*c。
2.稳态坪浓度:为达到稳态后给药间期τ内AUC与τ的比值。
c=AUC/τ,该公式的实质:对稳态各个时间点的浓度的时间长度权重平均。
3.代谢分数:fm,代谢物给药后代谢物的AUC和等mol的原型药物给药后代谢物的AUC的比值。
4.负荷剂量(Loading Dose):凡首次给药剂量即可使血药浓度达到稳态的剂量。
5.非线性药物动力学:药物动力学参数随剂量(或体内药物浓度)而变化,如半衰期与剂量有关,这类消除过程叫非线性动力学过程,也叫剂量依赖性动力学过程。
6.非线性消除:药物在体内的转运和消除速率常数呈现为剂量或浓度依赖性,此时药物的消除呈现非一级过程,一些药动学参数如T1/2,CL,不再为常数,AUC、Cmax等也不再与剂量成正比变化。
7.清洗期(必考):交叉实验设计中两个周期的间隔称为清洗期,至少间隔药物的7~9个清除半衰期。
如果清洗期不够长,第一轮服药在血液中的残留对第二轮产生干扰。
存在不等性残留效应,第二轮数据就无效了。
8.后遗效应(必考):在生物等效性试验交叉设计中,由于清洗期不够长,第一轮服药在血液中的残留对第二轮产生的干扰称为后遗效应。
9.物料平衡:指药物进入体内后的总量与从尿液、粪便中收集到的原型药及代谢物等的总量是相等的。
10.药物转运体:存在与细胞膜上的能将药物向细胞外排的一类功能性蛋白质或者多肽。
11.介质效应:由于样品中存在干扰物质,对响应造成的直接或间接的影响。
12.MAT:mean absorption time即平均吸收时间。
公式为MAT=MRT oral – MRT iv 13.波动系数:FD,研究缓控释剂得到稳态时的波动情况,av/c-c ssminssmaxCFD)(14.平衡透析法:测定药物蛋白结合率的一种方法,该方法是以半透膜将血浆与缓冲液隔开,将药物加入缓冲液中,待药物扩散达到平衡后测定半透膜两侧的药物浓度,并计算出药物的蛋白结合率。
房室模型及其划分的依据
《房室模型及其划分的依据》
房室模型是描述心脏结构和功能的一种常用方法,它通过将心脏分为房室两个腔进行建模,以便更好地了解心脏的运作原理。
房室模型的划分依据主要有以下几个方面。
1. 解剖学划分:
心脏是由四个腔室组成,包括左右心房和左右心室。
心脏的左心室和右心室分别负责将氧合血液和非氧合血液泵送到全身。
心脏的左心房和右心房则接受相应腔室的血液,将其注入相应腔室,维持心血管循环的正常运转。
2. 功能学划分:
心脏的左边和右边在解剖结构上有所不同,也反映在其功能上。
左心室是心脏最大的腔室,主要承担将氧合血液泵送到全身的功能,所以它的肌肉更加强壮,收缩更有力。
右心室则较小,将经肺循环氧合后的血液泵送到肺部。
3. 血液流动的方向:
心脏内部的血液流动方向也成为划分的依据之一。
血液在心脏内外来回流动,其中两个心房接受血液,两个心室将血液泵出。
心房和心室之间通过房室瓣膜相隔开来,控制血液流动的方向。
4. 协同收缩和舒张:
心脏的房室周期性地进行收缩和舒张,以维持正常的心血管功能。
一次收缩和舒张过程称为一个心搏。
房室模型的划分也可以根据心脏收缩的节律和协同进行,从而更好地理解心脏的工作原理。
综上所述,《房室模型及其划分的依据》主要根据心脏的解剖学结构、功能学特点、血液流动方向以及协同收缩和舒张等方面进行了划分,这种模型的建立有助于我们更好地了解心脏的工作原理,并在临床上应用于心血管疾病的诊断和治疗。