第1章 经典房室模型理论1 (2)
- 格式:ppt
- 大小:1.70 MB
- 文档页数:62
药代动⼒学考试复习资料08级药代动期末考参考资料名词解释1.清除率CL:单位时间,从体内消除的药物表观分布容积数,总清除率CL等于总消除速率dx/dt对全⾎或⾎浆药物浓度c的⽐值,也就是说消除速率dx/dt=cl*c。
2.稳态坪浓度:为达到稳态后给药间期τ内AUC与τ的⽐值。
c=AUC/τ,该公式的实质:对稳态各个时间点的浓度的时间长度权重平均。
3.代谢分数:fm,代谢物给药后代谢物的AUC和等mol的原型药物给药后代谢物的AUC的⽐值。
4.负荷剂量(Loading Dose):凡⾸次给药剂量即可使⾎药浓度达到稳态的剂量。
5.⾮线性药物动⼒学:药物动⼒学参数随剂量(或体内药物浓度)⽽变化,如半衰期与剂量有关,这类消除过程叫⾮线性动⼒学过程,也叫剂量依赖性动⼒学过程。
6.⾮线性消除:药物在体内的转运和消除速率常数呈现为剂量或浓度依赖性,此时药物的消除呈现⾮⼀级过程,⼀些药动学参数如T1/2,CL,不再为常数,AUC、Cmax等也不再与剂量成正⽐变化。
7.清洗期(必考):交叉实验设计中两个周期的间隔称为清洗期,⾄少间隔药物的7~9个清除半衰期。
如果清洗期不够长,第⼀轮服药在⾎液中的残留对第⼆轮产⽣⼲扰。
存在不等性残留效应,第⼆轮数据就⽆效了。
8.后遗效应(必考):在⽣物等效性试验交叉设计中,由于清洗期不够长,第⼀轮服药在⾎液中的残留对第⼆轮产⽣的⼲扰称为后遗效应。
9.物料平衡:指药物进⼊体内后的总量与从尿液、粪便中收集到的原型药及代谢物等的总量是相等的。
10.药物转运体:存在与细胞膜上的能将药物向细胞外排的⼀类功能性蛋⽩质或者多肽。
11.介质效应:由于样品中存在⼲扰物质,对响应造成的直接或间接的影响。
12.MAT:mean absorption time即平均吸收时间。
公式为MAT=MRT oral – MRT iv 13.波动系数:FD,研究缓控释剂得到稳态时的波动情况,av/c-c ssminssmaxCFD)(14.平衡透析法:测定药物蛋⽩结合率的⼀种⽅法,该⽅法是以半透膜将⾎浆与缓冲液隔开,将药物加⼊缓冲液中,待药物扩散达到平衡后测定半透膜两侧的药物浓度,并计算出药物的蛋⽩结合率。
房室模型的综述1前言神经系统可能是我们体内最复杂和最重要的系统。
它负责传递有关肌肉运动和感官输入的信息,使我们能够与周围的世界互动并感知它们。
神经系统主要由称为神经元的大量互连细胞网络组成。
因此,对神经元的研究具有重要意义,因为了解神经元本身的性质有助于理解它们如何在更大的网络中协同工作。
1.1神经元解剖学神经元可以分解为三个主要部分;躯体,树突和轴突。
体细胞是神经元的主体,具有容纳细胞核的半透性细胞膜。
树枝状结构形成一个巨大的树状结构,从躯体延伸出来。
树突负责接收来自其他神经元的突触输入(神经递质)。
神经元的轴突是长轴状结构,终止于轴突末端。
轴突末端负责释放由其他神经元的树突所接收的神经递质。
神经元图如图1所示。
树突和轴突末端的大分支结构允许每个神经元与数千个其他神经元连接,形成大规模的通信网。
神经元通过突触进行通信,突触由轴突终端中的电脉冲触发。
轴突末端的电脉冲释放神经递质,该神经递质与另一神经元的树突上的受体位点结合。
树突上的兴奋性神经递质的累积可以引起动作电位,这是跨细胞膜的电压的大的尖峰。
该电脉冲可以沿树突移动到轴突终端,其中可以定位其他突触,允许信息在网络上传播。
1.2数学方法为了捕获沿单个神经元的电脉冲传播的基本动态,可以使用数学方程。
然而,神经元的复杂生理结构产生难以分析的方程式。
跨越神经元细胞膜的潜在差异取决于空间和时间,因此生理上准确的神经元模型将受部分差异方程(PDE)控制。
PDE难以通过分析和数值分析。
为了克服这种困难,神经元可以通过称为区室化的过程离散化(图2)。
当神经元被划分时,它被分解成称为隔室的不连续区段。
图1:神经元图。
神经元的三个主要部分是体细胞,树突和轴突。
单个隔室没有空间依赖性,因此它们的电压仅取决于时间,这使得它们可以由普通的二元方程(ODE)控制。
通常,对ODE系统的分析比PDE系统的分析容易得多。
区室化过程允许使用空间独立的隔室对神经元进行建模。
模型具有的隔室越多,其生理学上就越现实。
§3 房室模型[问题的提出]药物进入机体后,在随血液输运到各个器官和组织的过程中,不断地被吸收、分布、代谢,最终排出体外.药物在血液中的浓度,即单位体积血液(毫升)中药物含量(毫克或微克),称血药浓度,随时间和空间(机体的各部分)而变化.血药浓度的大小直接影响到药物的疗效,浓度太低不能达到预期的效果,浓度太高又可能导致药物中毒、副作用太强或造成浪费.因此研究药物在体内吸收、分布和排除的动态过程,及这些过程与药理反应间的定量关系,对于新药研制、剂量确定、给药方案设计等药理学和临床医学的发展都具有重要的指导意义和实用价值.这个学科分支称药物动力学.建立房室模型(Compannlent Model)是药物动力学研究上述动态过程的基本步骤之一.所谓房室是指机体的一部分,药物在一个房室内呈均匀分布,即血药浓度是常数,而在不同房室之间则按照一定规律进行药物的转移.一个机体分为几个房室,要看不同药物的吸收、分布、排除过程的具体情况,以及研究对象所要求的精度而定.本节只讨论二室模型,即将机体分为血液较丰富的中心室(包括心、肺、肾等器官)和血液较贫乏的周边室(四肢、肌肉组织等).药物的动态过程在每个房室内是一致的,转移只在两个房室之间以及某个房室与体外之间进行.二室模型的建立和求解方法可以推广到多室模型.显然,将一个机体划分为若干房室是人们为了研究目的所做的简化.值得庆幸的是,这种简化在一定条下已由临床试验证明是正确的,为医学界和药理学界所接受.[模型的假设] 1.机体分为中心室( 室)和周边室( 室),两个室的容积(即血液体积或药物分布容积)在过程中保持不变;2.药物从一室向另一室的转移速率,及向体外的排除速率,与该室的血药浓度成正比;3.只有中心室与体外有药物交换,即药物从体外进人中心室,最后又从中心室排出体外.与转移和排除的数量相比药物的吸收可以忽略.在这些假设下的一种二室模型示意图如下,)(),(t x t c i i 和i V 分别表示第i 室)2,1(=i 的血药浓度、药量和容积,12k 和21k 是两室之间药物转移速率系数,13k 是药物从I 室向体外排除的速率系数.)(0t f 是给药速率,由给药方式和剂量确定.这种速率系数为常数的房室模型称乳突状模型.[模型的建立] 根据假设条件和上图可以写出两个房室中药量)(),(21t x t x 满足的微分方程.)(1t x 的变化率由I 室向Ⅱ室的转移12k -1x ,I 室向体外的排除113x k -,Ⅱ室向I 室的转移是221x k ,及给药)(0t f 组成;)(2t x 的变化率由I 室向Ⅱ室的转移112x k 及Ⅱ室向I 室的转移221,x k -组成.于是有)(t x i 与血药浓度)(t c i 、房室容积i V 之间显然有关系式(2)代人(1)式可得这是线性常系数非齐次方程,它的解由齐次方程的通解和非齐次方程的特解组成.其对应齐次方程的通解为:其中βα,由确定.为了得到非齐次方程的特解从而解出(3),需要设定给药速率)(0t f 和初始条件.我们考察下面几种常见的给药方式.1.快速静脉注射这种注射可简化为在0=t 的瞬时将剂量0D 的药物输入中心室,血药浓度立即上升为10/V D ,于是)(0t f 和初始条件为方程(3)在条件(6)下的解为其中βα,由(5)确定.可以看出当∞→t 时0)(,0)(21→→t c t c .2.恒速静脉滴注 当静脉滴注的速率为常数是0k 时,)(0t f 和初始条件为方程(3)在条件(9)下的解可表示为其中常数11,B A 由初始条件0)0()0(21==c c 确定. 当t 充分大时)(),(21t c t c 将趋向于(10)式右端第3项表示的常值.实际上,若T t =后停止滴注,那么)(),(21t c t c 在T t >以后将按指数规律衰减并趋于零.3.口服或肌肉注射这种给药方式相当于在药物输入中心室之前先有一个将药物吸收人血掖的过程,可以简化为有一个吸收室,如图16.)(0t x 为吸收室的药量,药物由吸收室进人中心室的转移速率系数为01k ,于是)(0t x 满足0D 是给药量.而药物进人中心室的速率为将方程(11)的解代人(12)式得在这种情况下方程(3)的解)(1t c 的一般形式为(设βα,01≠k ).其中系数A ,B ,,E 正由初始条件0)0()0(21==c c 确定.从以上的讨论可以看出,中心室的血药浓度)(1t c 取决于转移速率系数132112,,k k k ,房室容积21,V V 以及输入参数00,k D 等因素,而房室模型的用途恰是通过对)(1t c 的量测,确定对于药理学和临床医学最为重要的参数,如转移速率系数,特别是从中心室向体外排除的速率系数13k .下面介绍在快速静脉注射给药方式下估计诸参数的方法.[参数估计] 在0=t 瞬时快速注射剂量为0D 的药物以后,在一系列时刻),2,1(n i t i ,⋯=从中心室采取血样并获得血药浓度)(1t c ,根据这些数据利用 (7),(5)式估计参数132112,,k k k 的过程可分两步:先计算(7)式中的B A ,,,βα再确定132112,,k k k .1.计算B A ,,,βα 不妨设βα<,于是当t 充分大时(7)式近似为或对于适当大的i t 和相应的)(1t c ,用最小二乘法不难估计出α,1nA 和A .然后计算再利用(7)式得对于较小的i t 和由(17)式算出的)(1i t c ,仍用最小二乘法即可得到β和B .2.确定132112,,k k k因为∞→t 时0)(),(21→t c t c ,进人中心室的药物全部被排除,所以将(7)代人(19)式可得又因为联合(20),(21)式解出再利用(5)式即可确定这就完成了根据中心室血药浓度的量测数据,估计转移和排除速率系数的过程.[ 评注] 建立房室模型的目的是研究体内血药浓度的变化过程,确定诸如转移和排除速率系数等参数,为制订给药方案和剂量大小提供数量依据.建模过程是将机理分析和测试分析相结合,先由机理分析确定方程形式,再由测试数据估计参数.选用几个房室建模是一个重要问题,可以先选择一室模型,其计算非常简单.不满意时再采用二室或多室模型,甚至非线性房室模型.常见的一种非线性模型(以一室为例)是12111.)(c k c k t c +-=,当1c 较小时它近似于线性模型;称为一级排除过程,而当1c 较大时)(1.t c 近似于常数,称为零级排除过程,所以它表示了一种混合型的排除过程.。