2 电阻电路分析
- 格式:ppt
- 大小:4.81 MB
- 文档页数:7
电阻电路的分析原理及应用1. 引言电阻电路是电子电路中最基本的电路之一,其在各种电子设备和系统中都有广泛的应用。
本文将介绍电阻电路的分析原理,包括欧姆定律、串并联电阻等基本概念,并探讨其在实际应用中的一些常见应用场景。
2. 电阻电路的基本原理电阻电路的基本原理是基于欧姆定律,即电流与电压之间的线性关系。
根据欧姆定律,电流I等于电压V与电阻R之间的比值,即I = V / R。
在直流电路中,电阻是一个恒定的元件,其阻值不随电压和电流的变化而改变。
3. 欧姆定律的应用欧姆定律是电阻电路分析的基础,可应用于解析和计算电路中的电流、电压和电阻之间的关系。
下面是一些常见的欧姆定律应用场景:•计算电阻:已知电压和电流,可以使用欧姆定律的公式R = V / I来计算电阻的值。
•计算电流:已知电压和电阻,可以使用欧姆定律的公式I = V / R来计算电流的值。
•计算电压:已知电流和电阻,可以使用欧姆定律的公式V = I * R来计算电压的值。
4. 串联电阻电路串联电阻电路是指多个电阻按照顺序连接在一起的电路。
在串联电阻电路中,电流在各个电阻之间是相等的,而总电压是各个电阻电压之和。
串联电阻的总电阻可以通过将各个电阻的阻值相加得到。
串联电阻电路的应用场景包括: - 分压电路:在电路中引入串联电阻来实现不同电压的输出,常见于电源供电和信号调节等场景。
- 高精度测量:串联电阻可用于精确测量电流或电压时,提供较高的精度和稳定性。
5. 并联电阻电路并联电阻电路是指多个电阻按照平行连接的方式连接在一起的电路。
在并联电阻电路中,总电流是各个电阻电流之和,而总电压在各个电阻之间是相等的。
并联电阻的总电阻可以通过将各个电阻的倒数相加后再取倒数得到。
并联电阻电路的应用场景包括: - 分流电路:在电路中引入并联电阻来实现不同电流的分流,常见于功率分配和电路保护等场景。
- 扩展电路:并联电阻可用于扩展电路的容量和功率,提供更高的电流承载能力。
第二章 电阻电路的分析主要内容:定理法:叠加定理、替代定理、戴维南定理(诺顿定理); 等效变换法:独立电源的等效变换、电阻的Y -Δ转换、移源法; 系统化法:节点电压法、回路电流法。
§2-1 线性电路的性质·叠加定理(superposition theorem)一、 线性电路的概念由线性元件及独立电源组成的电路。
电源的作用是激励,其它元件则是对电源的响应。
二、 线性电路的性质 1、齐次性: 若有图示的线性电路,在单电源激励下,以2R 的电流2i 为输出响应,则容易得到:s u R R R R R R R i 13322132++=由于321,,R R R 为常数,故有:s ku i =2显然,2i 与su 成比例。
在数学中,被称为“齐次性”,而在电路理论中则称为“比例性”。
2、相加性在图示的两激励电路中,若仍以2R 的电流2i 作为输出响应,则有:u+ |2us u+ ||2us s i R R R u R R i 2112121+++=显然,2i 由两项组成,第一项为电压源单独作用时,在电阻上引起的响应,每二项为电流源单独作用时,在电阻上引起的响应,每一项只与某个激励源成比例。
也即,由两个激励所产生的响应,表示为每一个激励单独作用时产生的响应之和。
这在数学中称为“相加性”,在电路理论中则称为“叠加性”。
三、 叠加定理在任何线性电阻电路中,每一元件的电流或电压都是电路中各个独立电源单独作用时在该元件产生的电流或电压的叠加。
叠加性是线性电路的一个根本属性。
注:叠加定理适用于线性电路。
在叠加的各分电路中,不作用的电压源置零(即,电压源用短路代替),不作用的电流源置零(即,电流源用开路代替),电阻不更动,受控源保留在各分电路中。
和分电路中的电压、电流的参考方向可以取为原电路中的相同方向,求和时,应注意各分量前的“+”、“-”号。
原电路的功率不等于按各分电路计算所得的功率叠加,这是因为功率是电压和电流的乘积。
一、实验目的1. 理解电阻电路的基本概念和基本定律;2. 掌握电阻电路的分析方法;3. 培养实验操作能力和数据处理能力。
二、实验原理1. 欧姆定律:电阻R两端的电压U与通过电阻的电流I成正比,即U=IR。
2. 电阻的串联和并联:多个电阻串联时,总电阻等于各电阻之和;多个电阻并联时,总电阻的倒数等于各电阻倒数之和。
3. 基尔霍夫电压定律(KVL):在任何一个闭合回路中,各段电压之和等于电源电压。
4. 基尔霍夫电流定律(KCL):在任何一个节点处,流入节点的电流之和等于流出节点的电流之和。
三、实验器材1. 电阻:R1=10Ω,R2=20Ω,R3=30Ω,R4=40Ω;2. 电源:电压为12V;3. 电压表:量程为0~15V;4. 电流表:量程为0~3A;5. 导线:若干;6. 电阻箱:用于调节电阻值;7. 实验平台:用于搭建电路。
四、实验步骤1. 搭建电路:根据实验原理,连接电路,确保电路连接正确;2. 测量电阻值:使用电阻箱调节电阻值,记录各电阻的阻值;3. 测量电压和电流:使用电压表和电流表测量电路中各点的电压和电流;4. 计算总电阻:根据欧姆定律,计算总电阻;5. 验证欧姆定律:根据实验数据,验证欧姆定律的正确性;6. 分析实验结果:分析实验数据,得出结论。
五、实验数据1. 电阻值:R1=10Ω,R2=20Ω,R3=30Ω,R4=40Ω;2. 电压:U1=2V,U2=4V,U3=6V,U4=8V;3. 电流:I1=0.2A,I2=0.4A,I3=0.6A,I4=0.8A。
六、实验结果与分析1. 根据欧姆定律,计算总电阻R总:R总 = U总 / I总= (U1 + U2 + U3 + U4) / (I1 + I2 + I3 + I4) = 10Ω2. 验证欧姆定律:通过实验数据,验证了欧姆定律的正确性;3. 分析实验结果:在实验过程中,观察到电压与电流成正比,符合欧姆定律。
同时,根据基尔霍夫电压定律和基尔霍夫电流定律,验证了电路的稳定性。
02分电阻电路的分析方法-(1)电阻电路的分析方法一、是非题1.图示三个网络a、b端的等效电阻相等。
2.当星形联接的三个电阻等效变换为三角形联接时,其三个引出端的电流和两两引出端的电压是不改变的。
3.对外电路来说,与理想电压源并联的任何二端元件都可代之以开路。
4.如二端网络的伏安特性为U=-20-5I,则图示支路与之等效。
5.两个电压值都为U S的直流电压源,同极性端并联时,可等效为一个电压源,其电压值仍为U S。
6.左下图示电路中,如100V电压源供出100W功率,则元件A吸收功率20W。
7.对右上图示电路,如果改变电阻R1,使电流I1变小,则I2必增大。
二、单项选择题2.在左下图示电路中,当开关S由闭合变为断开时,灯泡将(A)变亮(B)变暗(C)熄灭3.右上图示电路中电流I为(A)趋于无限(B)12A(C)6A(D)9A4.当标明“100Ω,4W”和“100Ω,25W”的两个电阻串联时,允许所加的最大电压是(A)40V (B)70V (C)140V5.电路如左下图所示,已知电压源电压U S=230V,内阻R S=1Ω。
为使输出电压为220V、功率为100W的灯泡正常发光,则应并联(A)22盏灯 (B)11盏灯 (C)33盏灯6.对右上图示电路,节点1的节点方程为(A)6U1-U2=6 (B)6U1=6 (C)5U1=6 (D)6U1-2U2=27.左下图示二端网络的电压、电流关系为(A)u=10-5i(B)u=10+5i(C)u=5i-10(D)u=-5i-108.右上图示电路中的电流I为(A)0.25A (B)0.5A (C) A (D)0.75A9.左下图示电路的输入电阻R ab(A)大于10Ω(B)等于10Ω(C)小于10Ω的正电阻(D)为一负电阻10.右上图示二端网络的输入电阻为(A)3Ω (B)6Ω (C)5Ω (D)-3Ω11.图示为电路的一部分,已知U ab=30V,则受控源发出的功率为(A)40W(B)60W(C)-40W(D)-60W12.若图1所示二端网络N的伏安关系如图2所示,则N可等效为13.图示电路中,增大G1将导制()。