2-4简单非线性电阻电路分析
- 格式:ppt
- 大小:3.20 MB
- 文档页数:25
第五章 简单非线性电阻电路的分析5-1 含一个非线性元件的电阻电路的分析一、含一个非线性元件的电阻电路都可用电源等效定理来等效N 为含源线性网络。
二、非线性电路的一般分析方法1、图解法2、代数法3、分段分析法4、假定状态分析法 1、图解法设非线性电阻的V AR 为 在如上图所示u 和i 的参考方向如下,线形部分的V AR 为将 代入上式得通常,用图解法求解u 和i 如图5-2两曲线的交点Q 是所求解答。
直线称为负载线在求出端口电压 u Q 和 i Q 后。
就 可用置换定理求出线性单口网络内部的电)(u f i =iR u u oc 0-=)(uf i =ococ u u u f R u f R u u =+-=)()(00压电流。
例5-1 电路如图5-3(a)所示,二极管特性曲线如图(d)所示,输入电压随时间变化。
(1)试求所示电路输出电压u0对输入电压u i的曲线,即u0-u i转移特性;(2)若输入电压的波形如图(e)所示,试求输出电压u0的波形。
解戴维南等效电路由电路可知2iocuu=iuu30 0+=若u i 变化时(交流),戴维南等效电压源也是时变的。
但Ro 是定值,所以线性网络的负载线具有不变的斜率 -1/Ro ,在u-i平面上作平行移动,每一时刻负载线在电压轴的截距总是等于等效电压源在该时刻的瞬时值,负载线与二极管特性曲线的交点也在移动,即二极管的电压、电流都随时间而变。
求u 0-u i 转移特性曲线 由图(a )可得当 时,0u 由 确定。
当 时,0i =,可得转移特性曲线如图5-4所示2、代数法若i=f(u)中的f(u)可用初等函数表示,那么可利用节点法或回路法求解。
例5-2 如图5-5所示电路中,已知非线性电阻的V AR 为试求电流i 。
030u u i=+0>i u i u u o 30+=0<i u io u u u 21==20.13i u u =+解 对节点1有 将 代入上式得解得 因此有两种解答5—2 理想二极管为了便于分析非线性电阻电路,常用分段线性法。
第六章简单非线性电阻电路分析由电压源、电流源和电阻元件构成的电路,称为电阻电路。
由独立电源和线性电阻构成的电阻电路,称为线性电阻电路,否则称为非线性电阻电路。
分析非线性电阻电路的基本依据仍然是KCL、KVL和元件的VCR。
非线性电阻电路的一般分析方法已超出本课程的范围。
本书只讨论简单非线性电阻电路的分析,为学习电子电路打下基础。
§6 - 1非线性电阻元件电压电流特性曲线通过u-i平面坐标原点直线的二端电阻,称为线性电阻;否则称为非线性电阻。
按照非线性电阻特性曲线的特点可以将它们进行分类。
其电压是电流的单值函数的电阻,称为流控电阻,用u=f(i)表示;其电流是电压的单值函数的电阻,称为压控电阻,用i=g(u)表示。
图6-1图(a)所示隧道二极管是压控电阻。
图(b)所示氖灯是流控电阻。
图(c)所示普通二极管既是压控电阻,又是流控电阻。
图(d)所示理想二极管既不是流控电阻,又不是压控电阻。
其特性曲线对称于原点的电阻,称为双向电阻;否则称为单向电阻。
图(b)所示氖灯是双向电阻,图(a)、(c)、(d)所示隧道二极管、普通二极管和理想二极管都是单向电阻。
单向性的电阻器件在使用时必须注意它的正负极性,不能任意交换使用。
理想二极管是开关电路中常用的非线性电阻元件。
其参考方向如图-1(d)所示时,其电压电流关系为:当u「0当「0 -图6-2§6- 2非线性电阻的串联与并联由线性电阻串联和并联组成的单口网络,就端口特性而言,等效于一个线性电阻,其电阻值可用串联和并联等效电阻的公式(2 - I)、(2 - 2)求得。
u HR R k (2 -1)i k 土nG」'G k (2 -2)u k 土由非线性电阻(也可包含线性电阻)串联和并联组成的单口网络,就端口特性而言,等效于一个非线性电阻,其VCR特性曲线可用图解法求得。
一、非线性电阻的串联图6 —3(a)表示两个流控非线性电阻的串联,它们的VCR特性曲线u1=f1(i1)和u2=f2(i2)如(b)中曲线①、②所示。
电工学-电工技术(艾永乐)课后答案第二章第二章 电阻电路的分析本章的主要任务是学习电阻电路的分析计算方法,并运用这些方法分析计算各种电阻电路中的电流、电压和功率。
本章基本要求1. 正确理解等效电路的概念,并利用等效变换化简电路。
2. 掌握电阻串、并联等效变换、电源的等效变换。
3. 电阻电路的分压公式和分流公式的应用。
4. 运用支路电流法和结点电压法分析计算电路。
5. 运用叠加定理分析计算电路。
6. 熟练应用戴维宁定理分析计算电路。
7. 应用戴维宁定理求解电路中负载电阻获得的最大功率。
8. 学会含有受控源电路的分析计算。
9. 了解非线性电阻电路的分析方法。
本章习题解析2-1 求习题2-1所示电路的等效电阻,并求电流I 5。
3Ω2Ω2Ω4Ω4Ω6Ω1ΩI 5 a+-3V b 3Ω2Ω2ΩΩ6Ω1ΩI 5a+-3V解:电路可等效为题解2-1图由题解2-1图,应用串并联等效变换得5.1)6//)12(2//2//(3ab =++=R Ω由分流公式3136********=⋅+++⋅+=ab R I A 2-2 题2-2图所示的为变阻器调节分压电路。
50=L R Ω,电源电压220=U V ,中间环节是变阻器。
变阻器的规格是100Ω 3A 。
今把它平题解2-1题2-1图分为4段,在图上用a 、b 、c 、d 、e 等点标出。
试求滑动触点分别在a 、b 、c 、d 四点是,负载和变阻器所通过的电流及负载电压,并就流过变阻器的电流与其额定电流比较来说明使用时的安全问题。
+-Ud ab c e L+-U L I L解:1)a 点: 0L =U 0L =I 2.2100220ea ea ===R U I A 2) c 点:75eq =R Ω 93.275220eq ec ===R U I A 47.121ec L ==I I A 5.73L =U V3) d 点:55eq =R Ω 455220eq ed ===R U I A 4.2L =I A 6.1da =I A 120L =U V4) e 点: 2.2100220ea ea ===R U I A 4.450220L ==I A 220L =U V 2-3 试求习题2-3ab 之间的输入电阻。
电工电子技术试题汇总1-1.只要电路中有非线性元件,则一定是非线性电路。
(×)1-2.只要电路中有工作在非线性区的元件,能进行频率变换的电路为非线(√)1-3.实际电路的几何尺寸远小于工作信号波长的电路为分布参数电路。
(×)1-4.实际电路的几何尺寸远小于工作信号波长的电路为集总参数电路。
(√)2-1.在节点处各支路电流的参考方向不能均设为流向节点,否则将只有流入节点的电流,而无流出节点的电流。
(×)2-2.沿顺时针和逆时针列写方程,其结果是相同的。
(√)2-3.电容在直流稳态电路中相当于短路。
(×)2-4. 通常电灯接通的越多,总负载电阻越小。
(√)2-5. 两个理想电压源一个为6V,另一个为9V,极性相同并联,其等效电压为15V。
(×)2-6.电感在直流稳态电路中相当于开路。
(×)2-7.电容在直流稳态电路中相当于开路。
(√)2-8.从物理意义上来说,应对电流的实际方向说才是正确的,但对电流的参考方向来说也必然是对的。
(√)2-9.基尔霍夫定律只适应于线性电路。
(×)2-10.基尔霍夫定律既适应于线性电路也适用与非线性电路。
(√)2-11.一个6V的电压源与一个2A的电流源并联,等效仍是一个6V的电压源。
(√)3-1.网孔分析法和节点分析法只适应于直流电路。
(×)3-2.回路分析法与网孔分析法的方法相同,只是用独立回路代替网孔而已。
(√)3-3.节点分析法的互电导符号恒取负(-)。
(√)3-4.理想运放的同相端和反相端不能看成短路。
(×)4-1.运用施加电源法和开路电压、短路电流法,求解戴维宁等效电路的内阻时,对原网络内部独立电源的处理方法是相同的。
(× )4-2. 运用施加电源法和开路电压、短路电流法,求解戴维宁等效电路的内阻时,对原网络内部独立电源的处理方法是不同的。
(√ )4-3.有一个100Ω的负载要想从内阻为50Ω的电源获得最大功率,采用一个相同的100Ω电阻与之并联即可。
⾮线性电阻电路电⼯电⼦综合实验论⽂----⾮线性电阻电路的研究姓名:xxx学号:xxxxxxxxxxxxxxxx学院:xxxxx时间:xxxxx⾮线性电阻电路研究论⽂⼀、摘要在了解常⽤的⾮线性电阻元件的伏安特性、凹电阻、凸电阻等基础上,⾃⾏设计⾮线性电阻电路进⾏综合电路设计,通过线性元件设计⾮线性电阻电路,⽤软件仿真并观察⾮线性电阻的伏安特性。
⼆、关键词⾮线性电阻,伏安特性,Multisim10仿真,凹电阻,凸电阻,串联分解,并联分解。
三、引⾔⾮线性系统的研究是当今科学研究领域的⼀个前沿课题,其涉及⾯⼴,应⽤前景⾮常⼴阔。
对于⼀个⼀端⼝⽹络,不管内部组成,其端⼝电压与电流的关系可以⽤U~I平⾯的曲线称为伏安特性。
各种单调分段线形的⾮线性元件电路的伏安特性可以⽤凹电阻和凸电阻作为基本积⽊块,综合出各种所需的新元件。
常⽤串联分解法或并联分解法进⾏综合。
本⽂主要介绍在电⼦电⼯综合实验基础上,根据已有的伏安特性曲线图来设计⾮线性电阻电路,并利⽤multisim10软件进⾏仿真实验。
测量所设计电路的伏安特性,记录数据,画出它的伏安特性曲线并与理论值⽐较。
四、正⽂1、设计要求:(1)⽤⼆极管、稳压管、稳流管等元件设计如图9.8、图9.9伏安特性的⾮线形电阻电路。
(2)测量所设计电路的伏安特性并作曲线,与图9.8、图9.9⽐对。
2、⾮线性电阻电路的伏安特性:(1)常⽤元件常⽤元件有⼆极管、稳压管、恒流管、电压源、电流源和线性电阻等。
(如图1)6 12 15 209 6 3i/mA图9.9伏安特性u /Vi/mA图9.8伏安特性12图1(2)凹电阻当两个或两个以上元件串联时,电路的伏安特性图上的电压是各元件电压之和。
如图所⽰,是将上图中电压源、线性电阻、理想⼆极管串联组成。
主要参数是Us和G,改变Us和G的值,就可以得到不同参数的凹电阻,其中电压源也可以⽤稳压管代替。
总的伏安特性形状为凹形。
图2(3)凸电阻与凹电阻对应,凸电阻是当两个或以上元件并联时,电流是各元件电流之和。
电阻的非线性特性及其分析方法电阻作为电子元件中最基本的一种,广泛应用于各个领域。
在日常使用中,我们通常认为电阻的电流与电压之间呈线性关系,即符合欧姆定律。
然而,实际情况却往往并非如此,电阻也存在着一定程度的非线性特性。
本文将详细探讨电阻的非线性特性及其分析方法。
一、电阻的非线性特性概述电阻的非线性特性是指在一定范围内,电阻的电流和电压之间不再简单地符合线性关系的现象。
当电阻的电流和电压之间存在非线性特性时,电阻的电阻值会随着电流或电压的改变而发生变化。
这种变化可能是线性的,也可能是非线性的,具体表现形式取决于电阻的材料和结构。
在实际应用中,电阻的非线性特性可能由多种因素引起。
其中,最常见的是温度变化对电阻值的影响。
某些电阻材料在高温下会出现非线性行为,导致电阻值发生变化。
此外,电阻材料的组成、制造工艺以及外界环境等因素也可能对电阻的非线性特性产生影响。
二、电阻的非线性特性分析方法针对电阻的非线性特性,科学家和工程师们提出了一系列分析方法,用于研究和描述电阻的非线性行为。
下面将介绍几种常用的分析方法:1. I-V曲线分析法I-V曲线是描述电阻非线性特性的常用工具,通过绘制电阻的电流与电压之间的关系曲线,可以直观地观察非线性行为。
在实验中,可以通过改变电压或电流的大小并记录相应的数值,然后利用这些数值绘制I-V曲线。
通过分析曲线的形状和变化趋势,可以推断电阻的非线性特性。
2. 方波法方波法是一种通过输入方波信号来研究电阻非线性特性的方法。
具体操作是将方波信号作为输入,测量电阻两端的电压响应。
通过分析输出电压的变化情况,可以推断电阻的非线性特性。
这种方法适用于对电阻频率响应特性进行研究。
3. 参数拟合法参数拟合法是将电阻的非线性特性转化为数学模型来描述的方法。
通过对实验数据进行参数拟合,可以得到与实际情况较为吻合的模型,从而精确地描述电阻的非线性行为。
常见的参数拟合方法有最小二乘法、曲线拟合法等。
三、电阻非线性特性的应用电阻的非线性特性在一些特定的应用中起着重要作用。