构成空间几何体的基本元素;棱柱、棱锥、和棱台;圆柱、圆锥、圆台和球
- 格式:doc
- 大小:169.50 KB
- 文档页数:9
空间几何体知识点总结一、空间几何体的结构特征1.柱、锥、台、球的结构特征由若干个平面多边形围成的几何体称之为多面体。
围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。
把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。
(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:棱柱的性质:①侧棱都相等,侧面是平行四边形;②两个底面与平行于底面的截面是全等的多边形;③过不相邻的两条侧棱的截面是平行四边形;④直棱柱的侧棱长与高相等,侧面与对角面是矩形。
圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。
圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。
棱柱与圆柱统称为柱体;(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥……正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。
注:棱锥的性质:①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比;②正棱锥各侧棱相等,各侧面是全等的等腰三角形;③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。
第一章 空间几何体知识点归纳1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。
简单组合体的构成形式:⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。
1、空间几何体的三视图和直观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。
(2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等”2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.3、斜二测画法的基本步骤:①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上)②建立斜坐标系'''x O y ∠,使'''x O y ∠=450(或1350),注意它们确定的平面表示水平平面;③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;4、空间几何体的表面积与体积⑴圆柱侧面积;l r S ⋅⋅=π2侧面⑵圆锥侧面积:l r S ⋅⋅=π侧面 ⑶圆台侧面积:()S r R l π=+侧面⑷体积公式:h S V ⋅=柱体;h S V ⋅=31锥体; ()13V h S S =+下台体上⑸球的表面积和体积:32344R V R S ππ==球球,.一般地,面积比等于相似比的平方,体积比等于相似比的立方。
第二章 点、直线、平面之间的位置关系及其论证1,,A l B ll A B ααα∈∈⎧⇒⊂⎨∈∈⎩ 公理1的作用:判断直线是否在平面内2、公理2:过不在一条直线上的三点,有且只有一个平面。
立体构成基本型
立体构成是艺术设计的基础课程之一,它研究的是三维空间中的形体组合与构成。
在立体构成中,基本型是指最基础、最简单的几何形态或抽象形态,这些基本型是构筑复杂立体结构的基础元素。
常见的立体构成基本型包括:
1.立方体(Cube):具有六个正方形面的三维形状。
2.球体(Sphere):所有点到中心的距离相等的三维圆形物体。
3.圆柱体(Cylinder):由一个矩形绕其一边旋转形成的立体图形,
有上下两个圆形底面和一个侧面。
4.圆锥体(Cone):由一个三角形或扇形绕其一直线边旋转而成,
有一个圆形底面和一个逐渐变小直至汇成一点的侧面。
5.棱柱(Prism):由一个多边形沿一条与其不平行的直线旋转而成,
有两个相同的多边形底面和多个侧面。
6.棱锥(Pyramid):由一个多边形沿着一个顶点向远离该顶点的方
向延伸形成的一系列射线旋转而得,有一个多边形底面和多个斜面最终汇聚于一个顶点。
除了以上几何体外,还有其他更复杂的立体构成基本型,如椭圆柱、椭圆锥、环状体等。
通过对这些基本型的研究、切割、组合、变形等手法,可以创造出丰富多样的立体造型,为设计师提供无限的设计灵感和表现手段。
空间几何体的结构____________________________________________________________________________________________________________________________________________________________________掌握棱柱、棱锥、棱台等多面体结构特征.掌握圆柱、圆锥、圆台、球等旋转体的结构特征.概括简单组合体的结构特征.1.几何体只考虑一个物体占有空间部分的形状和大小,而不考虑其他因素,则这个空间部分叫做一个几何体.2.构成空间几何体的基本元素(1)构成空间几何体的基本元素:点、线、面是构成空间几何体的基本元素.(2)平面及其表示方法:①平面的概念:平面是处处平直的面,它是向四面八方无限延展的.②平面的表示方法:图形表示:在立体几何中,通常画平行四边形表示一个平面并把它想象成无限延展的符号表示:平面一般用希腊字母α,β,γ…来命名,还可以用表示它的平行四边形对角顶点的字母来命名.深刻理解平面的概念,搞清平面与平面图形的区别与联系是解决相关问题的关键.平面与平面图形的区别与联系为:平面是没有厚度、绝对平展且无边界的,也就是说平面是无限延展的,无厚薄,无大小的一种理想的图形.平面可以用三角形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形是平面,只能说平面可以用平面图形来表示.(3)用运动的观点理解空间基本图形之间的关系:①点动成线:运动方向始终不变得到直线或线段;运动方向时刻变化得到的是曲线或者曲线的一段.②线动成面:直线平行移动可以得到平面或者曲面;固定射线的端点,让其绕一个圆弧转动,可以形成锥面.③面动成体:面运动的轨迹(经过的空间部分)可以形成一个几何体. 3.棱柱 (1)棱柱的定义一般地,由一个平面多边形(凸多边形)沿某一方向平移形成的空间几何体叫做棱柱。
《空间几何体》知识点总结一、 空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其 中,这条定直线称为旋转体的轴。
(2 )柱,锥,台,球的结构特征1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱.2.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
2.2圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所 围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 3.2圆台一一用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台4.1球一一以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球二、 空间几何体的三视图与直观图1. 投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2. 三视图一一正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而 画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3. 直观图:直观图通常是在平行投影下画出的空间图形。
4. 斜二测法:在坐标系 x'o'y'中画直观图时,已知图形中平行于坐标轴的线段保持平行性 不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线 段长度减半。
三、空间几何体的表面积与体积1、空间几何体的表面积① 棱柱、棱锥的表面积: 各个面面积之和2② 圆柱的表面积S = 2二「I • 2二r 2 ③圆锥的表面积 S =理「I •二r 2、空间几何体的体积 ④圆台的表面积S 二rl + Tt r 2 2 2 R ⑤球的表面积S = 4二R ⑥扇形的面积公式s 扇形 360^1|r (其中I 表示弧长,r 表示半径) ①柱体的体积 v = s 底②锥体的体积 1 VjS 底 h③台体的体积 v =丄(S 上S 上 S 下 • S 下)h ④球体的体积v3 知识赠送以下资料英语万能作文(模板型)Along with the adva nee of the society more and more problems arebrought to our atte nti on, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是As to whether it is a blessing or a curse, however, people take differe nt attitudes.然而,对于此类问题,人们持不同的看法。
空间几何体知识点总结在几何学中,空间几何体是研究三维空间中的物体的一门学科。
它涉及了许多基本概念、定理和性质。
这篇文章将对一些常见的空间几何体进行知识点总结。
一、点、线和面在空间几何体中,最基本的元素是点、线和面。
点是空间中没有大小的对象,它只有位置。
线是由无数点组成的,它有长度和方向。
面是由无数线组成的,它有长度和宽度,并且是平坦的。
二、多面体1、正多面体正多面体是指所有面都是正多边形,并且每个顶点相同的几何体。
最常见的正多面体有四面体、六面体和八面体。
四面体有四个面,六面体有六个面,八面体有八个面。
2、长方体长方体是一种有六个面的几何体,每个面都是矩形。
长方体的长度、宽度和高度各不相同。
3、正方体正方体是一种特殊的长方体,它有六个面,每个面都是正方形。
正方体的长度、宽度和高度相等。
4、棱柱和棱锥棱柱是一种有两个平行且等大的多边形作为底面的几何体,底面间的连线都垂直于底面。
棱锥是一种有一个底面和一个顶点的几何体,顶点到底面上的任意点的连线都是斜线。
5、圆台和圆锥圆台是一种有一个圆作为底面、一个平面作为顶面和连接两个底面的曲面的几何体。
圆锥是一种有一个顶点和一个底面的几何体,顶点到底面上的任意点的连线都是斜线。
三、球体和圆球球体是由一个圆绕着它的直径旋转而得到的空间几何体,它的内部和外部都被称为球面。
圆球是球体的一个特殊情况,它的直径和半径相等。
四、二维和三维的关系在空间几何中,我们经常会将二维的图形放在三维的空间中来研究。
例如,我们可以将一个平面上的正方形伸展成一个正方体,或者将一个圆从平面延伸成一个球体。
五、空间几何体的性质空间几何体有许多有趣的性质。
例如,正多面体具有对称性,长方体的对角线长度相等,正方体的对角线长度为边长的平方根,球面的曲率处处相等等等。
总结起来,空间几何体是我们研究三维空间中物体的一门学科。
通过对点、线、面、多面体、球体等几何体的研究,我们可以了解它们的性质和相互之间的关系。
立体几何初步知识点1、柱、锥、台、球的结构特征 (1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''E D C B A ABCDE -或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥'''''E D C B A P -几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等 表示:用各顶点字母,如五棱台'''''E D C B A P - 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
空间几何体知识讲解一、构成空间几何体的基本元素1.几何体的概念概念:只考虑形状与大小,不考虑其它因素的空间部分叫做一个几何体,比如长方体,球体等.2.构成几何体的基本元素:点、线、面(1)几何中的点不考虑大小,一般用大写英文字母A B C L ,,来命名;(2)几何中的线不考虑粗细,分直线(段)与曲线(段);其中直线是无限延伸的,一般 用一个小写字母a b l L ,,或用直线上两个点AB PQ L ,表示; 一条直线把平面分成两个部分.(3)几何中的面不考虑厚薄,分平面(部分)和曲面(部分);DCBAα其中平面是一个无限延展的,平滑,且无厚度的面,通常用一个平行四边形表示,并把它想象成无限延展的;平面一般用希腊字母αβγL ,,来命名,或者用表示它的平面四边形的顶点或对角顶点的字母来命名,如右图中,称平面α,平面ABCD 或平面AC ; 一个平面将空间分成两个部分.3.用运动的观点理解空间基本图形间的关系理解:在几何中,可以把线看成点运动的轨迹,点动成线;把面看成线运动的轨迹,线动成面;把几何体看成面运动的轨迹(经过的空间部分),面动成体.二、多面体的结构特征1.多面体1)多面体的定义由若干个平面多边形所围成的几何体.围成多面体的各个多边形叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点,连结不在同一个面上的两个顶点 的线段叫做多面体的对角线. 2)多面体的分类按凹凸性分类:把一个多面体的任意一个面延展成平面,如果其余的各面都在这个平面的同一侧,则这样的多面体就叫做凸多面体.否则就叫做凹多面体.按面数分类:一个多面体至少有四个面.多面体按照它的面数分别叫做四面体、五面体、六面体等等. 3)简单多面体定义:表面经过连续变形可以变成球体的多面体叫做简单多面体;欧拉公式:简单多面体的顶点数V 、面数F 和棱数E 有关系2V F E +-=. 4)正多面体定义:每个面都有相同边数的正多边形,每个顶点都有相同棱数的凸多面体,叫做正多面体; 正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这5种;经过正多面体上各面的中心且垂直于所在面的垂线相交于一点,这点叫做正多面体的中心,且这点到各顶点的距离相等,到各面的距离也相等.2.棱柱1)棱柱的定义由一个平面多边形沿某一确定方向平移形成的空间几何体叫做棱柱.平移起止位置的两个面叫做棱柱的底面,多边形的边平移所形成的面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;过不相邻的两条侧棱所形成的面叫做棱柱的对角面;与底面垂直的直线与两个底面的交点部分的线段或距离称为棱柱的高.下图中的棱柱,两个底面分别是面ABCD ,A B C D '''',侧面有ABBA'',DCC D ''等四个,侧棱为AA BB CC DD '''',,,,对角面为面ACC A BDD B '''',,A H '为棱柱的高.D C BAHA 'D 'B 'C'2)棱柱的性质:棱柱的两个底面是全等的多边形,对应边互相平行,侧面都是平行四边形,侧棱平行且相等. 3)棱柱的分类按底面分类:底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……; 按侧棱是否与底面垂直分类:侧棱与底面不垂直的棱柱叫斜棱柱,侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫正棱柱; 4)棱柱的记法①用表示两底面的对应顶点的字母表示棱柱; ②用棱柱的对角线端点的两个字母表示棱柱.例如:上面的棱柱是斜四棱柱,记成棱柱''''ABCD A B C D 或棱柱'AC 等. 5)特殊的四棱柱:平行六面体四棱柱底面是平行四边形侧棱与 底面垂直正四棱柱底面是平行四边形直平行六面体底面为 正方形直四棱柱侧棱与 底面垂直底面为 长方形长方体底面是正方形侧面也为 正方形正方体棱长都相等的长方体3.棱锥1)棱锥的定义当棱柱的一个底面收缩为一个点时,得到的几何体叫做棱锥.它有一个面是多边形,其余各面都是有一个公共顶点的三角形.棱锥中有公共顶点的各三角形叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;多边形叫做棱锥的底面;相邻侧面的公共边叫做棱锥的侧棱;棱锥中过不相邻的两条侧棱的截面叫做棱锥的对角面;过顶点且与底面垂直相交的直线在顶点与交点间的线段或距离叫做棱锥的高. 2)棱锥的分类底面是三角形、四边形、五边形……的棱锥分别叫做三棱锥、四棱锥、五棱锥……;底面是正多边形,顶点与底面中心的连线垂直于底面的棱锥叫正棱锥.正棱锥的各个侧面都是全等的等腰三角形,它们底边上的高都相等,称为正棱锥的斜高.对角面SACE高侧棱侧面底面ABCDEHSDCBA3)棱锥的记法用顶点和底面各顶点的字母表示或者用表示顶点和底面的一条对角线端点的字母表示.如上图的五棱锥记为棱锥S ABCDE -或棱锥S AC -.4.棱台1)棱台的定义棱锥被平行于底面的一个平面所截后,截面和底面之间的部分叫做棱台.原棱锥的底面和截面分别叫做棱台的下底面和上底面;其余各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;与棱台的底面垂直的直线夹在两个底面之间的线段或距离称为棱台的高. 2)棱台的性质棱台的各侧棱延长后交于一点,即棱台的上下底面平行且对应边成比例; 3)棱台的记法用上下底面的字母表示或者用一条对角线两个端点的字母来表示. 4)正棱台由正棱锥截得的棱台叫做正棱台.正棱台的各个侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高.HH'O'OC'B'A'CBA右图为一个正三棱台,记为棱台ABC A B C '''-,侧棱AA ',BB ',CC '延长后必交于一点.O ,O '为上下底面的中心,它们的连线O O '是棱台的高,H H '是棱台的斜高.三、旋转体的结构与特征1.圆柱、圆锥和圆台定义:将矩形、直角三角形、直角梯形分别绕着它的一边、一直角边、垂直于底边的腰所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥和圆台.这条旋转轴叫做几何体的轴,轴的长即为该旋转体的高.垂直于轴的边旋转而成的圆面叫做底面,不垂直于轴的边旋转而成的曲面叫做侧面,无论旋转到什么位置,这条边都叫做侧面的母线;圆柱、圆锥、圆台一般用表示它的轴的字母来表示. 性质:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形.SOO'OAA'A2.球球的定义:半圆绕着它的直径所在的直线旋转一周而形成的几何体叫做球(或球体),半圆旋转而成的曲面叫做球面.半圆的圆心称为球心,球心与球面上一点的连线段称为球的半径,连结球面上两点且过球心的线段叫作球的直径.一般用球心的字母表示一个球.四、三视图1.投影定义:由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,我们把光线叫做投影线,把留下物体的影子的屏幕叫做投影面.FMlF 'M '2.平行投影定义:我们把在一束平行光线照射下形成的投影,叫做平行投影.平行投影的投涉线是平行的.在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影.性质:若图形中的直线或线段不平行于投射线时,平行投影具有以下性质:①直线或线段的平行投影仍是直线或线段;②平行直线的平行投影是平行或重合的直线;③平行于投射面的线段,它的投影与这条线段平行且等长;④平行于投射面的平面图形,它的投影与这个图形全等;⑤在同一直线或平行直线上,两条线段平行投影的比等于这两条线段的比.3.正投影概念:在平行投影中,如果投射线与投射面垂直,则称这样的平行投影为正投影.性质:①垂直于投射面的直线或线段的正投影是点;②垂直于投射面的平面图形的正投影是直线或直线的一部分.4.中心投影定义:一个点光源把一个图形照射到一个平面上,这个图形的影子就是它在这个平面上的中心投影.中心投影的直观性强,看起来与人的视觉效果一致,常在绘画时使用,在立体几何中,一般用平行投影原理来画图.5.三视图1)正视图:光线从几何体的前面向后面正投影得到的投影图形称为几何体称为正视图(主视图).2)侧视图:光线从几何体的左面向右面正投影得到的投影图形称为几何体称为侧视图(左视图).3)俯视图:光线从几何体的上面向下面正投影得到的投影图形称为几何体称为俯视图.将空间图形向这三个平面作正投影,然后把这三个投影按一定的布局放在一个平面内,这样构成的图形叫做空间图形的三视图.如右图为圆锥的三视图:俯视图主视图5.三视图的对应关系关系:正俯视图长相等、正侧视图图的高相等、俯侧视图图的宽相等,简称“长对正,宽平齐,高相等”或说“主左一样高,主俯一样长,俯左一样宽”.五、直观图1.定义:用来表示空间图形的平面图形,叫做空间图形的直观图.画法:斜二测画法和正等测画法2.斜二测画法规则1)在已知图形所在的空间中取水平平面,作相互垂直的轴Ox ,Oy ,再作Oz 轴,使90xOz ∠=︒,90yOz ∠=︒.(三维空间中) 2)画直观图时,把Ox ,Oy ,Oz 画成对应的轴O x O y O z '''''',,,使45x O y '''∠=︒或135︒,90x O z '''∠=︒,x O y '''所确定的平面表示水平平面.(二维平面上) 3)已知图形中,平行于x 轴,y 轴或z 轴的线段,在直观图中分别画成平行于x '轴,'y 轴或z ' 的线段.并使它们和所画坐标轴的位置关系,与已知图形中相应线段和原坐标轴的位置关系相同.4)已知图形中平行于x 轴和z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度为原来的一半.5)画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.五、简单空间几何体的表面积和体积1.直棱柱与圆柱的侧面积()S S ch =直棱柱侧圆柱,其中c 为底面的周长,h 为直棱柱(圆柱)的高,也即侧棱(母线)长;2.正棱锥(圆锥)的侧面积11''22S ch nah ==正棱锥侧,其中a 为底面边长,'h 为斜高;1π2S cl rl ==圆锥侧,其中c 为底面周长,r 为圆锥的底面半径,l 为母线长;3.正棱台(圆台)的侧面积1(')'(')'22nS c c h a a h =+=+正棱台侧,其中,'a a 分别是正棱台上下底面的边长,'h 为斜高;4.球面面积:24πS R =球,R 为球的半径.5.柱体(棱柱,圆柱)体积公式:V Sh =柱体,其中S 为底面积,h 为高;6.棱体(棱锥,圆锥)的体积公式:13V Sh =棱体,其中S 为底面积,h 为高;7.台体(棱台,圆台)的体积公式: 1(')3V h S S =+台体,其中',S S 分别是台体上,下底面的面积,h 为台体的高;8.球的体积公式:34π3V R 球,R 为球的半径典型例题一.选择题(共8小题)1.(2015•新课标Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.2.(2016•汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选:B.3.(2018•郑州一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选:B.4.(2015•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3B.12cm3C. D.【解答】解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形高为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.5.(2016•新课标Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.6.(2016•新课标Ⅱ)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为()A.12πB.πC.8πD.4π【解答】解:正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故选:A.7.(2015•新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1 B.2 C.4 D.8【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.8.(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.+1 B.+3 C.+1 D.+3【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为××π×12×3+××××3=+1,故选:A.二.填空题(共4小题)9.(2017•上海)已知球的体积为36π,则该球主视图的面积等于9π.【解答】解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π.故答案为:9π.10.(2011•南通三模)底面边长为2m,高为1m的正三棱锥的全面积为m2.【解答】解:如图所示,正三棱锥S﹣ABC,O为顶点S在底面BCD内的射影,则O为正△ABC的垂心,过C作CH⊥AB于H,连接SH.则SO⊥HC,且,在Rt△SHO中,.于是,,.所以.故答案为11.(2016•黄浦区一模)两个半径为1的铁球,熔化后铸成一个大球,这个大球的半径为.【解答】解:设大球的半径为r,则根据体积相同,可知,即.故答案为:.12.(2015•盐城校级模拟)已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为2π.【解答】解:根据题意,圆柱的底面半径r=1,母线长l=2r=2∴圆柱的体积为V=Sl=πr2l=π×12×2=2π.故答案为:2π.三.解答题(共3小题)13.(1965•全国)如图所示的二视图表示的立方体是什么?求出它的体积.【解答】解:二视图表示的是一个正六棱锥,其棱长为2a.底面边长为a,故底面积,棱锥的高,故正六棱锥的体积,,=.14.已知正四棱锥(底面是正方形,顶点在底面的射影是底面的中心)的底面边长为a,侧棱长为a(1)求它的外接球的体积(2)求他的内切球的表面积.【解答】解:(1)由题意,四棱锥为正四棱锥,∵该四棱锥的侧棱长为a,底面是边长为a的正方形,∴四棱锥的高为a,设外接球的半径为R,则有R2=(a)2+(a﹣R)2,∴R=a,∴外接球的体积为=;(2)设内切球的半径为r,则,∴r=a∴表面积为4πr2=.15.根据下列对于几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形.【解答】解:(1)由八个面围成,其中两个面是互相平行且全等的正六边形,其他各面都是矩形,由各个侧面都是矩形,得出侧棱垂直于底面,是直棱柱;所以这样的几何体是正六棱柱;(2)由五个面围成,其中一个面是正方形,其它各面都是有一个公共顶点的全等三角形,这样的几何体是正四棱锥.。
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
【同步教育信息】一. 本周教学内容:1. 构成空间几何体的基本元素2. 棱柱、棱锥和棱台的结构特征3. 圆柱、圆锥、圆台和球二. 教学目的1. 认识构成空间几何体的基本元素2. 掌握柱、锥、台和球的结构特征三. 教学重点、难点1. 柱、锥、台和球的结构特征2. 学生看图、识图的能力的培养和尝试模型制作四. 知识分析我们生活的世界有各种各样的物体,我们总是试着去观察它们,区分它们。
区分这些物体的方法很多,但最直接的方法是什么呢?对,是它们占有空间部分的形状和大小。
这也是我们研究几何体的方向和内容。
(一)构成空间几何体的基本元素但是什么是几何体呢?我们将要认识和研究几何体的哪些方面的问题?几何体指的是一个物体所占有的空间部分。
常见的有柱体、锥体、台体、球体等等。
(见上图)同学们应该明确一点就是几何体不仅仅包括它的外表面,还包括它内部的部分,或者说它是有皮有瓤的。
我们研究几何体,不用理睬它的物理性质和化学成分,不用关心它的历史,也不用研究它的经济价值,而只考虑它的形状和大小,研究一下它的结构特征和构成元素间的逻辑关系等等就行了。
我们现在要学习的内容是立体几何初步,它包括两节内容:第一节是空间几何体,第二节是点、线、面之间的位置关系。
学习的重点是认识柱、锥、台、球的结构特征,会用平行投影法、中心投影法、三视图法、直观图法绘制空间图形,柱、锥、台、球等几何体的表面积和体积的求法,平面的基本性质,空间直线的位置关系,直线与平面之间及两平面之间平行和垂直关系,掌握好上述内容,就抓住了立体几何中最重要、最根本的内容,其他部分也就迎刃而解了。
现在,同学们先观察你的周围,发现了哪些几何体?你都认识它们吗?在我们认识的几何体中,最熟悉的莫过于长方体了,你能说出长方体的结构特征吗?观察长方体,会发现它的表面有六个矩形,我们把这六个矩形(含矩形内部)称为长方体的面,相邻两个面的公共边叫做长方体的棱,长方体的三条两两相交成直角的棱交会到一点,就是长方体的顶点。
通过观察,我们就可以知道:长方体有8个顶点,12条棱,6个面。
长方体通常用长、宽、高来表示它的大小。
其实,所有的几何体都是由点、线、面构成的。
点、线、面是构成空间几何体的基本元素,其中线有直线(直线段)和曲线(曲线段)之分,面有平面(或一部分)和曲面(或一部分)之分。
在立体几何中,平面是无限延展的,一个平面可以把整个空间分成两部分,平面是没有厚度的抽象出来的形象。
因为平面的无限延展,所以真正的平面画不出来,我们一般是画一个平行四边形表示平面,但有时根据实际情况也有用三角形、五边形、六边形、圆形、椭圆形及各种不规则图形等来表示平面。
平面一般用希腊字母α、β、γ…表示,还可以用平行四边形的对角(线)顶点表示,如“平面α”、“平面ABCD”,“平面AC”,“平面BD”。
空间中的几何体一方面可以看作是由若干个面(平面的一部分或曲面的一部分)围成的,另一方面也可以用运动的观点来看待:(1)点动成线:如果点运动的方向始终不变,那么它的轨迹是一条直线或线段,如果点运动的方向时刻在变化,那么它运动的轨迹是一条曲线或曲线的一段。
(2)线动成面:一条线(直线或曲线)运动的轨迹可以是一个面(平面或曲面)。
直线平行移动可以生成平面或曲面,直线绕定点转动,可以生成平面或锥面。
(3)面动成体:一个面运动的轨迹(经过的空间部分)可以形成一个几何体。
给出一个几何体,一般我们都可以把它展成平面图形,反之,我们也可以根据所给的平面展开图,还原成相应的几何体。
这是这部分内容所涉及的最常见的问题。
(二)多面体和棱柱、棱锥、棱台的结构特征1. 多面体多面体是我们接触的相当多的一类几何体,它是由若干个平面多边形(包含它内部的平面部分)围成的。
学习时要注意认识多面体的顶点、棱、面,还要注意辨清多面体的体对角线(通常我们称之为多面体的对角线)和面对角线。
掌握多面体的几种分类形式。
研究几何体,有时是研究它在某一平面内的性质,这就需要我们把立体问题平面化。
除了可以研究几何体的表面,我们还可以研究它的某些个截面(一个几何体与一个平面相交所得的平面图形(包含它的内部))。
2. 棱柱请同学们想一想,下图中的几何体有哪些共同的几何特征?归纳:(1)有两个面是互相平行且全等的多边形。
(2)其余每相邻两个面的交线也互相平行,而这些面也都是平行四边形。
另外,要掌握棱柱的底面、侧面、棱、侧棱、顶点、高和对角线、对角面等概念,掌握棱柱的简单分类。
要辨清直棱柱、斜棱柱、平行六面体、直平行六面体、正四棱柱、长方体和正方体,更要掌握它们之间的联系:{棱柱}⊇{平行六面体}⊇{直平行六面体}⊇{长方体}⊇{正四棱柱}⊇{正方体}3. 棱锥请同学们想一想,下图中的几何体有哪些共同的几何特征?归纳:(1)有一个面是多边形。
(2)其余各面是有一个公共顶点的三角形。
另外,要掌握棱锥的底面、侧面、棱、侧棱、顶点、高和对角面等概念,掌握棱锥的简单分类。
有一种特殊的棱锥,叫做正棱锥。
它的特征是:底面是正多边形,并且顶点在底面上的射影是底面的中心。
学好正棱锥,关键是掌握它的特征,特别是如图所示的两个直角三角形:由正棱锥的高、棱、底面正多边形外接圆半径构成的直角三角形(浅紫色的三角形)和由正棱锥的高、斜高、底面三角形内切圆半径构成的直角三角形(浅蓝色的三角形)。
这是我们在棱锥中经常研究的东西。
4. 棱台如果一个棱锥被一个平行于底面的平面所截,截面与底面间的部分我们称之为棱台。
根据棱台的形成,我们就有了判断一个几何体是否是棱台的简单方法:延长棱台的所有的侧棱,如果它们能交于一点,就可以认定这是个棱台,这个方法叫做“还台为锥”。
另外,要掌握棱台的底面、侧面、棱、侧棱、顶点、高和对角面等概念,掌握棱台的简单分类。
也有一种特殊的棱台,叫做正棱台。
它的特征是:上下两底面是两个相似的正多边形,并且两底面的中心的连线与两底面垂直。
学好正棱台,关键是掌握它的特征,特别是如图所示的两个直角梯形:由正棱台的高、棱、两底面正多边形外接圆半径构成的直角梯形(浅紫色的梯形)和由正棱台的高、斜高、两底面正多边形的内切圆半径构成的直角梯形(浅蓝色的梯形)。
这是我们在棱台中经常研究的东西。
(三)圆柱、圆锥、圆台和球1. 旋转体请同学们想一想,下图中的几何体有哪些共同的几何特征?总结:都是由一个平面图形绕着它所在平面内的一条定直线旋转产生的曲面所围成的几何体。
2. 圆柱、圆锥、圆台分别以矩形的一边、直角三角形的一直角边、直角梯形垂直于底边的腰所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体分别叫做圆柱、圆锥、圆台。
旋转轴叫做它们的轴,在轴上的这条边(或它的长度)叫做这个几何体的高;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面;无论旋转到什么位置,这条边都叫做侧面的母线。
3. 球和球面半圆以它的直径为旋转轴,旋转而成的曲面叫做球面。
球面所围成的几何体叫做球体,简称球。
球面可以看作空间中到一个定点的距离等于定长的点的集合,而球就可以看作空间中到一个定点的距离小于或等于定长的点的集合。
用一个平面去截一个球,截面是圆面。
如图,球心和截面圆心的连线垂直于截面,球心到截面的距离d 与球的半径R 及截面的半径r 有下面关系:22d R r -=球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆。
在球面上,两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度。
我们把这个弧长叫做两点的球面距离。
4. 组合体由柱、锥、台、球等基本几何体组合而成的几何体叫做组合体。
例如下图中的几何体。
【典型例题】例1. 根据下图中(左边两个)给出的平面图形,折叠成几何模型,并画出空间图形。
解析:见上图右边两个。
点评:本题通过观察、分析及动手操作,考查了同学们的空间想象力和动手操作能力。
例2. 如图所示,正四棱台AC ′的高是17cm ,两底面的边长分别是4cm 和16cm ,求这个棱台的侧棱长和斜高。
解析:设棱台两底面的中心分别是O ′和O ,B ′C ′、BC 的中点分别是E ′、E ,连结O ′O 、E ′E 、O ′B ′、OB 、O ′E ′、OE ,则OBB ′O ′、OEE ′O ′都是直角梯形。
在正方形ABCD 中,BC =16cm ,则OB=28cm,OE =8cm 在正方形A ′B ′C ′D ′中,B ′C ′=4cm ,则O ′B ′=22cm ,O ′E ′=2cm. 在直角梯形O ′OBB ′中,)cm (19)2228(17)B O OB (OO BB 2222=-+=''-+'='在直角梯形O ′OEE ′中, )cm (135)28(17)E O OE (OO EE 2222=-+=''-+'='所以,这个棱台的侧棱长为19cm ,斜高为cm 135。
点评:解决正棱台的相关问题,只要用好那两个直角梯形就可以了。
例3. 把一个圆锥截成圆台,已知圆台的上、下底面半径之比是1∶4,母线长是10cm ,求圆锥的母线长。
解析:设圆锥的母线长是ycm ,圆台的上、下底面半径分别是x cm 、4x cm ,作圆锥的轴截面如图所示。
在Rt △SOA 中,PM // OA ,所以SM ∶SA=PM ∶OA即 (y -10)∶y =x ∶4x ,解得:3113y =所以,圆锥的母线长为3113cm 。
点评:处理与旋转体有关的问题一般要作出其轴截面,在轴截面中去寻求答案。
例4. 已知半径为5的球的两个平行截面圆的周长分别为6π和8π,求这两个截面间的距离。
B B 解析:设球的轴截面为圆O ,AB 为球的直径且分别与两个截面交于点C 、D ,则C 、D为截面的圆心,且两圆半径分别为3和4,若两个平行截面在球心同侧,见上图左,则14535CD 2222=---=;若两个平行截面在球心的两侧,见上图右,则74535CD 2222=-+-=,所以两截面间距离为1或7。
点评:解决球及球的截面问题取其大圆,化为圆中问题进行解决。
【模拟试题】1. 关于平面,下列说法正确的是( )A. 平行四边形是一个平面B. 平面是有厚薄的C. 平面是有边界线的D. 平面是无限延展的2. 空间三个平面两两相交,将空间最多分成m 个部分,最少分成n 个部分,则m + n =( )A. 5B. 10C. 14D. 163. 设M ={正四棱柱},N ={长方体},P ={直四棱柱},Q ={正方体},这些集合间的关系是( )A. P M N Q ⊃⊃⊃B. P N M Q ⊃⊃⊃C. Q N M P ⊃⊃⊃D. Q M N P ⊃⊃⊃4. 若正棱锥的底面边长与侧棱长相等,则该棱锥一定不是( )A. 三棱锥B. 四棱锥C. 五棱锥D. 六棱锥5. 四棱台的上、下底面均为正方形,它们的边长分别是2cm 和6cm ,两底面之间的距离为2cm ,则该四棱台的侧棱长为( )A. 3B. 22C. 32D. 56. 长方体三条棱长分别是AA 1=1, AB =2,AD =4,则从A 点出发,沿长方体的表面到C 1的最短距离是( )A. 5B. 7C. 29D. 377. 一个圆柱的母线长为5,底面半径为2,则圆柱的轴截面的面积为( )A. 10B. 20C. 40D. 158. 一个圆锥的母线长为20cm ,母线与轴的夹角为30°,则圆锥的高为( )A. 310cmB. 320cmC. 20cmD. 10cm9. 在北纬45°圈上有甲、乙两地,它们的经度分别为东经140°与西经130°,设地球半径为R,则甲、乙两地的球面距离是()A.R21πB.R41πC.R23πD.R31π10. 用一个平面去截一个正方体,截面边数最多是____________11. 正三棱台的上、下底面边长及高分别为1,2,2,则它的斜高是____________12. 已知长方体的全面积是24,十二条棱长的和为24,则这个长方体一条对角线长是_________13. 若母线长是4的圆锥的轴截面的面积是8,则圆锥的高是_______________14. 如图,侧棱长为32的正三棱锥V-ABC中,∠A VB=∠BVC=∠CV A=400,过A作截面AEF,求截面三角形AEF周长的最小值。