小学三年级数学-加减法速算与巧算
- 格式:docx
- 大小:51.35 KB
- 文档页数:9
小学三年级学生的速算口诀一、加法口诀1、两位数加两位数,相同数位要对齐。
个位对个位,十位对十位。
先从个位加起,满十进一要牢记。
例如:34+56,个位4+6=10,向十位进1,十位3+5=8 再加上进位的1 得9,结果为90。
2、凑十法加法口诀看大数,分小数,凑成十,加剩数。
例如:8+6,看大数8,把小数6 分成2 和4,8+2=10,10+4=14。
二、减法口诀1、两位数减两位数,相同数位要对齐。
个位减个位,十位减十位。
不够减时要借位,借一当十别忘记。
例如:53-28,个位3 不够减8,向十位借1 当10,13-8=5,十位5 被借走1 剩4,4-2=2,结果为25。
2、破十法减法口诀减九加一,减八加二,减七加三,减六加四,减五加五,减四加六,减三加七,减二加八,减一加九。
例如:13-9,把13 分成10 和3,先用10-9=1,再用1+3=4。
三、乘法口诀1、乘法口诀要记牢,一一得一,一二得二…… 九九八十一。
这个是基础,需要反复背诵和练习。
2、乘数是一位数的乘法口诀个位乘个位,十位乘十位,数位要对齐,进位别忘记。
例如:23×4,先算3×4=12,个位写2 向十位进1,再算2×4=8,加上进位的1 得9,结果为92。
四、除法口诀1、除法运算看除数,除数一位看一位,一位不够看两位。
除到哪位商哪位,余数要比除数小。
例如:78÷3,先看7 够3 除,7÷3 商2 余1,再把1 和8 组成18,18÷3=6,结果为26。
2、想乘法做除法口诀做除法,想乘法,乘法口诀来帮忙。
例如:48÷6,想6×8=48,所以48÷6=8。
三年级数学加减乘除速算技巧大全在加、减、乘、除四则运算中除法是最麻烦的一项,即使使用速算法很多时候也要加上笔算才能更快更准地算出答案。
下面小编给大家带来的三年级数学加减乘除速算技巧大全,希望大家能够喜欢!1.乘法速算一、乘数的个位与被乘数相加,得数为前积,乘数的个位与被乘数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 225 × 7 = 35---------------255即15×17 = 255解释:15×17=15 ×(10 + 7)=15 × 10 + 15 × 71/ 8=150 + (10 + 5)× 7=150 + 70 + 5 × 7=(150 + 70)+(5 × 7)为了提高速度,熟练以后可以直接用“15 + 7”,而不用“150 + 70”。
例:17 × 1917 + 9 = 267 × 9 = 63即260 + 63 = 3232.个位是1的两位数相乘方法:十位与十位相乘,得数为前积,十位与十位相加,得数接着写,满十进一,在最后添上1。
例:51 × 3150 × 30 = 150050 + 30 = 80------------------1580因为1 × 1 = 1 ,所以后一位一定是1,在得数的后面添上1,即1581。
数字“0”在不熟练的时候作为助记符,熟练后就可以不使用了。
2/ 8例:81 × 9180 × 90 = 720080 + 90 = 170------------------7370------------------7371原理大家自己理解就可以了。
3.十位相同个位不同的两位数相乘十位相被乘数加上乘数个位,和与十位数整数相乘,积作为前积,个位数与个位数相乘作为后积加上去。
三年级加减法巧算在三年级的数学学习中,加减法是一项基本的运算技能。
掌握了加减法的巧算方法,可以帮助学生更快地计算并解决问题。
本文将介绍几种适用于三年级学生的加减法巧算方法。
一、进位法巧算加法在加法运算中,当两个个位数相加的结果大于等于10时,需要进位。
为了帮助学生更好地理解进位的概念,可以通过实际例子进行讲解。
例子1:23 + 15首先,个位数 3 加 5 得 8,没有进位。
十位数 2 加 1 得 3,没有进位。
因此,23 + 15 = 38。
例子2:47 + 59首先,个位数 7 加 9 得 16,需要进位。
进一位后,十位数 4 加 5 变成 6,加上进位的 1,得 7。
因此,47 + 59 = 76。
通过这种进位法的巧算方法,可以帮助学生快速正确地进行加法运算。
二、借位法巧算减法在减法运算中,当被减数小于减数时,需要借位。
同样,引入实际例子进行讲解,有助于学生理解借位的概念。
例子1:57 - 28首先,个位数 7 减去 8,不够减,需要借位。
将十位数 5 的一部分变成十个位,变为 4。
此时,原个位数 7 加 10,得到 17。
然后,借位后的十位数 4 减去减数 2,得到 2。
因此,57 - 28 = 29。
例子2:63 - 49首先,个位数 3 减去 9,不够减,需要借位。
将十位数 6 的一部分变成个位,变为 16。
然后,借位后的十位数 5 减去减数 4,得到 1。
因此,63 - 49 = 14。
通过这种借位法的巧算方法,可以帮助学生快速正确地进行减法运算。
三、进退法巧算大数加减法除了运算中的进位和借位,对于较大的数相加相减,可以通过进退法进行巧算。
例子1:175 + 86首先,个位数 5 加 6 得 11。
然后,十位数 7 加上进位的 1,得到 8。
因此,175 + 86 = 261。
例子2:658 - 345首先,个位数 8 减去 5,得 3。
然后,十位数 5 减去减数 4,得 1。
因此,658 - 345 = 313。
加、减法的速算与巧算知识要点:“凑整”先计算,认真审题,灵活分组。
两个数相加,若能恰好凑成整十、整百、整千、整万...则先计算。
如: 1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:12+88=100,35+65=100,21+79=100,44+56=100,55+45=100。
在上面算式中,1叫9的“补数”;79叫21的“补数”,44也叫56的“补数”,也就是说两个数互为“补数”。
对于不能直接凑整的数,可以把其中一个数拆分后再凑整。
找基准数几个相接近的数相加,可以用找基准数法,进行移多补少计算。
找基准数的方法:整十、整百、整千等等。
本节课需要掌握:移数凑整法,拆数凑整法,借数凑整法,分组凑整法。
例1:换位凑整,快速计算。
(提示:看个位凑整,巧用小括号)(1)34+53+66 (2)679+27+321 (3)63+294+37+54+9 =34+66+53 =679+321+27 =63+37+(294+6)+3+54 =100+53 =1000+27 =100+300+3+54=153 =1027 =457练习1:(1)491+273+209+27 (2)882+356+18+55+44 (3)49+38+51+62+162+38 =1000 =1355 =400拓展题:(提示:巧用小括号,移数凑整法)(1350+249+468)+(251+332+1650)=1350+1650+(249+251)+(468+332)=3000+500+800=4300(2549+385+739)+(61+15+451)=4200例2: 先观察,再速算。
199999+19999+1999+199+19法1:拆数凑整法=(200000-1)+(20000-1)+(2000-1)+(200-1)+(20-1)= 200000+20000+2000+200+20-(1+1+1+1+1)=222220-5=222215法2:借数凑整法=199999+19999+1999+199+15+1+1+1+1=200000+20000+2000+200+15=222215练习2:28+208+2008+20008+200008=28+200+8+2000+8+20000+8+200000+8=200000+20000+2000+200+20+(8+8+8+8+8)=222220+40=222260例3:先观察,再速算。
三年级奥数之一加减法的巧算速算第一讲加减法的巧算速算奥数知识在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。
加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看作所接近的数进行简算。
进行加减巧算时,凑整之后,对于原数与整十、整百、整千…相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。
精讲精练【例题1】计算下面各题。
(1)396+55 (2)427+1008(3)456-298 (4)582-305【思路】(1)中396接近于400,396+55可以看成400+55,多加了4,所以还要减4;(2)中1008接近于1000,427+1008变成427+1000,少加了8,所以还要加8;(3)中298接近于300,456-298变成了456-300,多减了2,所以还要加2;(4)中305接近于300,582-305变成了582-300,少减了5,所以还要减5。
【练习1】1.速算。
(1)497+28 (2)750+1002 (3)598+231 (4)2004+2712.巧算。
(1)574-397 (2)472―203 (3)8732―2008 (4)487―2983,计算:402+307―297―99【例题2】你有好办法迅速计算出结果吗?(1)502+799―298―97 (2)9999+999+99+9【思路】(1)是一道加减混合运算,每个数都接近于整百数,计算时可先把这些数拆成两部分,再把整百数与整百数相加减,“零头数”与“零头数”相加减,最后把两个部分数合起来;(2)这四个数都分别接近于整万、整千、整百、整十数,我们可以把9999看作10000,999看作1000,99看作100,9看作10,这样每个数都多了1,最后再从它们的和中减去4个1,即可得出结果。
三年级速算方法与技巧在学习数学的过程中,速算是一个非常重要的技能。
掌握了速算方法和技巧,可以帮助我们快速准确地进行数学计算,提高计算效率。
下面我将为大家介绍一些适用于三年级的速算方法和技巧。
一、加法速算方法与技巧1. 同进位相加法当两个数相加时,如果个位数相加的结果大于等于10,就要进位。
这时,我们可以先将个位数相加,然后将十位数相加时,加上进位的1。
例如:23+17=(3+7)个位数为10,进位1,2+1=3,所以结果为40。
2. 进位加法法则当两个两位数相加时,我们可以先将个位数相加,然后将十位数相加时,加上进位的1。
例如:34+57=(4+7)个位数为11,进位1,3+1=4,所以结果为91。
二、减法速算方法与技巧1. 退位减法法则当两个两位数相减时,如果个位数不够减,就要退位。
这时,我们可以先将个位数减掉,然后再将十位数减掉时,从十位数中退位的1。
例如:56-28=(6-8)个位数不够减,退位1,16-8=8,所以结果为28。
2. 借位减法法则当两个两位数相减时,如果个位数不够减,就要借位。
这时,我们可以先将个位数的十位数减掉,然后再将十位数的十位数减掉时,从百位数中借位的1。
例如:72-39=(12-9)个位数不够减,借位1,2-1=1,所以结果为33。
三、乘法速算方法与技巧1. 乘10法则当一个数乘以10时,我们可以在这个数的末尾加上一个0。
例如:25×10=250。
2. 乘法交换法则当两个数相乘时,我们可以交换两个数的位置,然后再进行乘法运算。
例如:7×5=5×7=35。
3. 乘法分配法则当一个数乘以两个数的和时,我们可以将这个数先分别乘以两个数,然后再将两个结果相加。
例如:6×(4+3)=6×4+6×3=24+18=42。
四、除法速算方法与技巧1. 除以10法则当一个数除以10时,我们可以将这个数的末尾的0去掉。
例如:120÷10=12。
⼩学三年级数学-加减法速算与巧算速算与巧算(⼀)⼀、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整⼗、整百、整千、整万…,就把其中的⼀个数叫做另⼀个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
⼜如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上⾯算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于⼀个较⼤的数,如何能很快地算出它的“补数”来呢?⼀般来说,可以这样“凑”数:从最⾼位凑起,使各位数字相加得9,到最后个位数字相加得10。
如: 87655→12345, 46802→53198,87362→12638,…下⾯讲利⽤“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下⾯各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:⼆、减法中的巧算1.把⼏个互为“补数”的减数先加起来,再从被减数中减去。
例 3① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。
小学三年级数学-加减法速算与巧算速算与巧算(一)一、加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
如:1+9=10,3+7=10,2+8=10,4+6=10,5+5=10。
又如:11+89=100,33+67=100,22+78=100,44+56=100,55+45=100,在上面算式中,1叫9的“补数”;89叫11的“补数”,11也叫89的“补数”.也就是说两个数互为“补数”。
对于一个较大的数,如何能很快地算出它的“补数”来呢?一般来说,可以这样“凑”数:从最高位凑起,使各位数字相加得9,到最后个位数字相加得10。
如:87655→12345,46802→53198,87362→12638,…下面讲利用“补数”巧算加法,通常称为“凑整法”。
2.互补数先加。
例1巧算下面各题:①36+87+64②99+136+101③ 1361+972+639+28解:①式=(36+64)+87=100+87=187②式=(99+101)+136=200+136=336③式=(1361+639)+(972+28)=2000+1000=30003.拆出补数来先加。
例2 ①188+873 ②548+996 ③9898+203解:①式=(188+12)+(873-12)(熟练之后,此步可略)②式=(548-4)+(996+4)=544+1000=1544③式=(9898+102)+(203-102)=10000+101=101014.竖式运算中互补数先加。
如:二、减法中的巧算1.把几个互为“补数”的减数先加起来,再从被减数中减去。
例3① 300-73-27② 1000-90-80-20-10解:①式= 300-(73+ 27)=300-100=200②式=1000-(90+80+20+10)=1000-200=8002.先减去那些与被减数有相同尾数的减数。
例4① 4723-(723+189)② 2356-159-256解:①式=4723-723-189②式=2356-256-159=2100-159=19413.利用“补数”把接近整十、整百、整千…的数先变整,再运算(注意把多加的数再减去,把多减的数再加上)。
例5 ①506-397②323-189③467+997④987-178-222-390解:①式=500+6-400+3(把多减的 3再加上)=109②式=323-200+11(把多减的11再加上)=123+11=134③式=467+1000-3(把多加的3再减去)=1464④式=987-(178+222)-390=987-400-400+10=197三、加减混合式的巧算1.去括号和添括号的法则在只有加减运算的算式里,如果括号前面是“+”号,则不论去掉括号或添上括号,括号里面的运算符号都不变;如果括号前面是“-”号,则不论去掉括号或添上括号,括号里面的运算符号都要改变,“+”变“-”,“-”变“+”,即:a+(b+c+d)=a+b+c+da-(b+a+d)=a-b-c-da-(b-c)=a-b+c例6①100+(10+20+30)② 100-(10+20+3O)③ 100-(30-10)解:①式=100+10+20+30=160②式=100-10-20-30=40③式=100-30+10=80例7 计算下面各题:① 100+10+20+30② 100-10-20-30③ 100-30+10解:①式=100+(10+20+30)=100+60=160②式=100-(10+20+30)=100-60=40③式=100-(30-10)=100-20=802.带符号“搬家”例8计算 325+46-125+54解:原式=325-125+46+54=(325-125)+(46+54)=200+100=300注意:每个数前面的运算符号是这个数的符号.如+46,-125,+54.而325前面虽然没有符号,应看作是+325。
3.两个数相同而符号相反的数可以直接“抵消”掉例9 计算9+2-9+3解:原式=9-9+2+3=54.找“基准数”法几个比较接近于某一整数的数相加时,选这个整数为“基准数”。
例10计算 78+76+83+82+77+80+79+85=640第二讲速算与巧算(二)一、乘法中的巧算1.两数的乘积是整十、整百、整千的,要先乘.为此,要牢记下面这三个特殊的等式:5×2=10 25×4=100 125×8=1000例1计算①123×4×25② 125×2×8×25×5×4解:①式=123×(4×25)=123×100=12300②式=(125×8)×(25×4)×(5×2)=1000×100×10=10000002.分解因数,凑整先乘。
例 2计算① 24×25② 56×125③ 125×5×32×5解:①式=6×(4×25)②式=7×8×125=7×(8×125)=7×1000=7000③式=125×5×4×8×5=(125×8)×(5×5×4)=1000×100=1000003.应用乘法分配律。
例3 计算① 175×34+175×66②67×12+67×35+67×52+6解:①式=175×(34+66)=175×100=17500②式=67×(12+35+52+1)=67×100=6700(原式中最后一项67可看成67×1)例4 计算① 123×101 ② 123×99解:①式=123×(100+1)=123×100+123 =12300+123=12423②式=123×(100-1)=12300-123=121774.几种特殊因数的巧算。
例5一个数×10,数后添0;一个数×100,数后添00;一个数×1000,数后添000;以此类推。
如:15×10=15015×1000=15000例6一个数×9,数后添0,再减此数;一个数×99,数后添00,再减此数;一个数×999,数后添000,再减此数;…以此类推。
如:12×9=120-12=10812×99=1200-12=118812×999=12000-12=11988例7一个偶数乘以5,可以除以2添上0。
如:6×5=3016×5=80116×5=580。
例8 一个数乘以11,“两头一拉,中间相加”。
如2222×11=24442例9一个偶数乘以15,“加半添0”.24×15=(24+12)×10=360因为24×15=24×(10+5)=24×(10+10÷2)=24×10+24×10÷2(乘法分配律)=24×10+24÷2×10(带符号搬家)=(24+24÷2)×10(乘法分配律)例10个位为5的两位数的自乘:十位数字×(十位数字加1)×100+25如15×15=1×(1+1)×100+25=22525×25=2×(2+1)×100+25=62535×35=3×(3+1)×100+25=122545×45=4×(4+1)×100+25=202555×55=5×(5+1)×100+25=302565×65=6×(6+1)×100+25=422575×75=7×(7+1)×100+25=562585×85=8×(8+1)×100+25=722595×95=9×(9+1)×100+25=9025还有一些其他特殊因数相乘的简便算法,有兴趣的同学可参看《算得快》一书。
二、除法及乘除混合运算中的巧算1.在除法中,利用商不变的性质巧算商不变的性质是:被除数和除数同时乘以或除以相同的数(零除外),商不变.利用这个性质巧算,使除数变为整十、整百、整千的数,再除。
例11计算①110÷5②3300÷25③ 44000÷125解:①110÷5=(110×2)÷(5×2)=220÷10=22②3300÷25=(3300×4)÷(25×4)=13200÷100=132③ 44000÷125=(44000×8)÷(125×8)=352000÷1000=3522.在乘除混合运算中,乘数和除数都可以带符号“搬家”。
例12 864×27÷54=864÷54×27=16×27=4323.当n个数都除以同一个数后再加减时,可以将它们先加减之后再除以这个数。
例13① 13÷9+5÷9 ②21÷5-6÷5③2090÷24-482÷24④187÷12-63÷12-52÷12解:①13÷9+5÷9=(13+5)÷9=18÷9=2②21÷5-6÷5=(21-6)÷5=15÷5=3③2090÷24-482÷24=(2090-482)÷24=1608÷24=67④187÷12-63÷12-52÷12=(187-63-52)÷12=72÷12=64.在乘除混合运算中“去括号”或添“括号”的方法:如果“括号”前面是乘号,去掉“括号”后,原“括号”内的符号不变;如果“括号”前面是除号,去掉“括号”后,原“括号”内的乘号变成除号,原除号就要变成乘号,添括号的方法与去括号类似。