浙江温岭第三中学2019初三学业水平第三次重点数学试题
- 格式:doc
- 大小:254.25 KB
- 文档页数:5
2019学年温州三中数学九年级(上)期中试卷姓名:______________ 校区:___________________注意事项:1.本试题卷分选择题和非选择题两部分。
全卷共4页,满分150分,考试时间120分钟。
2.答题前,学生务必将自己的姓名和所在的校区用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
3.用黑色字迹的签字笔或钢笔把答案和解答过程填写在答题卷相对应的题号后。
不能答在试题卷上。
试卷录入教师:审核教师:一、选择题:(本大题共10小题,每小题4分,共40分)。
1、下列事件中,属于必然事件的是()A.2020年的元旦是晴天B.太阳从东边升起C.打开电视正在播放新闻联播D.在一个没有红球的盒子里,摸到红球2、抛物线y=3(x-4)2+2的顶点是() A.(2,4) B.(2,-4) C.(4,2) D.(-4,2)3、若⊙O的半径是4cm,点A在⊙O内,则OA的长可能是()A. 3cmB. 4cmC. 6cmD. 10cm4、如图,点A,B,C在⊙O上,∠AOB=40°,则∠ACB的度数是()A. 10°B. 20°C. 30°D. 40°5、将抛物线y=x2向左平移1个单位,得到的抛物线是()A.x2+1B.x2-1C.y=(x+1)2D. y=(x-1)26、圆心角为120°,弧长为12π的扇形半径()A. 6B. 9C. 18D. 367、若一个正多边形的每个内角均为150°,则这个正多边形的边数是()A.9 B.10 C.11 D.128、教练对小明推铅球的录像进行技术分析,发现某次铅球行进高度y(m)与水平距离x(m)之间的关系为y=-(x-4)2+3,由此可知小明这次的推铅球成绩是()121A.3mB.4mC.8mD.10m9、在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,①abc<0;②b-2a=0;③a+b+c<0;④4a+c<2b;⑤am2+bm+c≥a-b+c,上述给出的五个结论中,正确的结论有()A.5个B.4个C.3个D.2个10、如图,△ABC内接于⊙O,BC=6,AC=2,∠A-∠B=90°,则⊙O的面积为( )A.9.6πB.10πC.10.8πD.12π二、填空题:(本大题共6小题,每小题5分,共30分)11.有5个杯子,其中2个是一等品,2个是二等品,其余是三等品,任意取一个杯子是一等品的概率是 .12. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110°,则∠BAD的度数为 .13. 如图,已知直线y=-2x+1与抛物线y=x2-2x+c的一个交点为点A,作点A关于抛物线对称轴的对称点A´,当A´刚好落在y轴上时,c的值为.14.如图,在圆柱形油槽内装有一些油,截面如图,油面宽AB为4分米,如果再注入一些油后,油面AB上升1分米,油面宽变为6分米,则圆柱形油槽的直径长为分米.15.如图,AB是半圆O的直径,弦AC=4,∠CAB=60°,点D是弧BC上的一个动点,作CG⊥AD,连结BG,在点D移动的过程中,BG的最小值是 .16.如图,抛物线y1的顶点在y轴上,y2由y1平移得到,它们与x轴的交点为A、B、C,且2BC=3AB=4OD=6,若过原点的直线被抛物线y1、y2所截得的线段长相等,则这条直线的解析式为.三、解答题:(本大题共8小题,共80分。
浙江省宁波市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°2.如图,在△ABC中,cosB=22,sinC=35,AC=5,则△ABC的面积是()A.212B.12 C.14 D.213.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.154.一个多边形的每个内角都等于120°,则这个多边形的边数为()A.4 B.5 C.6 D.75.如图,CE,BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为()A.6 B.5 C.4 D.36.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=1007.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)8.二次函数y=(2x-1)2+2的顶点的坐标是()A.(1,2)B.(1,-2)C.(12,2)D.(-12,-2)9.关于2、6、1、10、6的这组数据,下列说法正确的是()A.这组数据的众数是6 B.这组数据的中位数是1 C.这组数据的平均数是6 D.这组数据的方差是10 10.下列二次根式中,最简二次根式是()A.9a B.35a C.22a b+D.1 2 a+11.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于12AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是()A.7 B.10 C.11 D.1212.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了()A.25本B.20本C.15本D.10本二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).14.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.15.已知二次函数2y x 2x c =-++的部分图象如图所示,则c =______;当x______时,y 随x 的增大而减小.16.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.17.已知a 2+a=1,则代数式3﹣a ﹣a 2的值为_____.18.已知关于x 的方程x 2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .20.(6分)如图,已知抛物线经过点A (﹣1,0),B (4,0),C (0,2)三点,点D 与点C 关于x 轴对称,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 做x 轴的垂线l 交抛物线于点Q ,交直线BD 于点M .(1)求该抛物线所表示的二次函数的表达式; (2)已知点F (0,12),当点P 在x 轴上运动时,试求m 为何值时,四边形DMQF 是平行四边形? (3)点P 在线段AB 运动过程中,是否存在点Q ,使得以点B 、Q 、M 为顶点的三角形与△BOD 相似?若存在,求出点Q 的坐标;若不存在,请说明理由.21.(6分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?22.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.23.(8分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?24.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x1,y1)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣1.(1)请根据以上信息求出二次函数表达式;象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.25.(10分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:2≈1.41,3≈1.73,10≈3.16)26.(12分)如图,分别以线段AB两端点A,B为圆心,以大于12AB长为半径画弧,两弧交于C,D两点,作直线CD交AB于点M,DE∥AB,BE∥CD.(1)判断四边形ACBD的形状,并说明理由;(2)求证:ME=AD.27.(12分)在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕着点B顺时针旋转角a(0°<a<90°)得到△A1BC;A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论.(2)如图2,当a=30°时,试判断四边形BC1DA的形状,并证明.(3)在(2)的条件下,求线段DE的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.2.A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,2,sinC=35,AC=5,∴cosB=22=BDAB,∵sinC=35=ADAC=5AD,∴AD=3,∴CD=2253=4,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.3.B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.4.C【解析】试题解析:∵多边形的每一个内角都等于120°,∴多边形的每一个外角都等于180°-120°=10°,∴边数n=310°÷10°=1.故选C.考点:多边形内角与外角.5.C【解析】连接EG、FG,根据斜边中线长为斜边一半的性质即可求得EG=FG=12BC,因为D是EF中点,根据等腰三角形三线合一的性质可得GD⊥EF,再根据勾股定理即可得出答案.【详解】解:连接EG、FG,EG、FG分别为直角△BCE、直角△BCF的斜边中线,∵直角三角形斜边中线长等于斜边长的一半∴EG=FG=12BC=12×10=5,∵D为EF中点∴GD⊥EF,即∠EDG=90°,又∵D是EF的中点,∴116322DE EF==⨯=,在Rt EDG∆中,2222534DG EG ED=--=,故选C.【点睛】本题考查了直角三角形中斜边上中线等于斜边的一半的性质、勾股定理以及等腰三角形三线合一的性质,本题中根据等腰三角形三线合一的性质求得GD⊥EF是解题的关键.6.A【解析】【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程.【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)2=100,本题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程.7.D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.8.C【解析】试题分析:二次函数y=(2x-1)+2即21222y x⎛⎫=-+⎪⎝⎭的顶点坐标为(,2)考点:二次函数点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系9.A【解析】【分析】根据方差、算术平均数、中位数、众数的概念进行分析.【详解】数据由小到大排列为1,2,6,6,10,它的平均数为15(1+2+6+6+10)=5,数据的中位数为6,众数为6,数据的方差=15[(1﹣5)2+(2﹣5)2+(6﹣5)2+(6﹣5)2+(10﹣5)2]=10.1.故选A.考点:方差;算术平均数;中位数;众数.10.C【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式. 11.B 【解析】∵四边形ABCD 是平行四边形, ∴AD=BC=4,CD=AB=6,∵由作法可知,直线MN 是线段AC 的垂直平分线, ∴AE=CE ,∴AE+DE=CE+DE=AD ,∴△CDE 的周长=CE+DE+CD=AD+CD=4+6=1. 故选B . 12.C 【解析】 【分析】设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意列出关于x 、y 的二元一次方程组,求出x 、y 的值即可. 【详解】解:设甲种笔记本买了x 本,甲种笔记本的单价是y 元,则乙种笔记本买了(40﹣x )本,乙种笔记本的单价是(y+3)元,根据题意,得:()()1254033006813xy xy x y =⎧⎨+-+=-+⎩,解得:2515x y =⎧⎨=⎩, 答:甲种笔记本买了25本,乙种笔记本买了15本. 故选C . 【点睛】本题考查的是二元二次方程组的应用,能根据题意得出关于x 、y 的二元二次方程组是解答此题的关键. 二、填空题:(本大题共6个小题,每小题4分,共24分.)13. 【解析】试题分析:过S 作AB 的垂线,设垂足为C .根据三角形外角的性质,易证SB=AB .在Rt △BSC 中,运用正弦函数求出SC的长.解:过S作SC⊥AB于C.∵∠SBC=60°,∠A=30°,∴∠BSA=∠SBC﹣∠A=30°,即∠BSA=∠A=30°.∴SB=AB=1.Rt△BCS中,BS=1,∠SBC=60°,∴33(海里).即船继续沿正北方向航行过程中距灯塔S的最近距离是3海里.故答案为:314.直角三角形.【解析】【分析】根据题意,画出图形,用垂直平分线的性质解答.【详解】点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴∠C是直角.∴这个三角形是直角三角形.【点睛】本题考查线段垂直平分线的性质,解题关键是准确画出图形,进行推理证明.15.3, >1【解析】【分析】根据函数图象与x 轴的交点,可求出c 的值,根据图象可判断函数的增减性.【详解】解:因为二次函数2y x 2x c =-++的图象过点()3,0. 所以96c 0-++=,解得c 3=.由图象可知:x 1>时,y 随x 的增大而减小.故答案为(1). 3, (2). >1【点睛】此题考查二次函数图象的性质,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.16.60%【解析】【分析】设空闲时段民用电的单价为x 元/千瓦时,高峰时段民用电的单价为y 元/千瓦时,该用户5月份空闲时段用电量为a 千瓦时,则5月份高峰时段用电量为2a 千瓦时,6月份空闲时段用电量为2a 千瓦时,6月份高峰时段用电量为a 千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x ,y 的二元一次方程,解之即可得出x ,y 之间的关系,进而即可得出结论.【详解】设空闲时段民用电的单价为x 元/千瓦时,高峰时段民用电的单价为y 元/千瓦时,该用户5月份空闲时段用电量为a 千瓦时,则5月份高峰时段用电量为2a 千瓦时,6月份空闲时段用电量为2a 千瓦时,6月份高峰时段用电量为a 千瓦时,依题意,得:(1﹣25%)(ax+2ay )=2ax+ay ,解得:x =0.4y ,∴该地区空闲时段民用电的单价比高峰时段的用电单价低y x y-×100%=60%. 故答案为60%.【点睛】 本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.2【解析】∵21a a +=,∴23a a --23()a a =-+31=-2=,故答案为2.18.﹣1【解析】【分析】根据根与系数的关系得出b 2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,求出n >2,再去绝对值符号,即可得出答案.【详解】解:∵关于x 的方程x 2−2x+n=1没有实数根,∴b 2-4ac=(-2)2-4×1×(n-1)=-4n+8<0,∴n >2,∴|2−n |-│1-n│=n -2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n 的取值范围再去绝对值求解即可.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD ,再根据∠BFD=∠DFC ,证明△BFD ∽△DFC ,从而得BF :DF=DF :FC ,进行变形即得;(2)由已知证明△AEG ∽△ADC ,得到∠AEG=∠ADC=90°,从而得EG ∥BC ,继而得EG BF ED DF = , 由(1)可得BF DF DF CF = ,从而得EG DF ED CF= ,问题得证. 试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD 是Rt △ABC 的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD ,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AG AD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BF ED DF=,由(1)知△DFD∽△DFC,∴BF DF DF CF=,∴EG DF ED CF=,∴EG·CF=ED·DF.20.(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=12x-2,则Q(m,-12m2+32m+2)、M(m,12m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得12DO MBOB BQ==,再证△MBQ∽△BPQ得BM BPBQ PQ=,即214132222mm m-=-++,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=-12,则抛物线解析式为y=-12(x+1)(x-4)=-12x2+32x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:402k bb+⎧⎨-⎩==,解得:122kb⎧⎪⎨⎪-⎩==,∴直线BD解析式为y=12x-2,∵QM⊥x轴,P(m,0),∴Q(m,-12m2+32m+2)、M(m,12m-2),则QM=-12m2+32m+2-(12m-2)=-12m2+m+4,∵F(0,12)、D(0,-2),∴DF=52,∵QM∥DF,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!21.(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【解析】【分析】(1)设每次降价的百分率为x,(1﹣x)2 为两次降价后的百分率,40元降至32.4元就是方程的等量条件,列出方程求解即可;(2)设每天要想获得110 元的利润,且更有利于减少库存,则每件商品应降价y 元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x =10%或 190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%; (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由题意,得()4030y (448)5100.5y --⨯+= 解得:1y =1.1,2y =2.1,∵有利于减少库存,∴y =2.1.答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.22.(1)详见解析;(2)详见解析;(3)图见解析,点P 坐标为(2,0).【解析】【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2))找出点A 、B 、C 关于原点O 的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P .【详解】(1)如图1所示,△A 1B 1C 1,即为所求:(2)如图2所示,△A 2B 2C 2,即为所求:(3)找出A 的对称点A′(1,﹣1),连接BA′,与x 轴交点即为P ;如图3所示,点P 即为所求,点P 坐标为(2,0).【点睛】本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.23.(1)40y x =-+;(2)此时每天利润为125元.【解析】试题分析:(1) 根据题意用待定系数法即可得解;(2)把x=35代入(1)中的解析式,得到销量,然后再乘以每件的利润即可得.试题解析:(1)设y kx b =+,将15x =,25y =和20x =,20y =代入,得:25152020k b k b =+⎧⎨=+⎩,解得:140k b =-⎧⎨=⎩, ∴40y x =-+;(2)将35x =代入(1)中函数表达式得:35405y =-+=,∴利润()35105125=-⨯=(元),答:此时每天利润为125元.24.(1)y=12(x ﹣3)1﹣1;(1)11<x 3+x 4+x 5<9+12. 【解析】【分析】(1)利用二次函数解析式的顶点式求得结果即可;(1)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x 轴的直线与图象“G”有1个交点、1个交点时x 3+x 4+x 5的取值范围,易得直线与图象“G”要有3个交点时x 3+x 4+x 5的取值范围.【详解】(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣1)设二次函数表达式为:y=a (x ﹣3)1﹣1.∵该图象过A (1,0)∴0=a (1﹣3)1﹣1,解得a=12. ∴表达式为y=12(x ﹣3)1﹣1 (1)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x 轴重合时,有1个交点,由二次函数的轴对称性可求x 3+x 4=6,∴x 3+x 4+x 5>11,当直线过y=12(x ﹣3)1﹣1的图象顶点时,有1个交点, 由翻折可以得到翻折后的函数图象为y=﹣12(x ﹣3)1+1, ∴令12(x ﹣3)1+1=﹣1时,解得2或x=3﹣2 ∴x 3+x 4+x 5<2综上所述11<x 3+x 4+x 5<2【点睛】考查了二次函数综合题,涉及到待定系数法求二次函数解析式,抛物线的对称性质,二次函数图象的几何变换,直线与抛物线的交点等知识点,综合性较强,需要注意“数形结合”数学思想的应用.25.2.1.【解析】【分析】据题意得出tanB =13, 即可得出tanA, 在Rt△ADE中, 根据勾股定理可求得DE, 即可得出∠FCE的正切值, 再在Rt△CEF中, 设EF=x,即可求出x, 从而得出CF=1x的长. 【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x >0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1, ∴该停车库限高2.1米.【点睛】点评: 本题考查了解直角三角形的应用, 坡面坡角问题和勾股定理, 解题的关键是坡度等于坡角的正切值. 26.(1)四边形ACBD 是菱形;理由见解析;(2)证明见解析.【解析】【分析】(1)根据题意得出AC BC BD AD ===,即可得出结论;(2)先证明四边形BEDM 是平行四边形,再由菱形的性质得出90BMD ∠=︒,证明四边形ACBD 是矩形,得出对角线相等ME BD =,即可得出结论.【详解】(1)解:四边形ACBD 是菱形;理由如下:根据题意得:AC=BC=BD=AD ,∴四边形ACBD 是菱形(四条边相等的四边形是菱形);(2)证明:∵DE ∥AB ,BE ∥CD ,∴四边形BEDM 是平行四边形,∵四边形ACBD 是菱形,∴AB ⊥CD ,∴∠BMD=90°,∴四边形ACBD 是矩形,∴ME=BD ,∵AD=BD ,∴ME=AD .【点睛】本题考查了菱形的判定、矩形的判定与性质、平行四边形的判定,熟练掌握菱形的判定和矩形的判定与性质,并能进行推理结论是解决问题的关键.27.(1)1EA FC =.(2)四边形1BC DA 是菱形.(3)2233. 【解析】【分析】 (1)根据等边对等角及旋转的特征可得1ABE C BF ≅V V即可证得结论; (2)先根据两组对边分别平行的四边形是平行四边形,再得到邻边相等即可判断结论;(3)过点E 作EG AB ⊥于点G ,解Rt AEG V 可得AE 的长,结合菱形的性质即可求得结果.【详解】(1)1EA FC =.证明:(证法一)AB BC A C =∴∠=∠Q ,.由旋转可知,111,,AB BC A C ABE C BF =∠=∠∠=∠∴1A BF CBE V V ≌.∴BE BF ,=又1AB BC =Q ,∴11A C A B CB ∠=∠=,,即1EA FC =.(证法二)AB BC A C =∴∠=∠Q ,.由旋转可知,1BA BE BC BF -=-,而1EBC FBA ∠=∠∴1A BF CBE ∴≅V V∴BE BF ,=∴1BA BE BC BF -=-即1EA FC =.(2)四边形1BC DA 是菱形.证明:111130,A ABA AC AB ︒∠=∠=∴Q ‖同理1AC BC ‖ ∴四边形1BC DA 是平行四边形.又1AB BC =Q ,∴四边形1BC DA 是菱形 (3)过点E 作EG AB ⊥于点E ,则1AG BG ==.在EG AB ⊥中,AE =.由(2)知四边形1BC DA 是菱形,∴1AG BG ==.∴2ED AD AE =-= 【点睛】解答本题的关键是掌握好旋转的性质,平行四边形判定与性质,的菱形的判定与性质,选择适当的条件解决问题.。
浙江省温州市2019-2020学年中考数学仿真第三次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .2.如图,已知OP 平分∠AOB ,∠AOB =60°,CP =2,CP ∥OA ,PD ⊥OA 于点D ,PE ⊥OB 于点E .如果点M 是OP 的中点,则DM 的长是( )A .2B .2C .3D .233.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A .πB .32πC .6﹣πD .23﹣π4.如图,在平面直角坐标系中,A (1,2),B (1,-1),C (2,2),抛物线y=ax 2(a≠0)经过△ABC 区域(包括边界),则a 的取值范围是( )A .1a ≤- 或 2a ≥B .10a -≤< 或 02a <≤C .10a -≤< 或112a <≤D.12 2a≤≤5.下列方程有实数根的是()A.420x+=B.221x-=-C.x+2x−1=0D.111 xx x=--6.如图,在直角坐标系中,等腰直角△ABO的O点是坐标原点,A的坐标是(﹣4,0),直角顶点B在第二象限,等腰直角△BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()A.y=﹣2x+1 B.y=﹣12x+2 C.y=﹣3x﹣2 D.y=﹣x+27.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A.B.C.D.8.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0 9.下列计算正确的是()A.5﹣2=3B.4=±2C.a6÷a2=a3D.(﹣a2)3=﹣a610.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位11.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为()A.8×107B.880×108C.8.8×109D.8.8×101012.已知a,b为两个连续的整数,且a<11<b,则a+b的值为()A.7 B.8 C.9 D.10二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△ABC中,AB=17,BC=10,CA=21,AM平分∠BAC,点D、E分别为AM、AB上的动点,则BD+DE的最小值是_____.14.二次函数y=(a-1)x2-x+a2-1 的图象经过原点,则a的值为______.15.甲、乙两点在边长为100m的正方形ABCD上按顺时针方向运动,甲的速度为5m/秒,乙的速度为10m/秒,甲从A点出发,乙从CD边的中点出发,则经过__秒,甲乙两点第一次在同一边上.16.如图,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_____.17.分式有意义时,x的取值范围是_____.2xÐ的大小18.如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC的延长线上,则B为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.20.(6分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)21.(6分)如图,在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B的直线与CD的延长线交于点F,AC∥BF.(1)若∠FGB=∠FBG,求证:BF是⊙O的切线;(2)若tan∠F=34,CD=a,请用a表示⊙O的半径;(3)求证:GF2﹣GB2=DF•GF.22.(8分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.23.(8分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.24.(10分)计算:()20113232-⎛⎫+--- ⎪⎝⎭﹣3tan30°. 25.(10分)如图,在Rt △ABC 中,∠B=90°,点O 在边AB 上,以点O 为圆心,OA 为半径的圆经过点C ,过点C 作直线MN ,使∠BCM=2∠A .判断直线MN 与⊙O 的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.26.(12分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y (℃)从加热开始计算的时间为x (min ).据了解,当该材料加热时,温度y 与时间x 成一次函数关系:停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?27.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点(A在B的左侧),其中点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.2.C【解析】【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=12CP=1,∴PE=22CP CE3-=,∴OP=2PE=23,∵PD⊥OA,点M是OP的中点,∴DM=12OP=3.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.3.C【解析】【分析】根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.【详解】由题意可得,BC=CD=4,∠DCB=90°,连接OE,则OE=12 BC,∴OE∥DC,∴∠EOB=∠DCB=90°, ∴阴影部分面积为:2••90222360BC CD OE OB π⨯⨯-- =442290422360π⨯⨯⨯⨯-- =6-π,故选C .【点睛】本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4.B【解析】试题解析:如图所示:分两种情况进行讨论:当0a >时,抛物线2y ax =经过点()1,2A 时,2,a =抛物线的开口最小,a 取得最大值2.抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:0 2.a <≤当0a <时,抛物线2y ax =经过点()1,1B -时,1,a =-抛物线的开口最小,a 取得最小值 1.-抛物线2y ax =经过△ABC 区域(包括边界),a 的取值范围是:10.a -≤<故选B.点睛:二次函数()20,y ax bx c a =++≠ 二次项系数a 决定了抛物线开口的方向和开口的大小, 0,a >开口向上,0,a <开口向下.a 的绝对值越大,开口越小.5.C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A .∵x 4>0,∴x 4+2=0无解;故本选项不符合题意;B .∵22x -≥0,∴22x -=﹣1无解,故本选项不符合题意;C .∵x 2+2x ﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意. 故选C .点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.D【解析】【分析】抓住两个特殊位置:当BC 与x 轴平行时,求出D 的坐标;C 与原点重合时,D 在y 轴上,求出此时D 的坐标,设所求直线解析式为y=kx+b ,将两位置D 坐标代入得到关于k 与b 的方程组,求出方程组的解得到k 与b 的值,即可确定出所求直线解析式.【详解】当BC 与x 轴平行时,过B 作BE ⊥x 轴,过D 作DF ⊥x 轴,交BC 于点G ,如图1所示.∵等腰直角△ABO 的O 点是坐标原点,A 的坐标是(﹣4,0),∴AO=4,∴BC=BE=AE=EO=GF=12OA=1,OF=DG=BG=CG=12BC=1,DF=DG+GF=3,∴D 坐标为(﹣1,3); 当C 与原点O 重合时,D 在y 轴上,此时OD=BE=1,即D (0,1),设所求直线解析式为y=kx+b (k≠0),将两点坐标代入得:32k b b -+=⎧⎨=⎩,解得:12k b =-⎧⎨=⎩. 则这条直线解析式为y=﹣x+1.故选D .【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本题的关键.7.C【解析】【分析】根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.8.A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.9.D【解析】【分析】根据二次根式的运算法则,同类二次根式的判断,开算术平方根,同底数幂的除法及幂的乘方运算.【详解】A. 不是同类二次根式,不能合并,故A选项错误;,故B选项错误;C. a6÷a2=a4≠a3,故C选项错误;D. (−a2)3=−a6,故D选项正确.故选D.【点睛】本题主要考查了二次根式的运算法则,开算术平方根,同底数幂的除法及幂的乘方运算,熟记法则是解题的关键.10.D【解析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.11.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】880亿=880 0000 0000=8.8×1010,故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.A∴91116<<,即3114<<,∵a ,b 为两个连续的整数,且11a b <<,∴a=3,b=4,∴a+b=7,故选A.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.8【解析】试题分析:过B 点作BF AC ⊥于点F ,BF 与AM 交于D 点,根据三角形两边之和小于第三边,可知BD DE +的最小值是线BF 的长,根据勾股定理列出方程组即可求解.过B 点作BF AC ⊥于点F ,BF 与AM 交于D 点,设AF=x ,21CF x =-,222221)2217{(10x BF x BF -+=+=n , 15{8x BF ==,15{8x BF ==-(负值舍去).故BD +DE 的值是8故答案为8考点:轴对称-最短路线问题.14.-1【解析】【分析】将(2,2)代入y=(a-1)x 2-x+a 2-1 即可得出a 的值.【详解】解:∵二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,∴a≠1,∴a的值为-1.故答案为-1.【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.15.1【解析】试题分析:设x秒时,甲乙两点相遇.根据题意得:10x-5x=250,解得:x=50,相遇时甲走了250m,乙走了500米,则根据题意推得第一次在同一边上时可以为1.16.1【解析】试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=1.17.x<1【解析】【分析】有意义时,必有1﹣x>2,可解得x的范围.【详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.18.40°【解析】【分析】根据旋转的性质可得出AB=AD、∠BAD=100°,再根据等腰三角形的性质可求出∠B的度数,此题得解.【详解】根据旋转的性质,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=1×(180°−100°)=40°.本题考查了旋转的性质以及等腰三角形的性质,根据旋转的性质结合等腰三角形的性质求出∠B 的度数是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】(1)根据平行四边形的性质可得AB ∥DC ,OB=OD ,由平行线的性质可得∠OBE=∠ODF ,利用ASA 判定△BOE ≌△DOF ,由全等三角形的性质可得EO=FO ,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF 是平行四边形;(2)添加EF ⊥BD (本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF 为菱形.【详解】(1)∵四边形ABCD 是平行四边形,O 是BD 的中点,∴AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,又∵∠BOE=∠DOF ,∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)EF ⊥BD .∵四边形BEDF 是平行四边形,∵EF ⊥BD ,∴平行四边形BEDF 是菱形.【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.20.缆车垂直上升了186 m .【解析】【分析】在Rt ABC △中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF V 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.解:在Rt ABC△中,斜边AB=200米,∠α=16°,sin200sin1654BC ABα=⋅=⨯︒≈(m),在Rt BDFV中,斜边BD=200米,∠β=42°,sin200sin42132DF BDβ=⋅=⨯︒≈,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.21.(1)证明见解析;(2)25r a48=;(3)证明见解析.【解析】【分析】(1)根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,从而推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可.(2)根据两直线平行,内错角相等可得∠ACF=∠F,根据垂径定理可得CE=12CD=12a,连接OC,设圆的半径为r,表示出OE,然后利用勾股定理列式计算即可求出r.(3)连接BD,根据在同圆或等圆中,同弧所对的圆周角相等可得∠DBG=∠ACF,然后求出∠DBG=∠F,从而求出△BDG和△FBG相似,根据相似三角形对应边成比例列式表示出BG2,然后代入等式左边整理即可得证.【详解】解:(1)证明:∵OA=OB,∴∠OAB=∠OBA.∵OA⊥CD,∴∠OAB+∠AGC=90°.又∵∠FGB=∠FBG,∠FGB=∠AGC,∴∠FBG+∠OBA=90°,即∠OBF=90°.∵AB是⊙O的弦,∴点B在⊙O上.∴BF是⊙O的切线.(2)∵AC∥BF,∴∠ACF=∠F.∵CD=a,OA⊥CD,∴CE=12CD=12a.∵tan∠F=34,∴AE3tan ACFCE4∠==,即AE314a2=.解得3AE a8=.连接OC,设圆的半径为r,则3OE r a8=-,在Rt△OCE中,222CE OE OC+=,即22213a r a r28⎛⎫⎛⎫+-=⎪ ⎪⎝⎭⎝⎭,解得25r a48=.(3)证明:连接BD,∵∠DBG=∠ACF,∠ACF=∠F(已证),∴∠DBG=∠F.又∵∠FGB=∠FGB,∴△BDG∽△FBG.∴DG GBGB GF=,即GB2=DG•GF.∴GF2﹣GB2=GF2﹣DG•GF=GF(GF﹣DG)=GF•DF,即GF2﹣GB2=DF•GF.【解析】【分析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC 进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.23.解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A 1,A 2来自一个班,B 1,B 2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况, 则所选两名留守儿童来自同一个班级的概率为:=. 【解析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.24.1.【解析】【分析】直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案.【详解】(20113232-⎛⎫+-- ⎪⎝⎭﹣3tan30° 31﹣1﹣3×3=1.【点睛】 此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.25.(1)相切;(2)1643 3π-.【解析】试题分析:(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.试题解析:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,BC=23∴S阴=S扇形OAC﹣S△OAC=2120411642343 36023ππ-⨯⨯=-g.考点:直线与圆的位置关系;扇形面积的计算.26.(1);(2)20分钟.【解析】【详解】由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.27.(1)y=﹣x2+2x+3(2)2≤h≤4(3)(1,4)或(0,3)【解析】【分析】(1)抛物线的对称轴x=1、B(3,0)、A在B的左侧,根据二次函数图象的性质可知A(-1,0);根据抛物线y=ax2+bx+c过点C(0,3),可知c的值.结合A、B两点的坐标,利用待定系数法求出a、b 的值,可得抛物线L的表达式;(2)由C、B两点的坐标,利用待定系数法可得CB的直线方程.对抛物线配方,还可进一步确定抛物线的顶点坐标;通过分析h为何值时抛物线顶点落在BC上、落在OB上,就能得到抛物线的顶点落在△OBC 内(包括△OBC的边界)时h的取值范围.(3)设P(m,﹣m2+2m+3),过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,通过证明△BNP≌△PMQ求解即可.【详解】(1)把点B(3,0),点C(0,3)代入抛物线y=﹣x2+bx+c中得:,9303b cc-++=⎧⎨=⎩解得:23 bc=⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)y=﹣x2+2x+3=﹣(x﹣1)2+4,即抛物线的对称轴是:x=1,设原抛物线的顶点为D,∵点B(3,0),点C(0,3).易得BC的解析式为:y=﹣x+3,如图1,当抛物线的顶点D(1,2),此时点D在线段BC上,抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+2x+1,h=3﹣1=2,当抛物线的顶点D(1,0),此时点D在x轴上,抛物线的解析式为:y=﹣(x﹣1)2+0=﹣x2+2x﹣1,h=3+1=4,∴h的取值范围是2≤h≤4;(3)设P(m,﹣m2+2m+3),如图2,△PQB是等腰直角三角形,且PQ=PB,过P作MN∥x轴,交直线x=﹣3于M,过B作BN⊥MN,易得△BNP≌△PMQ,∴BN=PM,即﹣m2+2m+3=m+3,解得:m1=0(图3)或m2=1,∴P(1,4)或(0,3).【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式、二次函数的图象与性质、二次函数与一元二次方程的联系、全等三角形的判定与性质等知识点.解(1)的关键是掌握待定系数法,解(2)的关键是分顶点落在BC上和落在OB上求出h的值,解(3)的关键是证明△BNP≌△PMQ.。
温岭市第三中学2019届九年级下学期第二次模拟考试数学试题一.选择题(每小题4分,满分40分)1.|﹣2|等于( )A.﹣2 B.﹣ C.2 D.2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程将达到22000公里,将22000用科学记数法表示应为( )A.2.2×104 B.22×103 C.2.2×103 D.0.22×1053.如图是一个由几个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A.主视图和俯视图 B.俯视图C.俯视图和左视图 D.主视图4.如图,直线a,b被直线c所截,且a∥b.若∠1=35°,则∠2=( )A.35° B.55° C.125° D.145°5.如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是( )A.58° B.60° C.64° D.68°6.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则不等式(kx+b)(mx+n)>0的解集为( )A.x>2 B.0<x<4 C.﹣1<x<4 D.x<﹣1或x>47.如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )A.π﹣2 B.π﹣ C.π﹣2 D.π﹣8.如图矩形ABCD中,AB=3,BC=3,点P是BC边上的动点,现将△PCD沿直线PD折叠,使点C落在点C1处,则点B到点C1的最短距离为( )A.5 B.4 C.3 D.29.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF ⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是( )A. B. C. D.10.如图,矩形ABCD 中,AB =8,BC =4,把矩形ABCD 沿过点A 的直线AE 折叠,点D 落在矩形ABCD 内部的点D ′处,则CD ′的最小值是( )A .4B .C .D .二.填空题(满分30分,每小题5分) 11.若在实数范围内有意义,则x 的取值范围是 .12.一个多边形的内角和与外角和的比是4:1,则它的边数是 . 13.请写出一个过点(0,1)的函数的表达式 .14.在一个不透明的布袋中装有4个白球和n 个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n = .15.抛物线y =﹣x 2+8x ﹣12与x 轴的交点坐标是A ( )、B ( ). 16.定义:在平面直角坐标系中,一个图形先向右平移a 个单位,再绕原点按顺时针方向旋转θ角度,这样的图形运动叫作图形的γ(a ,θ)变换.如图,等边△ABC 的边长为1,点A 在第一象限,点B 与原点O 重合,点C 在x 轴的正半轴上.△A 1B 1C 1就是△ABC 经γ(1,180°)变换后所得的图形.若△ABC 经γ(1,180°)变换后得△A 1B 1C 1,△A 1B 1C 1经γ(2,180°)变换后得△A 2B 2C 2,△A 2B 2C 2经γ(3,180°)变换后得△A 3B 3C 3,依此类推……△A n ﹣1B n ﹣1C n ﹣1经γ(n ,180°)变换后得△A n B n ∁n ,则点A 1的坐标是 ,点A 2018的坐标是 .三.解答题(共8小题,满分80分)17.(8分).18.(8分)先化简÷+,当x取一个你喜欢的数值再计算代数式的值.(温馨提示:当心,分式要有意义)19.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E ,已知AH长米,HF长米,HE长1米.(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.(2)求篮板底部点E到地面的距离.(结果保留根号)20.(10分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图①,②的统计图,已知“查资料”的人数是40人.(0~1表示大于0同时小于等于1,以此类推)请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是多少度;(2)补全条形统计图;(3)该校共有学生1200人,估计每周使用手机时间在2小时以上(不含2小时)的人数. 21.(10分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE. (1)判断直线AC与△DBE外接圆的位置关系,并说明理由;(2)若AD=6,AE=6,求BC的长.22.(10分)在国家的宏观调控下,某市的商品房成交价由去年10月份的14000元/m2下降到12月份的11340元/m 2.(1)求11、12两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到今年2月份该市的商品房成交均价是否会跌破10000元/m2?请说明理由.23.(12分)如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是2.(1)求抛物线的解析式及顶点坐标;(2)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.24.(14分)如图,在直角坐标系中,直线y=﹣x+b与x轴正半轴,y轴正半轴分别交于点A,B,点F (2,0),点E在第一象限,△OEF为等边三角形,连接AE,BE(1)求点E的坐标;(2)当BE所在的直线将△OEF的面积分为3:1时,求S△AEB的面积;(3)取线段AB的中点P,连接PE,OP,当△OEP是以OE为腰的等腰三角形时,则b= (直接写出b的值)参考答案一.选择题1.C .2.A .3.B .4.D .5.A .6.C .7.C .8.C .9.A .10.C . 二.填空题11.解:由题意得:3x ﹣6≥0, 解得x ≥2, 故答案为:x ≥2. 12.解:根据题意,得 (n ﹣2)•180=1440, 解得:n =10.则此多边形的边数是10. 故答案为:10.13.解:∵函数图象过点(0,1) ∴函数图象与y 轴相交,设该函数的表达式为y =﹣x +b ,过点(0,1)∴b =1∴函数的表达式为y =﹣x +1故答案为:y =﹣x +1(答案不唯一).14.解:不透明的布袋中的球除颜色不同外,其余均相同,共有n +4个球,其中白球4个, 根据古典型概率公式知:P (白球)==,解得:n =8, 故答案为:8. 15.解:在y =﹣x 2+8x ﹣12中,令y =0可得﹣x 2+8x ﹣12=0,解得x =2或x =6, ∴A (2,0),B(6,0),故答案为:2,0;6,0.16.解:根据图形的γ(a ,θ)变换的定义可知:对图形γ(n ,180°)变换,就是先进行向右平移n 个单位变换,再进行关于原点作中心对称变换.△ABC 经γ(1,180°)变换后得△A 1B 1C 1,A 1 坐标(﹣,﹣) △A 1B 1C 1经γ(2,180°)变换后得△A 2B 2C 2,A 2坐标(﹣,) △A 2B 2C 2经γ(3,180°)变换后得△A 3B 3C 3,A 3坐标(﹣,﹣) △A 3B 3C 3经γ(4,180°)变换后得△A 4B 4C 4,A 4坐标(﹣,) △A 4B 4C 4经γ(5,180°)变换后得△A 5B 5C 5,A 5坐标(﹣,﹣)依此类推……可以发现规律:A n 纵坐标为:当n 是奇数,A n 横坐标为:﹣ 当n 是偶数,A n 横横坐标为:﹣当n =2018时,是偶数,A 2018横坐标是﹣,纵坐标为故答案为:(﹣,﹣),(﹣,).三.解答题17.解:原式=2﹣1+1+9++2﹣=13.18.解:原式=•+=+=;当x ≠﹣3,﹣1,0,1时,可取x =2时,原式=. 19.解:(1)在Rt △EFH 中,cos ∠FHE ==,∴∠FHE =45°,答:篮板底部支架HE 与支架AF 所成的角∠FHE 的度数为45°;(2)延长FE 交CB 的延长线于M ,过点A 作AG ⊥FM 于G ,过点H 作HN ⊥AG 于N ,则四边形ABMG和四边形HNGE是矩形,∴GM=AB,HN=EG,在Rt△ABC中,∵tan∠ACB=,∴AB=BC tan60°=1×=,∴GM=AB=,在Rt△ANH中,∠FAN=∠FHE=45°,∴HN=AH sin45°=×=,∴EM=EG+GM=+,答:篮板底部点E到地面的距离是(+)米.20.解:(1)根据题意得:1﹣(40%+18%+7%)=35%,则“玩游戏”对应的圆心角度数是360°×35%=126°因此,本题正确答案是:126°(2)根据题意得:40÷40%=100(人),∴3小时以上的人数为100﹣(2+16+18+32)=32(人),补全条形统计图,如图所示:(0~1表示大于0同时小于等于1,以此类推)(3)根据题意得:1200×64%=768(人),则每周使用手机时间在2小时以下(不含2小时)的人数约有768人. 21.解:(1)直线AC与△DBE外接圆相切.理由:∵DE⊥BE∴BD为△DBE外接圆的直径取BD的中点O(即△DBE外接圆的圆心),连接OE∴OE=OB∴∠OEB=∠OBE∵BE平分∠ABC∴∠OBE=∠CBE∴∠OEB=∠CBE∵∠CBE+∠CEB=90°∴∠OEB+∠CEB=90°,即OE⊥AC∴直线AC与△DBE外接圆相切;(2)设OD=OE=OB=x∵OE⊥AC∴(x+6)2﹣(6)2=x2∴x=3∴AB=AD+OD+OB=12∵OE⊥AC∴△AOE∽△ABC∴即=4.∴BC22.解:(1)设11、12两月平均每月降价的百分率是x ,则11月份的成交价是:14000(1﹣x ),12月份的成交价是:14000(1﹣x )2∴14000(1﹣x )2=11340,∴(1﹣x )2=0.81,∴x 1=0.1=10%,x 2=1.9(不合题意,舍去). 答:11、12两月平均每月降价的百分率是10%;(2)会跌破10000元/m 2.如果按此降价的百分率继续回落,估计今年2月份该市的商品房成交均价为: 11340(1﹣x )2=11340×0.81=9185.4<10000. 由此可知今年2月份该市的商品房成交均价会跌破10000元/m 2.23.解:(1)抛物线的顶点D 的横坐标是2,则x =﹣=2…①,抛物线过是A (0,﹣3),则:函数的表达式为:y =ax 2+bx ﹣3,把B 点坐标代入上式得:9=25a +5b ﹣3…②,联立①、②解得:a =,b =﹣,c =﹣3,∴抛物线的解析式为:y =x 2﹣x ﹣3, 当x =2时,y =﹣,即顶点D 的坐标为(2,﹣); (2)A (0,﹣3),B (5,9),则AB =13,①当AB =AC 时,设点C 坐标(m ,0),则:(m )2+(﹣3)2=132,解得:m =±4, 即点C 坐标为:(4,0)或(﹣4,0);②当AB =BC 时,设点C 坐标(m ,0),则:(5﹣m )2+92=132,解得:m =5, 即:点C 坐标为(5,0)或(5﹣2,0),③当AC=BC时,设点C坐标(m,0),则:点C为AB的垂直平分线于x轴的交点,则点C坐标为(,0),故:存在,点C的坐标为:(4,0)或(﹣4,0)或(5,0)或(5﹣2,0)或(,0); (3)过点P作y轴的平行线交AB于点H,设:AB所在的直线过点A(0,﹣3),则设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k=,故函数的表达式为:y=x﹣3,设:点P坐标为(m, m 2﹣m﹣3),则点H坐标为(m,m﹣3),S△PAB=•PH•x B=(﹣m2+12m), 当m=2.5时,S△PAB取得最大值为:, 答:△PAB的面积最大值为. 24.解:(1)如图1,过E作EC⊥x轴于C, ∵点F(2,0),∴OF=2,∵△OEF为等边三角形,∴OC=O F=1,Rt△OEC中,∠EOC=60°,∴∠OEC=30°,∴EC=,∴E(1,);(2)当BE所在的直线将△OEF的面积分为3:1时,存在两种情况:①如图2,S△OED:S△EDF=3:1,即OD:DF=3:1,∴D(,0),∵E(1,),∴ED的解析式为:y=﹣2x+3,∴B(0,3),A(3,0),∴OB=OA=3,∴S△AEB=S△AOB﹣S△EOB﹣S△AOE=×3×3﹣×3×1﹣×3×=﹣﹣=9﹣;②S△OED:S△EDF=1:3,即OD:DF=1:3,∴D(,0),∵E(1,),∴ED的解析式为:y=2x﹣,∴B(0,﹣),∵点B在y轴正半轴上,∴此种情况不符合题意;综上,S△AEB的面积是9﹣;(3)存在两种情况:①如图3,OE=EP,过E作ED⊥y轴于D,作EM⊥AB于M,作EG⊥OP于G,∵△AOB是等腰直角三角形,P是AB的中点,∴OP⊥AB,∴∠EGP=∠GPM=∠EMP=90°,∴四边形EGPM是矩形,∵OE=EP,∴EM=PG=OP=AB=,∴S△AOB=S△BOE+S△AOE+S△ABE,=++,b=2+2.②如图4,当OE=OP时,则OE=OP=2, ∵△AOB是等腰直角三角形,P是AB的中点, ∴AB=2OP=4,∴OB=2,即b=2,故答案为:2+2或2.。
浙江省台州市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,A 、B 、C 是⊙O 上的三点,∠B=75°,则∠AOC 的度数是( )A .150°B .140°C .130°D .120°2.将一副三角板(∠A =30°)按如图所示方式摆放,使得AB ∥EF ,则∠1等于( )A .75°B .90°C .105°D .115°3.已知圆A 的半径长为4,圆B 的半径长为7,它们的圆心距为d ,要使这两圆没有公共点,那么d 的值可以取( )A .11;B .6;C .3;D .1.4.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin h αB .cos h αC .tan h αD .cot h α5.小明解方程121x x x--=的过程如下,他的解答过程中从第( )步开始出现错误. 解:去分母,得1﹣(x ﹣2)=1①去括号,得1﹣x+2=1②合并同类项,得﹣x+3=1③移项,得﹣x =﹣2④系数化为1,得x =2⑤A .①B .②C .③D .④6.如图,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 逆时针旋转到△AB′C′的位置,使得CC′∥AB ,则∠CAC′为( )A.30°B.35°C.40°D.50°7.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.30x﹣361.5x=10 B.36x﹣301.5x=10C.361.5x﹣30x=10 D.30x+361.5x=108.如图,平行四边形ABCD中,E,F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,tan∠ABC=34,EF=,则AB的长为()A.533B.536C.1 D.1729.在平面直角坐标系中,点,则点P不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.将一把直尺与一块三角板如图所示放置,若140∠=︒则∠2的度数为( )A.50°B.110°C.130°D.150°11.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,312.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( )A .2.536×104人B .2.536×105人C .2.536×106人D .2.536×107人二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,CD 是⊙O 直径,AB 是弦,若CD ⊥AB ,∠BCD=25°,则∠AOD=_____°.14.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=▲°.15.一次函数y=kx+b 的图象如图所示,当y >0时,x 的取值范围是_____.16.分解因式:a 3-12a 2+36a=______.17.分解因式:22a 4a 2-+=_____.18.如图,Rt △ABC 中,∠C=90° , AB=10,3cos 5B =,则AC 的长为_______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组21114(2)x x x +-⎧⎨+>-⎩… 20.(6分)如图,D 为⊙O 上一点,点C 在直径BA 的延长线上,且∠CDA =∠CBD .(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.21.(6分)如图,已知抛物线y=ax2+2x+8与x轴交于A,B两点,与y轴交于点C,且B(4,0).(1)求抛物线的解析式及其顶点D的坐标;(2)如果点P(p,0)是x轴上的一个动点,则当|PC﹣PD|取得最大值时,求p的值;(3)能否在抛物线第一象限的图象上找到一点Q,使△QBC的面积最大,若能,请求出点Q的坐标;若不能,请说明理由.22.(8分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=43,∠BAD=60°,且AB>43.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.23.(8分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.24.(10分)先化简,再求值:,其中x=1.25.(10分)如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数ymx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.26.(12分)现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.27.(12分)如图,AB是⊙O的直径,点C在⊙O上,CE^ AB于E,CD平分ÐECB,交过点B的射线于D,交AB于F,且BC=BD.(1)求证:BD是⊙O的切线;(2)若AE=9,CE=12,求BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】直接根据圆周角定理即可得出结论.【详解】∵A、B、C是⊙O上的三点,∠B=75°,∴∠AOC=2∠B=150°.故选A.2.C【解析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.D【解析】∵圆A的半径长为4,圆B的半径长为7,它们的圆心距为d,∴当d>4+7或d<7-4时,这两个圆没有公共点,即d>11或d<3,∴上述四个数中,只有D选项中的1符合要求.故选D.点睛:两圆没有公共点,存在两种情况:(1)两圆外离,此时圆心距>两圆半径的和;(1)两圆内含,此时圆心距<大圆半径-小圆半径.4.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=CDBC,可得BC=cos cosCD hBCDα=∠.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键. 5.A【解析】【分析】根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.【详解】12x x x--=1, 去分母,得1-(x-2)=x ,故①错误,故选A .【点睛】本题考查解分式方程,解答本题的关键是明确解分式方程的方法.6.A【解析】【分析】根据旋转的性质可得AC=AC,∠BAC=∠BAC',再根据两直线平行,内错角相等求出∠ACC=∠CAB,然后利用等腰三角形两底角相等求出∠CAC,再求出∠BAB=∠CAC,从而得解【详解】∵CC′∥AB ,∠CAB =75°,∴∠C′CA =∠CAB =75°,又∵C 、C′为对应点,点A 为旋转中心,∴AC =AC′,即△ACC′为等腰三角形,∴∠CAC′=180°﹣2∠C′CA =30°.故选A .【点睛】此题考查等腰三角形的性质,旋转的性质和平行线的性质,运用好旋转的性质是解题关键7.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克, 根据题意列方程为:3036101.5x x-=. 故选:A .此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.8.B【解析】【分析】由平行四边形性质得出AB=CD ,AB ∥CD ,证出四边形ABDE 是平行四边形,得出DE=DC=AB ,再由平行线得出∠ECF=∠ABC ,由三角函数求出CF 长,再用勾股定理CE ,即可得出AB 的长.【详解】∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD ,∵AE ∥BD ,∴四边形ABDE 是平行四边形,∴AB=DE ,∴AB=DE=CD ,即D 为CE 中点,∵EF ⊥BC ,∴∠EFC=90°,∵AB ∥CD ,∴∠ECF=∠ABC ,∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF 34,∴CF=3,根据勾股定理得,3,∴AB=12CE=6, 故选B .【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 9.B【解析】根据坐标平面内点的坐标特征逐项分析即可.【详解】A. 若点在第一象限,则有:,解之得m>1,∴点P可能在第一象限;B. 若点在第二象限,则有:,解之得不等式组无解,∴点P不可能在第二象限;C. 若点在第三象限,则有:,解之得m<1,∴点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,∴点P可能在第四象限;故选B.【点睛】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y轴上的点横坐标为0.【解析】【分析】如图,根据长方形的性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【详解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键.11.A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.12.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2536000人=2.536×106人.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.50【解析】【分析】由CD是⊙O的直径,弦AB⊥CD,根据垂径定理的即可求得»AD=»BD,又由圆周角定理,可得∠AOD=50°.【详解】∵CD是⊙O的直径,弦AB⊥CD,∴»AD=»BD,∵∠BCD=25°=,∴∠AOD=2∠BCD=50°,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.14.1.【解析】试题分析:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=12∠AOC,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB)=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.15.2x【解析】试题解析:根据图象和数据可知,当y>0即图象在x轴的上方,x>1.故答案为x>1.16.a(a-6)2【解析】【分析】原式提取a,再利用完全平方公式分解即可.【详解】原式=a(a2-12a+36)=a(a-6)2,故答案为a(a-6)2【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键.17.()22a 1-【解析】分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式2后继续应用完全平方公式分解即可:()()2222a 4a 22a 2a 12a 1-+=-+=-. 18.8【解析】【分析】在Rt △ABC 中,cosB=35BC AB =,AB=10,可求得BC ,再利用勾股定理即可求AC 的长. 【详解】∵Rt △ABC 中,∠C=90°,AB=10∴cosB=35BC AB =,得BC=6 由勾股定理得BC=2222106==8AB BC --故答案为8.【点睛】 此题主要考查锐角三角函数在直角三形中的应用及勾股定理.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.﹣1≤x <1.【解析】【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x ﹣2),得:x <1,则不等式组的解集为﹣1≤x <1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.(1)证明见解析;(2).【解析】试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.根据已知条件得到由相似三角形的性质得到求得由切线的性质得到根据勾股定理列方程即可得到结论.试题解析:(1)连接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半径,∴CD是⊙O的切线;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,BC=6,∴CD=4.∵CE,BE是⊙O的切线,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.21.(1) y=﹣(x﹣1)2+9 ,D(1,9);(2)p=﹣1;(3)存在点Q(2,1)使△QBC的面积最大.【解析】分析:(1)把点B的坐标代入y=ax2+2x+1求得a的值,即可得到该抛物线的解析式,再把所得解析式配方化为顶点式,即可得到抛物线顶点D的坐标;(2)由题意可知点P在直线CD上时,|PC﹣PD|取得最大值,因此,求得点C的坐标,再求出直CD的解析式,即可求得符合条件的点P的坐标,从而得到p的值;(3)由(1)中所得抛物线的解析式设点Q的坐标为(m,﹣m2+2m+1)(0<m<4),然后用含m的代数式表达出△BCQ的面积,并将所得表达式配方化为顶点式即可求得对应点Q的坐标.详解:(1)∵抛物线y=ax2+2x+1经过点B(4,0),∴16a+1+1=0,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1=﹣(x﹣1)2+9,∴D(1,9);(2)∵当x=0时,y=1,∴C(0,1).设直线CD的解析式为y=kx+b.将点C、D的坐标代入得:89bk b=⎧⎨+=⎩,解得:k=1,b=1,∴直线CD的解析式为y=x+1.当y=0时,x+1=0,解得:x=﹣1,∴直线CD与x轴的交点坐标为(﹣1,0).∵当P在直线CD上时,|PC﹣PD|取得最大值,∴p=﹣1;(3)存在,理由:如图,由(2)知,C(0,1),∵B(4,0),∴直线BC的解析式为y=﹣2x+1,过点Q作QE∥y轴交BC于E,设Q(m,﹣m2+2m+1)(0<m<4),则点E的坐标为:(m,﹣2m+1),∴EQ=﹣m2+2m+1﹣(﹣2m+1)=﹣m2+4m,∴S△QBC=12(﹣m2+4m)×4=﹣2(m﹣2)2+1,∴m=2时,S△QBC最大,此时点Q的坐标为:(2,1).点睛:(1)解第2小题时,知道当点P 在直线CD 上时,|PC ﹣PD|的值最大,是找到解题思路的关键;(2)解第3小题的关键是设出点Q 的坐标(m ,﹣m 2+2m+1)(0<m <4),并结合点B 、C 的坐标把△BCQ 的面积用含m 的代数式表达出来.22.(1)∠EPF =120°;(2)AE +AF =63. 【解析】 试题分析: (1)过点P 作PG ⊥EF 于G ,解直角三角形即可得到结论;(2)如图2,过点P 作PM ⊥AB 于M ,PN ⊥AD 于N ,证明△ABC ≌△ADC ,R t △PME ≌Rt △PNF ,问题即可得证.试题解析:(1)如图1,过点P 作PG ⊥EF 于G ,∵PE=PF ,∴FG=EG=12EF=23,∠FPG=∠EPG =12∠EPF , 在△FPG 中,sin ∠FPG=233FG PF == , ∴∠FPG=60°,∴∠EPF=2∠FPG=120°;(2)如图2,过点P 作PM ⊥AB 于M ,PN ⊥AD 于N ,∵四边形ABCD 是菱形,∴AD=AB ,DC=BC ,∴∠DAC=∠BAC ,∴PM=PN ,在Rt △PME 于Rt △PNF 中,PM PN PE PF⎧⎨⎩═= ,∴R t△PME≌R t△PNF,∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM=12∠DAB=30°,∴AM=AP•cos30°=33,同理AN=33,∴AE+AF=(AM-EM)+(AN+NF)=63.【点睛】运用了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.23.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.24.【解析】【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先化简,然后再代入求值.【详解】解:原式=•﹣=﹣=﹣=,当x=1时,原式==.【点睛】本题考查了分式的化简求值,解题的关键是熟练的掌握分式的运算法则.25.(1)A(-1,0),B(0,1),D(1,0)(2)一次函数的解析式为y x 1=+ 反比例函数的解析式为2y x=【解析】解:(1)∵OA=OB=OD=1, ∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0)。
2019年浙江省温州市六校联考中考数学三模试卷一.选择题(共10小题)1.﹣2019的相反数是()A.B.﹣C.2019D.﹣20192.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约567.8亿千克,这个数用科学记数法应表示为()千克.A.5.678×1011B.56.78×1010C.0.5678×1011D.5.678×10103.将两个长方体如图放置,则所构成的几何体的主视图可能是()A.B.C.D.4.下列选项中的图形,不属于中心对称图形的是()A.等边三角形B.正方形C.正六边形D.圆5.在2019年的英语听力考试中,某校6名学生的成绩统计如图,则这组数据的众数是()A.17B.18C.20D.36.若分式的值为0,则x的值是()A.2B.0C.﹣2D.﹣57.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两.问牛羊各值金几何?”设牛,羊每头分别值金x两,y两,依题意,可列出方程组为()A.B.C.D.8.如图,点A,B,C在⊙O上,若∠ACB=112°,则∠α=()A.68°B.112°C.136°D.134°9.如图,已知直线y=﹣x+b(b>0)交x轴,y轴于点M,N,点A,B是OM,ON上的点,以AB为边作正方形ABCD,CD恰好落在MN上,已知AB=2,则b的值为()A.1+B.C.D.2+10.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6D.3≤C≤6二.填空题(共6小题)11.因式分解:a2﹣4a=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是.14.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,将Rt△ABC绕点C顺时针旋转90°得△DEC,则tan∠ABE=.15.七巧板是我国古老的益智玩具,受到全世界人的追捧.下图是由一副“现代智力七巧板经无缝拼接且没有重叠的轴对称花朵型图案,直线AB为对称轴,其中①②③是直径为1的圆与半圆,④为直角梯形,⑤为等腰直角三角形,⑥⑦是有一组对边平行且锐角皆为45°的拼板.若已知④的周长是AB的3倍,⑥的周长是AB的5倍,则图中线段AC的长度为.16.如图,矩形ABCD的顶点A,B,D分别落在双曲线y=(k>0)的两个分支上,AB边经过原点O,CB边与x轴交于点E,且EC=EB,若点A的横坐标为1,则矩形ABCD的面积.三.解答题(共8小题)17.(1)计算:+()﹣1﹣2sin60°(2)先化简,再求值:(x﹣2)2﹣x(x﹣2),其中x=﹣1.18.已知:如图点A,E,F,C在同一直线上,AE=EF=FC,过E,F分别作DE⊥AC,BF⊥AC,连结AB,CD,BD,BD交AC于点G,若AB=CD.(1)求证:△ABF≌△CDE.(2)若AE=ED=2,求BD的长.19.某中学决定开展课后服务活动,学校就“你最想开展哪种课后服务项目”问题进行了随机问卷调查,调查分为四个类别:A.舞蹈;B.绘画与书法;C.球类;D.不想参加.现根据调查结果整理并绘制成如下不完整的扇形统计图和条形统计图:请结合图中所给信息解答下列问题(1)这次统计共抽查了名学生;请补全条形统计图.(2)该校共有600名学生,根据以上信恳,请你估计全校学生中想参加B类活动的人数.(3)若甲,乙两名同学,各白从A,B,C三个项目中随机选一个参加,请用列表或画树状图的方法求他们选中同一项目的概率.20.如图,点A,B在7×5的正方形网格的格点上,按以下要求作出不同的格点三角形.(1)在图甲中,作出以AB为斜边的直角△ABC;(2)在图乙中,作出面积最大的等腰△ABD.21.如图1,已知点A,B,C是⊙O上的三点,以AB,BC为邻边作▱ABCD,延长AD,交⊙O于点E,过点A作CE的平行线,交CD的延长线于F(1)求证:FD=F A;(2)如图2,连接AC,若∠F=40°,且AF恰好是⊙O的切线,求∠CAB的度数.22.抛物线y=﹣x2+ax+b交x轴于A(﹣2,0),B(4,0)两点,交y轴于点C,点P是抛物线在第一象限上的一点,过点P作AC的平行线l,分别交直线BC,y轴于点D,点E.(1)填空:直线AC的解析式为,抛物线的解析式为;(2)当CD=时,求OE的长;(3)当DP=DE时,求点P的横坐标.23.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.24.如图,已知平面直角坐标系中,点C(3,4),以OC为边作菱形OABC,且点A落在x轴的正半轴上,点D为y轴上的一个动点,设D(0,m),连结DB,交直线OC于点E.(1)填空:B的坐标为(),sin∠AOC=;(2)当点D在y轴正半轴时,记△DEO的面积为S1,△BCE的面积为S2,当S1=S2时,求m的值.(3)过点D,O,A作⊙M,交线段OC于点F.①当⊙M与菱形OABC一边所在的直线相切时,求所有满足条件的m的值.②当OD=DE时,直接写出OE:EF的值.。
2019年浙江省温州市六校联考中考数学三模试卷一.选择题(共10小题)1.﹣2019的相反数是()A.B.﹣C.2019D.﹣20192.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约567.8亿千克,这个数用科学记数法应表示为()千克.A.5.678×1011B.56.78×1010C.0.5678×1011D.5.678×10103.将两个长方体如图放置,则所构成的几何体的主视图可能是()A.B.C.D.4.下列选项中的图形,不属于中心对称图形的是()A.等边三角形B.正方形C.正六边形D.圆5.在2019年的英语听力考试中,某校6名学生的成绩统计如图,则这组数据的众数是()A.17B.18C.20D.36.若分式的值为0,则x的值是()A.2B.0C.﹣2D.﹣57.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两.问牛羊各值金几何?”设牛,羊每头分别值金x两,y两,依题意,可列出方程组为()A.B.C.D.8.如图,点A,B,C在⊙O上,若∠ACB=112°,则∠α=()A.68°B.112°C.136°D.134°9.如图,已知直线y=﹣x+b(b>0)交x轴,y轴于点M,N,点A,B是OM,ON上的点,以AB为边作正方形ABCD,CD恰好落在MN上,已知AB=2,则b的值为()A.1+B.C.D.2+10.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6D.3≤C≤6二.填空题(共6小题)11.因式分解:a2﹣4a=.12.已知扇形的弧长为2π,圆心角为60°,则它的半径为.13.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是.14.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,将Rt△ABC绕点C顺时针旋转90°得△DEC,则tan∠ABE=.15.七巧板是我国古老的益智玩具,受到全世界人的追捧.下图是由一副“现代智力七巧板经无缝拼接且没有重叠的轴对称花朵型图案,直线AB为对称轴,其中①②③是直径为1的圆与半圆,④为直角梯形,⑤为等腰直角三角形,⑥⑦是有一组对边平行且锐角皆为45°的拼板.若已知④的周长是AB的3倍,⑥的周长是AB的5倍,则图中线段AC 的长度为.16.如图,矩形ABCD的顶点A,B,D分别落在双曲线y=(k>0)的两个分支上,AB 边经过原点O,CB边与x轴交于点E,且EC=EB,若点A的横坐标为1,则矩形ABCD 的面积.三.解答题(共8小题)17.(1)计算:+()﹣1﹣2sin60°(2)先化简,再求值:(x﹣2)2﹣x(x﹣2),其中x=﹣1.18.已知:如图点A,E,F,C在同一直线上,AE=EF=FC,过E,F分别作DE⊥AC,BF⊥AC,连结AB,CD,BD,BD交AC于点G,若AB=CD.(1)求证:△ABF≌△CDE.(2)若AE=ED=2,求BD的长.19.某中学决定开展课后服务活动,学校就“你最想开展哪种课后服务项目”问题进行了随机问卷调查,调查分为四个类别:A.舞蹈;B.绘画与书法;C.球类;D.不想参加.现根据调查结果整理并绘制成如下不完整的扇形统计图和条形统计图:请结合图中所给信息解答下列问题(1)这次统计共抽查了名学生;请补全条形统计图.(2)该校共有600名学生,根据以上信恳,请你估计全校学生中想参加B类活动的人数.(3)若甲,乙两名同学,各白从A,B,C三个项目中随机选一个参加,请用列表或画树状图的方法求他们选中同一项目的概率.20.如图,点A,B在7×5的正方形网格的格点上,按以下要求作出不同的格点三角形.(1)在图甲中,作出以AB为斜边的直角△ABC;(2)在图乙中,作出面积最大的等腰△ABD.21.如图1,已知点A,B,C是⊙O上的三点,以AB,BC为邻边作▱ABCD,延长AD,交⊙O于点E,过点A作CE的平行线,交CD的延长线于F(1)求证:FD=F A;(2)如图2,连接AC,若∠F=40°,且AF恰好是⊙O的切线,求∠CAB的度数.22.抛物线y=﹣x2+ax+b交x轴于A(﹣2,0),B(4,0)两点,交y轴于点C,点P 是抛物线在第一象限上的一点,过点P作AC的平行线l,分别交直线BC,y轴于点D,点E.(1)填空:直线AC的解析式为,抛物线的解析式为;(2)当CD=时,求OE的长;(3)当DP=DE时,求点P的横坐标.23.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.24.如图,已知平面直角坐标系中,点C(3,4),以OC为边作菱形OABC,且点A落在x 轴的正半轴上,点D为y轴上的一个动点,设D(0,m),连结DB,交直线OC于点E.(1)填空:B的坐标为(),sin∠AOC=;(2)当点D在y轴正半轴时,记△DEO的面积为S1,△BCE的面积为S2,当S1=S2时,求m的值.(3)过点D,O,A作⊙M,交线段OC于点F.①当⊙M与菱形OABC一边所在的直线相切时,求所有满足条件的m的值.②当OD=DE时,直接写出OE:EF的值.参考答案与试题解析一.选择题(共10小题)1.﹣2019的相反数是()A.B.﹣C.2019D.﹣2019【分析】直接利用相反数的定义得出答案.【解答】解:﹣2019的相反数是2019.故选:C.2.舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约567.8亿千克,这个数用科学记数法应表示为()千克.A.5.678×1011B.56.78×1010C.0.5678×1011D.5.678×1010【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:567.8亿=56780000000=5.678×1010.故选:D.3.将两个长方体如图放置,则所构成的几何体的主视图可能是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形即可解答.【解答】解:根据主视图的概念可知,从物体的正面看得到的视图是A,故选:A.4.下列选项中的图形,不属于中心对称图形的是()A.等边三角形B.正方形C.正六边形D.圆【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选:A.5.在2019年的英语听力考试中,某校6名学生的成绩统计如图,则这组数据的众数是()A.17B.18C.20D.3【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:这组数据中18出现的次数最多,出现了3次,所以众数为18.故选:B.6.若分式的值为0,则x的值是()A.2B.0C.﹣2D.﹣5【分析】分式的值等于零时,分子等于零.【解答】解:由题意,得x﹣2=0,解得,x=2.经检验,当x=2时,=0.故选:A.7.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两.问牛羊各值金几何?”设牛,羊每头分别值金x两,y两,依题意,可列出方程组为()A.B.C.D.【分析】设牛,羊每头分别值金x两,y两,根据“牛五,羊二,值金十两.牛二,羊五,值金八两”,即可得出关于x、y的二元一次方程组,此题得解.【解答】解:设牛,羊每头分别值金x两,y两,根据题意得:.故选:B.8.如图,点A,B,C在⊙O上,若∠ACB=112°,则∠α=()A.68°B.112°C.136°D.134°【分析】作对的圆周角∠ADB,如图,利用圆内接四边形的性质得到∠ADB=68°,然后根据圆周角定理可得到出∠AOB的度数.【解答】解:作对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣112°=68°,∴∠AOB=2∠ADB=2×68°=136°.故选:C.9.如图,已知直线y=﹣x+b(b>0)交x轴,y轴于点M,N,点A,B是OM,ON上的点,以AB为边作正方形ABCD,CD恰好落在MN上,已知AB=2,则b的值为()A.1+B.C.D.2+【分析】由直线的解析式可知tan∠OMN=,结合正方形性质可得∠OAB=∠OMN=∠NBC,在Rt△BCN中,BC=2,tan∠NBC=,则BN=;在Rt△BOA中,BA=2,tan∠OAB=,则BO=;又由b=ON即可求解.【解答】解:∵直线y=﹣x+b,∴tan∠OMN=,∵正方形ABCD,∴AB∥CD,∴∠OAB=∠OMN=∠NBC,∵AB=2,∴BC=AD=2,在Rt△BCN中,BC=2,tan∠NBC=,∴BN=,在Rt△BOA中,BA=2,tan∠OAB=,∴BO=,∵b>0,∴b=ON=;故选:C.10.如图,已知正六边形ABCDEF的边长为,点G,H,I,J,K,L依次在正六边形的六条边上,且AG=BH=CI=DJ=EK=FL,顺次连结G,I,K,和H,J,L,则图中阴影部分的周长C的取值范围为()A.6≤C≤6B.3≤C≤3C.3≤C≤6D.3≤C≤6【分析】根据对称性可知,△GKI,△HLJ是等边三角形.阴影部分是正六边形,边长为GK的.求出正六边形边长的最大值以及最小值即可解决问题.【解答】解:根据对称性可知,△GKI,△HLJ是等边三角形.阴影部分是正六边形,边长为GK的.∵GK的最大值为3,GK的最小值为,∴阴影部分的正六边形的边长的最大值为1,最小值为,∴图中阴影部分的周长C的取值范围为:3≤C≤6.故选:C.二.填空题(共6小题)11.因式分解:a2﹣4a=a(a﹣4).【分析】直接找出公因式提取公因式分解因式即可.【解答】解:原式=a(a﹣4).故答案为:a(a﹣4).12.已知扇形的弧长为2π,圆心角为60°,则它的半径为6.【分析】根据弧长公式直接解答即可.【解答】解:设半径为r,2,解得:r=6,故答案为:613.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是.【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,其中摸出的球是白球的结果有5种,∴从袋中任意摸出一个球,是白球的概率是=,故答案为14.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,将Rt△ABC绕点C顺时针旋转90°得△DEC,则tan∠ABE=.【分析】由旋转的性质可得BC=CE=6,可得BE=6,∠CEB=∠CBE=45°,由等腰三角形的性质可得EF=AF=,即可求解.【解答】解:如图,过点A作AF⊥BE于E,∵将Rt△ABC绕点C顺时针旋转90°∴BC=CE=6,且∠BCE=90°∴BE=6,∠CEB=∠CBE=45°∵AE=CE﹣AC∴AE=6﹣4=2,∵AF⊥BE,∠BEC=45°∴∠EAF=∠BEC=45°∴EF=AF==,∴BF=BE﹣EF=5,∴tan∠ABE===15.七巧板是我国古老的益智玩具,受到全世界人的追捧.下图是由一副“现代智力七巧板经无缝拼接且没有重叠的轴对称花朵型图案,直线AB为对称轴,其中①②③是直径为1的圆与半圆,④为直角梯形,⑤为等腰直角三角形,⑥⑦是有一组对边平行且锐角皆为45°的拼板.若已知④的周长是AB的3倍,⑥的周长是AB的5倍,则图中线段AC 的长度为3﹣1.【分析】如图,作EH⊥DG于H.设DE=x,AE=y,EF+FG=z.构建方程组求出x,y,z,可得AK的长即可解决问题.【解答】解:如图,作EH⊥DG于H.设DE=x,AE=y,EF+FG=z.在Rt△CJK中,∵CJ=CK=1,∴KJ=,由题意:AB=JK=DG=,∵④是直角梯形,∠D=45°,∴DH=EH=FG,GH=EF,∴EF+FG=GH+DH=,即z=,由题意:,解得y=2,z=,x=,∴AD=AK=x+y=3,∴AC=AK=CK=3﹣1,故答案为:3﹣1.16.如图,矩形ABCD的顶点A,B,D分别落在双曲线y=(k>0)的两个分支上,AB 边经过原点O,CB边与x轴交于点E,且EC=EB,若点A的横坐标为1,则矩形ABCD 的面积.【分析】过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N,过点A作AF⊥x轴于点F,设A点坐标为(1,a),则OB、BE、EM均可用a表示,易知△CNE≌△BME,通过线段等量关系可求用a表示的C点坐标,继而求得D点坐标,根据A、D都在反比例函数图象上,得到关于a的方程,求解a值,再求出AB和BC值,则矩形面积可求.【解答】解:设A点坐标为(1,a),过点B作BM⊥x轴于点M,过点C作CN⊥x轴于点N,过点A作AF⊥x轴于点F,如下图所示,由A(1,a),由对称性质有B(﹣1,﹣a),∴OB=OA=,BM=AF=a,OM=OF=1,∵tan∠BOE=tan∠AOF,∴,即,∴BE=,∴,∵BE=CE,∠CEN=∠BEM,∠CNE=∠BME,∴△CNE≌△BME,∴CN=BM=a,NE=EM=a2,CE=BE=,∴ON=2a2+1,∴C(﹣2a2﹣1,a),∵A(1,a),B(﹣1,﹣a),BC∥AD,AD=BC,∴D(1﹣2a2,3a),∵A、D都在反比例函数图象上,∴3a(1﹣2a2)=a•1,解得a=,∴AB=2OA=2=,BC=2BE=2a=,∴矩形ABCD的面积.故答案为:.三.解答题(共8小题)17.(1)计算:+()﹣1﹣2sin60°(2)先化简,再求值:(x﹣2)2﹣x(x﹣2),其中x=﹣1.【分析】(1)根据二次根式的运算、零指数幂的意义以及特殊角的锐角三角函数值即可求出答案.(2)先将原式进行化简,然后将x=﹣1代入原式即可求出答案.【解答】解:(1)原式=2+2﹣2×=2+2﹣=2+;(2)原式=(x﹣2)(x﹣2﹣x)=﹣2(x﹣2)=﹣2x+4,当x=﹣1时,原式=6;18.已知:如图点A,E,F,C在同一直线上,AE=EF=FC,过E,F分别作DE⊥AC,BF⊥AC,连结AB,CD,BD,BD交AC于点G,若AB=CD.(1)求证:△ABF≌△CDE.(2)若AE=ED=2,求BD的长.【分析】(1)利用HL定理证明△ABF≌△CDE;(2)证明△DEG≌△BFG,根据全等三角形的性质得到EG=FG=EF=1,DG=BG,根据勾股定理计算,得到答案.【解答】(1)证明:∵AE=EF=FC,∴AF=CE,在Rt△AFB和Rt△CED中,,∴Rt△AFB≌Rt△CED(HL);(2)解:∵△AFB≌△CED,∴DE=BF,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS)∴EG=FG=EF=1,DG=BG,由勾股定理得,DG==,∴BD=2DG=2.19.某中学决定开展课后服务活动,学校就“你最想开展哪种课后服务项目”问题进行了随机问卷调查,调查分为四个类别:A.舞蹈;B.绘画与书法;C.球类;D.不想参加.现根据调查结果整理并绘制成如下不完整的扇形统计图和条形统计图:请结合图中所给信息解答下列问题(1)这次统计共抽查了50名学生;请补全条形统计图.(2)该校共有600名学生,根据以上信恳,请你估计全校学生中想参加B类活动的人数.(3)若甲,乙两名同学,各白从A,B,C三个项目中随机选一个参加,请用列表或画树状图的方法求他们选中同一项目的概率.【分析】(1)用A类别的人数除以它所占的百分比得到调查的总人数,再用总人数减去其它类别的人数求出D类的人数,然后补全条形统计图;(2)用600乘以基本中B类人数所占的百分比;(3)画树状图展示所有9种等可能的结果数,找出选中同一项目的结果数,然后根据概率公式求解.【解答】解:(1)这次统计共抽查的学生数是:5÷10%=50(名),D类人数为50﹣5﹣10﹣15=20(人),补全条形统计图为:故答案为:50;(2)600×=120(人),所以估计全校学生中想参加B类活动的人数为120人;(3)画树状图为:共有9种等可能的结果数,其中他们选中同一项目的结果数为3,所以选中同一项目的概率==.20.如图,点A,B在7×5的正方形网格的格点上,按以下要求作出不同的格点三角形.(1)在图甲中,作出以AB为斜边的直角△ABC;(2)在图乙中,作出面积最大的等腰△ABD.【分析】(1)作出直角边长,2的直角三角形即为所求;(2)作出AB的垂直平分线即可求解.【解答】解:(1)如图所示:△ABC即为所求;(2)如图所示:△ABD即为所求.21.如图1,已知点A,B,C是⊙O上的三点,以AB,BC为邻边作▱ABCD,延长AD,交⊙O于点E,过点A作CE的平行线,交CD的延长线于F(1)求证:FD=F A;(2)如图2,连接AC,若∠F=40°,且AF恰好是⊙O的切线,求∠CAB的度数.【分析】(1)连接CA,如图1,先证明∠1=∠2得到=,则=,所以∠BAE =∠E,然后证明∠3=∠4得到F A=FD;(2)连接OA、OC,如图2,利用三角形内角和计算出∠F AD=∠FDA=70°,再根据平行线的性质得到∠E=∠F AD=70°,∠BAD=∠FDA=70°,接着根据圆周角定理得到∠AOC=2∠E=140°,利用等腰三角形的性质得到∠OAC=20°,然后利用切线的性质得到∠OAF=90°,于是计算∠BAF﹣∠OAF﹣∠OAC即可.【解答】(1)证明:连接CA,如图1,∵四边形ABCD为平行四边形,∴AE∥BC,AB∥CF,∴∠1=∠2,∴=,∴+=+,即=,∴∠BAE=∠E,∵AB∥CF,∴∠4=∠BAE,∵AF∥CE,∴∠E=∠3,∴∠3=∠4,∴F A=FD;(2)解:连接OA、OC,如图2,∵∠F=40°,∴∠F AD=∠FDA=70°,∴∠E=∠F AD=70°,∠BAD=∠FDA=70°,∵∠AOC=2∠E=140°,而OC=OA,∴∠OAC=(180°﹣140°)=20°,∵AF为切线,∴OA⊥AF,∴∠OAF=90°,∴∠CAB=∠BAF﹣∠OAF﹣∠OAC=140°﹣90°﹣20°=30°.22.抛物线y=﹣x2+ax+b交x轴于A(﹣2,0),B(4,0)两点,交y轴于点C,点P 是抛物线在第一象限上的一点,过点P作AC的平行线l,分别交直线BC,y轴于点D,点E.(1)填空:直线AC的解析式为y=2x+4,抛物线的解析式为;(2)当CD=时,求OE的长;(3)当DP=DE时,求点P的横坐标.【分析】(1)根据抛物线与x轴的交点坐标,将抛物线设成交点式即可求解;(2)作DF⊥y轴,得△COB~△CFD,从而求出CF,再根据△AOC∽△EFD,求出EF,即可解出OE.(3)作DF⊥y轴于点F,分别过P,D作y轴,x轴的垂线,交于点H,构造\DeltaDFE y =﹣\frac{1}{2}(x+2)(x﹣4)﹣\frac{1}{2}(x^{2}﹣2x﹣8)﹣\frac{1}{2}x^{2}+x+4\left\{\begin{array}{l}m=4\\﹣2k+m=0\end{array}\right.y=2x+4,y=﹣\frac{1}{2}x^{2}+x+4CF=FD=\frac{\sqrt{2}}{2}CD=1\frac{FD}{EF}=\frac{1}{2}t+4=﹣\frac{1}{2}(2t)^{2}+2t+4t_{1}=\frac{1}{2},t_{2}=0$(舍去)∴P(1,4.5)23.某果农在销瓯柑时,经市场调査发现:瓯柑若售价为5元/千克,日销售量为34千克,若售价每提高1元/千克,日销售量就减少2千克.现设瓯柑售价为x元/千克(x≥5且为正整数).(1)若某日销售量为24千克,求该日瓯柑的单价;(2)若政府将销售价格定为不超过15元/千克.设每日销售额为w元,求w关于x的函数表达式,并求w的最大值和最小值;(3)市政府每日给果农补贴a元后(a为正整数),果农发现最大日收入(日收入=销售额+政府补贴)还是不超过350元,并且只有5种不同的单价使日收入不少于340元,请直按写出所有符合题意的a的值.【分析】(1)根据售价每提高1元/千克,日销售量就减少2千克,且某日销售量为24千克,列方程可解答;(2)根据题意,利用销售额等于销售量乘以销售单价,列出函数关系式,根据二次函数的性质及配方法可求得答案;(3)由题意得:340≤﹣2x2+44x+a≤350,由二次函数的对称性可知x的取值为9,10,11,12,13,从而计算可得a值.【解答】解:(1)根据题意得:34﹣2(x﹣5)=24,x=10,答:该日瓯柑的单价是10元/千克;(2)根据题意得:w=x[34﹣2(x﹣5)]=﹣2x2+44x=﹣2(x2﹣22x+121﹣121)=﹣2(x﹣11)2+242,由题意得:5≤x≤15,且x为正整数,∴x=11时,w有最大值是242元,x=5时,w有最小值是﹣2(5﹣11)2+242=170元;则w关于x的函数表达式为:w=x[34﹣2(x﹣5)]=﹣2x2+44x(5≤x≤15,且x为正整数);(3)由题意得:340≤﹣2x2+44x+a≤350∵只有5种不同的单价使日收入不少于340元,5为奇数∴由二次函数的对称性可知,x的取值为9,10,11,12,13当x=9或13时,﹣2x2+44x=234,;当x=10或12时,﹣2x2+44x=240,当x=11时,﹣2x2+44x=242∵补贴后不超过350元,234+106=340,242+108=350∴当a=106,或107,或108时符合题意.答:所有符合题意的a值为:106,107,108.24.如图,已知平面直角坐标系中,点C(3,4),以OC为边作菱形OABC,且点A落在x 轴的正半轴上,点D为y轴上的一个动点,设D(0,m),连结DB,交直线OC于点E.(1)填空:B的坐标为(8,4),sin∠AOC=;(2)当点D在y轴正半轴时,记△DEO的面积为S1,△BCE的面积为S2,当S1=S2时,求m的值.(3)过点D,O,A作⊙M,交线段OC于点F.①当⊙M与菱形OABC一边所在的直线相切时,求所有满足条件的m的值.②当OD=DE时,直接写出OE:EF的值.【分析】(1)如图1中,作CH⊥OA于H.根据点C的坐标求出OH,CH利用勾股定理求出OC即可解决问题.(2)如图1中,延长BC交OD于F.由S1=S2,推出S△OCF=S△BDF,由此构建方程即(3)①分两种情形:如图2中,当⊙M与BC相切时,根据PQ=DM,构建方程即可解决问题.如图3中,当⊙M与AB相切时,AD⊥AB,设AD交OC于Q.根据tam∠OAD =tan∠DOC=,构建方程即可解决问题.②如图4中,作BG⊥BC交OC的延长线于G,连接DF,AF,作FP⊥OA于P.首先求出BG,再证明BE=BG,根据DE+BE=BD,构建方程求出m,设OF=5k,则FP=4k,OP=3k,在Rt△APF中,根据AF2=PF2+P A2,构建方程求出k即可解决问题.【解答】解:(1)如图1中,作CH⊥OA于H.∵C(3,4),CH⊥OA,∴OH=3,CH=4,∴OC===5,∵四边形ABCD是菱形,∴OA=AB=OC=BC=5,BC∥OA,∴B(8,4),∴sin∠AOC==.故答案为(8,4),.(2)如图1中,延长BC交OD于F.∵S1=S2,∴S△OCF=S△BDF,∴×3×4=×(4﹣m)×8,解得m=.(3)①如图2中,延长BC交OD于P,作MQ⊥OD于Q.当⊙M与BC相切时,PQ=DM.则有4﹣=,解得m=.如图3中,当⊙M与AB相切时,AD⊥AB,设AD交OC于Q.∵OC∥AB,∴OC⊥AD,∴∠AQD=90°,∴∠DOQ+∠AOQ=9°,∠AOQ+∠OAQ=90°,∴∠DOQ=∠OAQ,∴tam∠OAD=tan∠DOC=,∴=,∴=,∴m=.综上所述,满足条件的m的值为或.②如图4中,作BG⊥BC交OC的延长线于G,连接DF,AF,作FP⊥OA于P.∵BC∥OA,∴tan∠GCB=tan∠COA==,∴BG=,∵OD∥BG,∴∠G=∠DOE,∵DO=ED,∴∠DOE=∠DEO=∠BEG,∴∠G=∠BEG,∴BE=BG=,∵DE+BE=BD,∴(m+)2=82+(4﹣m)2,解得m=,设OF=5k,则FP=4k,OP=3k,∵∠ODF=∠DAF,∴tan∠DAF==,∵AD==,∴AF=,在Rt△APF中,∵AF2=PF2+P A2,∴×(m2+25)=(4k)2+(5﹣3k)2,把m=代入,整理得:45k2﹣54k+13=0,解得k=(舍弃)或,∴OF=,∵OE=2•OD•=2××=,∴EF=OF﹣OE=,∴==.。
浙江省台州市2019-2020学年中考第三次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A .8B .10C .13D .142.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个3.花园甜瓜是乐陵的特色时令水果.甜瓜一上市,水果店的小李就用3000元购进了一批甜瓜,前两天以高于进价40%的价格共卖出150kg ,第三天她发现市场上甜瓜数量陡增,而自己的甜瓜卖相已不大好,于是果断地将剩余甜瓜以低于进价20%的价格全部售出,前后一共获利750元,则小李所进甜瓜的质量为( )kg .A .180B .200C .240D .300 4.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .85.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .106.tan30°的值为( )7.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .8.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )A .B .C .D .9.在△ABC 中,∠C =90°,AC =9,sinB =35,则AB =( ) A .15 B .12C .9D .6 10.已知a,b 为两个连续的整数,且a<11<b,则a+b 的值为( )A .7B .8C .9D .1011.下列算式中,结果等于x 6的是( )A .x 2•x 2•x 2B .x 2+x 2+x 2C .x 2•x 3D .x 4+x 212.若(x ﹣1)0=1成立,则x 的取值范围是( )A .x =﹣1B .x =1C .x≠0D .x≠1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C',再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB 3=,BC 4=,则折痕EF 的长为______.14.分解因式x 2﹣x=_______________________15.如果某数的一个平方根是﹣5,那么这个数是_____.16.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______. 17.如图,在平面直角坐标系xOy 中,△ABC 的顶点A 、C 在坐标轴上,点B 的坐标是(2,2).将△ABC 沿x 轴向左平移得到△A 1B 1C 1,点1B 落在函数y=-6x .如果此时四边形11AAC C 的面积等于552,那么点1C 的坐标是________.18.比较大小:45_____54.(填“<“,“=“,“>“)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简分式: (a -3+4+3a a )÷-2+3a a ∙+3+2a a ,再从-3、5-3、2、-2 中选一个你喜欢的数作为a 的值代入求值.20.(6分)如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC的平行线,两直线相交于点E .求证:四边形OCED 是矩形;若CE=1,DE=2,ABCD 的面积是 .21.(6分)如图,AC 是O e 的直径,点B 是O e 内一点,且BA BC =,连结BO 并延长线交O e 于点D ,过点C 作O e 的切线CE ,且BC 平分DBE ∠.()1求证:BE CE =;()2若O e 的直径长8,4sin BCE 5∠=,求BE 的长.22.(8分)如图,矩形ABCD 中,CE ⊥BD 于E ,CF 平分∠DCE 与DB 交于点F .求证:BF =BC ;若AB =4cm ,AD =3cm ,求CF 的长.23.(8分)某景区内从甲地到乙地的路程是12km ,小华步行从甲地到乙地游玩,速度为5/km h ,走了4km 后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是24/km h ,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为()z y km ,第n 趟电瓶车距乙(1)观察图,其中a =,b = ;(2)求第2趟电瓶车距乙地的路程2y 与x 的函数关系式;(3)当1.5x b ≤≤时,在图中画出n y 与x 的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.24.(10分)如图,已知点E,F 分别是□ABCD 的边BC,AD 上的中点,且∠BAC=90°.(1)求证:四边形AECF 是菱形;(2)若∠B=30°,BC=10,求菱形AECF 面积.25.(10分)某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:方案一:买一件甲种商品就赠送一件乙种商品;方案二:按购买金额打八折付款.某公司为奖励员工,购买了甲种商品20件,乙种商品x()件. (1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m 件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w 与m 之间的关系式;利用w 与m 之间的关系式说明怎样购买最实惠.26.(12分)阅读材料:已知点00(,)P x y 和直线y kx b =+,则点P 到直线y kx b =+的距离d 可用公式0021kx y bd k -+=+.例如:求点(2,1)P -到直线1y x =+的距离.解:因为直线1y x =+可变形为10x y -+=,其中1,1k b ==,所以点(2,1)P -到直线1y x =+的距离为:d====根据以上材料,求:点(1,1)P到直线32y x=-的距离,并说明点P与直线的位置关系;已知直线1y x=-+与3y x=-+平行,求这两条直线的距离.27.(12分)计算:(﹣1)2018﹣.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型. 2.B【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=;∴上述各式中计算结果为负数的有2个.故选B.3.B【解析】【分析】根据题意去设所进乌梅的数量为xkg ,根据前后一共获利750元,列出方程,求出x 值即可.【详解】解:设小李所进甜瓜的数量为()x kg ,根据题意得:3000300040150(150)20x x x⨯⨯--⨯⨯%%=750, 解得:200x =,经检验200x =是原方程的解.答:小李所进甜瓜的数量为200kg .故选:B .【点睛】本题考查的是分式方程的应用,解题关键在于对等量关系的理解,进而列出方程即可.4.D【解析】【分析】根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x 的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D .【点睛】5.B【解析】【分析】根据三角形中位线定理求出DE ,得到DF ∥BM ,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT △ABC 中,∵∠ABC=90°,AB=2,BC=1, ∴AC=22AB BC +=2286+=10,∵DE 是△ABC 的中位线,∴DF ∥BM ,DE=12BC=3, ∴∠EFC=∠FCM ,∵∠FCE=∠FCM ,∴∠EFC=∠ECF ,∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .6.D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形8.C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.9.A【解析】【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵sinACBAB =,∴935 AB=,解得AB=1.故选A10.A【解析】∵9<11<16,91116<<,即3114<<,∵a,b为两个连续的整数,且11a b<<,∴a=3,b=4,∴a+b=7,【解析】试题解析:A 、x 2•x 2•x 2=x 6,故选项A 符合题意;B 、x 2+x 2+x 2=3x 2,故选项B 不符合题意;C 、x 2•x 3=x 5,故选项C 不符合题意;D 、x 4+x 2,无法计算,故选项D 不符合题意.故选A .12.D【解析】试题解析:由题意可知:x-1≠0,x≠1故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2512【解析】【分析】首先由折叠的性质与矩形的性质,证得BND V 是等腰三角形,则在Rt ABN V 中,利用勾股定理,借助于方程即可求得AN 的长,又由ANB V ≌C'ND V ,易得:FDM ABN ∠∠=,由三角函数的性质即可求得MF 的长,又由中位线的性质求得EM 的长,则问题得解【详解】如图,设BC'与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:NBD CBD ∠∠=,1AM DM AD 2==,FMD EMD 90∠∠==o , Q 四边形ABCD 是矩形,AD //BC ∴,AD BC 4==,BAD 90∠=o ,ADB CBD ∠∠∴=,NBD ADB ∠∠∴=,BN DN ∴=,设AN x =,则BN DN 4x ==-,2223x (4x)∴+=-,7x 8∴=, 即7AN 8=, C'D CD AB 3===Q ,BAD C'90∠∠==o ,ANB C'ND ∠∠=,ANB ∴V ≌()C'ND AAS V, FDM ABN ∠∠∴=,tan FDM tan ABN ∠∠∴=,AN MF AB MD∴=, 7MF 832∴=, 7MF 12∴=, 由折叠的性质可得:EF AD ⊥,EF//AB ∴,AM DM =Q ,13ME AB 22∴==, 3725EF ME MF 21212∴=+=+=, 故答案为2512. 【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用.14.x(x-1)【解析】x 2﹣x= x(x-1).故答案是:x(x-1).15.25【解析】【分析】利用平方根定义即可求出这个数.设这个数是x (x≥0),所以x =(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.16.1y x =+【解析】试题分析:解:设y=x+b ,∴3=2+b ,解得:b=1.∴函数解析式为:y=x+1.故答案为y=x+1.考点:一次函数点评:本题要注意利用一次函数的特点,求出未知数的值从而求得其解析式,求直线平移后的解析式时要注意平移时k 的值不变.17. (-5,112 ) 【解析】 分析:依据点B 的坐标是(2,2),BB 2∥AA 2,可得点B 2的纵坐标为2,再根据点B 2落在函数y=﹣6x 的图象上,即可得到BB 2=AA 2=5=CC 2,依据四边形AA 2C 2C 的面积等于552,可得OC=112,进而得到点C 2的坐标是(﹣5,112). 详解:如图,∵点B 的坐标是(2,2),BB 2∥AA 2,∴点B 2的纵坐标为2.又∵点B 2落在函数y=﹣6x 的图象上,∴当y=2时,x=﹣3,∴BB 2=AA 2=5=CC 2.又∵四边形AA 2C 2C 的面积等于552,∴AA 2×OC=552,∴OC=112,∴点C 2的坐标是(﹣5,112). 故答案为(﹣5,112).点睛:本题主要考查了反比例函数的综合题的知识,解答本题的关键是熟练掌握反比例函数的性质以及平移的性质.在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度.18.<【解析】【分析】先比较它们的平方,进而可比较.【详解】(2=80,(2=100,∵80<100,∴故答案为:<.【点睛】本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.3a+;5【解析】【详解】原式=((3)3a aa++-3+4+3aa)32aa+⋅-∙+3+2aa=(3)343a a aa+--+32aa+⋅-∙+3+2aa=243aa-+32aa+⋅-∙+3+2aa=3a+a=2,原式=520.(1)证明见解析;(2)1.【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD 是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD 的面积为:12AC•BD=12×1×2=1, 故答案为1.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.21.(1)证明见解析;(2)25BE 6=. 【解析】【分析】 ()1先利用等腰三角形的性质得到BD AC ⊥,利用切线的性质得CE AC ⊥,则CE ∥BD ,然后证明13∠=∠得到BE=CE ;()2作EF BC ⊥于F ,如图,在Rt △OBC 中利用正弦定义得到BC=5,所以1522BF BC ==,然后在Rt △BEF 中通过解直角三角形可求出BE 的长.【详解】()1证明:BA BC =Q ,AO CO =,BD AC ∴⊥,CE Q 是O e 的切线,CE AC ∴⊥,CE //BD ∴,12∠∠∴=.BC Q 平分DBE ∠,23∠∠∴=,13∠∠∴=,BE CE ∴=;()2解:作EF BC ⊥于F ,如图,O Q e 的直径长8,CO 4∴=.4OC sin 3sin 25BC ∠∠∴===, BC 5∴=,BE CE Q =,15BF BC 22∴==, 在Rt BEF V 中,EF 4sin 3sin 1BE 5∠∠=== 设EF 4x =,则BE 5x =,BF 3x ∴=,即53x 2=,解得5x 6=, 25BE 5x 6∴==. 故答案为(1)证明见解析;(2)256BE = . 【点睛】 本题考查切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了解直角三角形.22.(1)见解析,(2)CF =65cm. 【解析】【分析】(1)要求证:BF=BC 只要证明∠CFB=∠FCB 就可以,从而转化为证明∠BCE=∠BDC 就可以;(2)已知AB=4cm ,AD=3cm ,就是已知BC=BF=3cm ,CD=4cm ,在直角△BCD 中,根据三角形的面积等于12BD•CE=12BC•DC ,就可以求出CE 的长.要求CF 的长,可以在直角△CEF 中用勾股定理求得.其中EF=BF-BE ,BE 在直角△BCE 中根据勾股定理就可以求出,由此解决问题.【详解】证明:(1)∵四边形ABCD 是矩形,∴∠BCD =90°,∴∠CDB+∠DBC =90°.∵CE ⊥BD ,∴∠DBC+∠ECB =90°.∴∠ECB =∠CDB .∵∠CFB =∠CDB+∠DCF ,∠BCF =∠ECB+∠ECF ,∠DCF =∠ECF ,∴∠CFB =∠BCF∴BF =BC(2)∵四边形ABCD 是矩形,∴DC =AB =4(cm ),BC =AD =3(cm ).在Rt △BCD 中,由勾股定理得BD 2222435AB AD ++=.又∵BD•CE =BC•DC ,∴CE =·125BC DC BD =. ∴BE =22221293()55BC CE -=-=. ∴EF =BF ﹣BE =3﹣9655=. ∴CF =222212665()()55CE EF +=+=cm . 【点睛】 本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.23.(1)0.8;2.1;(2)2=y 2424(0.51)x x -+≤≤;(2)图像见解析,2【解析】【分析】(1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a 的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b 的值;(2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;(2)结合1y 的图象即可画出1.5x b ≤≤的图象,观察图象即可得出答案. 【详解】解:(1)450.8()a h =÷=,1.585 3.1()b h =+÷=故答案为:0.8;2.1.(2)根据题意得:电瓶车的速度为120.524/km h ÷=∴21224(0.5)2424(0.51)y x x x =--=-+≤≤.(2)画出函数图象,如图所示.观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.故答案为:2.【点睛】本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.24.(1)见解析(2)【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=BC.同理,AF=CF=AD.∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.(2)解:在Rt△ABC中,∠BAC=90°,∠B=30°,BC=10,∴AC=5,AB=.连接EF交于点O,∴AC⊥EF于点O,点O是AC中点.∴OE=.∴EF=.∴菱形AECF的面积是AC·EF=.考点:1.菱形的性质和面积;2.平行四边形的性质;3.解直角三角形.25.(1)y1=80x+4400;y2=64x+4800;(2)当m=20时,w取得最小值,即按照方案一购买20件甲种商品、按照方案二购买20件乙种商品时,总费用最低.【解析】(1)根据方案即可列出函数关系式;(2)根据题意建立w 与m 之间的关系式,再根据一次函数的增减性即可得出答案. 解:(1)得:; 得:; (2),因为w 是m 的一次函数,k=-4<0,所以w 随的增加而减小,m 当m=20时,w 取得最小值.即按照方案一购买20件甲种商品;按照方案二购买20件乙种商品.26.(1)点P 在直线32y x =-上,说明见解析;(22.【解析】【详解】解:(1) 求:(1)直线32y x =-可变为320x y --=,22312013d --==+说明点P 在直线32y x =-上;(2)在直线1y x =-+上取一点(0,1),直线3y x =-+可变为30x y +-= 则22013211d +-==+ 2.27.﹣3【解析】分析:直接利用二次根式的性质以及绝对值的性质和特殊角的三角函数值分别化简求出答案. 详解:原式=1﹣31+3×33=﹣33=﹣3点睛:此题主要考查了实数运算,正确化简各数是解题关键.。
2019学年浙江省九年级上学期第三次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 若3y﹣6x=0,则x:y等于()A.﹣2:1 B.2:1 C.﹣1:2 D.1:22. 下列函数的图象,一定经过原点的是()A. B.y=5x2﹣3x C.y=x2﹣1 D.y=﹣3x+73. 下列四个几何体中,三视图都是中心对称图形的几何体是()A.圆锥 B.三棱柱 C.圆柱 D.五棱柱4. 矩形面积为4,它的长y与宽x之间的函数关系用图象大致可表示为()A. B. C. D.5. 已知在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A. B. C. D.6. 已知二次函数y=a(x﹣1)2+b有最小值﹣1,则a,b的大小关系为()A.a<b B.a=b C.a>b D.大小不能确定7. 如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE 方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A.30≤x≤60 B.30≤x≤90 C.30≤x≤120 D.60≤x≤1208. 如图,AC、BC是两个半圆的直径,∠ACP=30°,若AB=20cm,则PQ的值为()A.10cm B.10cm C.12cm D.16cm9. 动物学家通过大量的调查估计出,某种动物活到20岁的概率是0.8,活到25岁的概率是0.5,活到30岁的概率是0.3,现年25岁到这种动物活到30岁的概率是()A.0.3 B.0.4 C.0.5 D.0.610. 观察下列每个图形及相应推出的结论,其中正确的是()A.∵∴∠AOB=80°B.∵∠AOB=∠A′O′B′∴C.∵∴AB=CDD.∵MN垂直平分AD∴11. 已知函数y=|(x﹣1)2﹣1|,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.312. 已知抛物线C1:y=﹣x2+2mx+1(m为常数,且m≠0)的顶点为A,与y轴交于点C;抛物线C2与抛物线C1关于y轴对称,其顶点为B.若点P是抛物线C1上的点,使得以A、B、C、P为顶点的四边形为菱形,则m为()A. B. C. D.二、填空题13. △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是.14. 若点C是线段AB的黄金分割点,AB=20cm,则AC的长约是.(精确到0.1cm)15. 如图,半圆O是一个量角器,△AOB为一纸片,AB交半圆于点D,OB交半圆于点C,若点C、D、A在量角器上对应读数分别为45°,70°,160°,则∠AOB的度数为;∠A的度数为.16. 已知,K是图中所示正方体中棱CD的中点,连接KE、AE,则cos∠KEA的值为.17. 直角三角形两边长分别为3、4,则这个直角三角形所在内切圆的半径为.18. 如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC:CF=3:2,则sinB= .三、计算题19. 计算:sin245°﹣2tan30°tan60°+cos245°.四、解答题20. 如图,某河堤的横断面是梯形ABCD,BC∥AD,BE⊥AD于点E,AB=50米,BC=30米,∠A=60°,∠D=30°.求AD的长度.21. 已知AB为⊙O的直径,C为⊙O上一点,AD与过C点的切线垂直,垂足为D,AD交⊙O于点E,∠CAB=30°(1)如图①,求∠DAC的大小;(2)如图②,若⊙O的半径为4,求DE的长.22. 第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.23. 如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?24. 如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)图中是否存在与△ODM相似的三角形,若存在,请找出并给予证明;(2)设DM=x,OA=R,求R关于x的函数关系式;(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.25. 已知线段AB,只用圆规找AB的中点P.作法:(1)以A为圆心,AB长为半径作圆;(2)以B为圆心,AB长为半径在圆上连续截取,记截点为B1,B2,B3,B4,B5;(3)以B3为圆心,BB3长为半径画弧;以B为圆心,AB长为半径画弧,与前弧交于点C;(4)以C为圆心,CB长为半径画弧交线段AB于点P.结论:点P就是所求作的线段AB的中点.(1)配合图形,理解作法,根据作图过程给予证明:点P是线段AB的中点.(2)已知⊙O,请只用圆规把圆周四等分.(保留作图痕迹,不要求写作法)五、填空题26. 已知矩形ABCD中,AB=3,BC=4,E,F两点分别在边AB,BC上运动,△BEF沿EF折叠后为△GEF,(1)若BF=a,则线段AG的最小值为.(用含a的代数式表示)(2)问:在E、F运动过程中,取a= 时,AG有最小值,值为.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
2019 年中考数学三模试卷一、精心选一选,相信自己的判断!(本大题共10 小题,每题 3 分,共30 分,每题给出的四个选项中,只有一个是正确的,不涂、选涂或涂出的代号超出一个的,一律得0 分)1.( 3 分)计算(﹣1)2的结果是()A.﹣2 B .2 C.﹣ 1 D. 12.( 3 分)如图,直线AB,CD 交于点O, EO⊥ AB 于点O,∠ EOD= 40°,则∠BOC 的度数为()A .120°B .130°C. 140°D. 150°3.( 3 分)如图,是一个几何体的表面睁开图,则该几何体是()A .三棱柱B .四棱锥C.长方体D.正方体4.( 3 分)以下计算正确的选项是()2 3 6 2 3 6 3 4 7 3 3A .( a )= aB .a ?a = a C. a +a =a D.( ab)= ab 5.( 3 分)一个多边形的内角和是720°,这个多边形的边数是()A .4B .5 C. 6 D. 76.( 3 分)某车间20 名工人日加工部件数如表所示:日加工部件数 4 5 6 7 8人数 2 6 5 4 3 这些工人日加工部件数的众数、中位数、均匀数分别是()A .5、6、5 B.5、5、6 C.6、5、6 D.5、6、 67.( 3 分)如图,将矩形ABCD 沿对角线BD 折叠,点 A 落在点 E 处,DE 交 BC 于点F.若∠ CFD = 40°,则∠ABD 的度数为()A .50°B .60°C . 70°D . 80°8.( 3 分)如图,平行四边形 ABCD 的周长为 16,∠ B = 60°,设 AB 的长为 x ,平行四边形 ABCD 的面积为 y ,则表示y 与 x 的函数关系的图象大概是( )A .B .C .D .9.( 3 分)反比率函数的图象以下图, 则二次函数y = 2kx 2﹣ 4x+k 2的图象大概是 ()A .B .C.D.10.( 3 分)如图,已知正方形ABCD ,点 E, F 分别在 CD , BC 上,且∠ EAF =∠ DAE+∠BAF ,则的值为()A .B .C.D.二、仔细填一填,试一试自己的身手!(本大题共 6 小题,每题 3 分,共 18 分,请将结果直接填写在答题卡相应地点上)11.(3 分)函数的自变量 x 的取值范围是.12.( 32.分)分解因式: x y﹣ 4y=13.( 3 分)如图,在△ ABC 中, D, E 分别是 AB,AC 的中点,则=.14.( 3 分)如图,在△ ABC 中,∠ B=45°, tanC=,AB=,则AC=.15.(3 分)《九章算术》是我国古代数学成就的优秀代表作,书中记录:“今有圆材埋壁中,不知大小.以锯锯之,深 1 寸,锯道长 1 尺,问经几何?“其意思为:“如图,今有一圆形木材埋在墙壁中,不知其大小用锯子去锯这个木材,锯口深道长 1 尺(即弦 AB= 1 尺),问这块圆形木材的直径是多少?”1 寸(即 DE =1该问题的答案是寸),锯(注:1 尺=10 寸)16.( 3 分)如图,已知Rt △ AOB,∠ OBA= 90°,双曲线两点,且OC= 2AC, S四边形OBDC= 11,则 k=.与 OA, BA 分别交于C,D三、专心做一做,显显自己的能力!(本大题共8 小题,满分72 分,解答写在答题卡上)17.( 6 分)计算:.18.( 8 分)如图, AB∥ CD ,AB= CD, BF⊥ AC 于点 F, DE ⊥ AC 于点 E 求证:四边形DEBF 是平行四边形.19.( 8 分)四张大小、形状都相同的卡片上分别写有数字1, 2, 3, 4,把它们放入到不透明的盒子中摇匀.(1)从中随机抽出 1 张卡片,求抽出的卡片上的数字恰巧是偶数的概率;(2)从中随机抽出 2 张卡片,求抽出的 2 张卡片上的数字恰巧是相邻两整数的概率.20.( 8 分)如图,在△ ABC 中,∠ ACB= 90°.小聪同学利用直尺和圆规达成了以下作图①分别以点A, B 为圆心,以大于AB 长为半径画弧,两弧交于点M ,N,过点 M, N作直线与AB 交于点 D ;② 连结 CD ,以点 D 为圆心,以必定长为半径画弧,交MN 于点 E ,交 CD 于点 F ,以点C 为圆心,以相同定长为半径画弧,与CD 交于点 G ,以点 G 为圆心,以EF 长为半径画弧与前弧交于点 H .作射线 CH 与 AB 交于点 K ,请依据以上操作,解答以下问题( 1)由尺规作图可知:直线MN 是线段 AB 的 线,∠ DCK = .( 2)若 CD = 5, AK = 2,求 CK 的长.21.( 10 分)已知对于 x 的方程 x 2﹣ 2kx+k 2﹣ k ﹣ 1= 0 有两个不相等的实数根 x 1, x 2.( 1)求 k 的取值范围;( 2)若 x 1﹣ 3x 2= 2,求 k 的值.22.(10 分)某商铺计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600 元购置乙种商品要比购置甲种商品多买10 件( 1)求甲、乙两种商品的进价各是多少元?( 2)该商铺计划购进甲、乙两种商品共80 件,且乙种商品的数目不低于甲种商品数目的 3 倍.甲种商品的售价定为每件80 元,乙种商品的售价定为每件 70 元,若甲、乙两种商品都能卖完,求该商铺能获取的最大收益.23.( 10 分)如图,在 Rt △ABC 中,∠ ACB = 90°, AD 为∠ CAB 的均分线,点 O 在 AB 上, ⊙ O 经过点 A , D 两点,与 AC , AB 分别交于点 E , F( 1)求证: BC 与 ⊙O 相切;( 2)若 AC = 8, AF = 10,求 AD 和 BC 的长.24.( 12 分)如图 1,直线 1: y =﹣ x+1 与 x 轴、 y 轴分别交于点 B 、点 E ,抛物线L : y =2ax +bx+c 经过点 B、点 A(﹣ 3, 0)和点 C( 0,﹣ 3),并与直线l 交于另一点D.(1)求抛物线 L 的分析式;(2)点 P 为 x 轴上一动点①如图 2,过点 P 作 x 轴的垂线,与直线 1 交于点 M ,与抛物线 L 交于点 N.当点 P 在点 A、点 B 之间运动时,求四边形 AMBN 面积的最大值;②连结 AD, AC, CP,当∠ PCA=∠ ADB 时,求点P 的坐标.2019 年湖北省孝感市安陆市、应城市、云梦县、孝昌县四县市中考数学三模试卷参照答案与试题分析一、精心选一选,相信自己的判断!(本大题共 10 小题,每题 3 分,共 30 分,每题给出的四个选项中,只有一个是正确的,不涂、选涂或涂出的代号超出一个的,一律得0 分)1.( 3 分)计算(﹣ 1)2的结果是()A.﹣2 B .2 C.﹣ 1 D. 1【剖析】直接利用有理数乘方的性质化简求出即可.2【解答】解:(﹣ 1)= 1.【评论】本题主要考察了有理数的乘方运算,正确掌握运算法例是解题重点.2.( 3 分)如图,直线AB,CD 交于点 O, EO⊥ AB 于点 O,∠ EOD= 40°,则∠ BOC 的度数为()A .120°B .130°C. 140°D. 150°【剖析】直接利用垂直的定义联合互余以及互补的定义剖析得出答案.【解答】解:∵直线AB, CD 订交于点O, EO⊥ AB 于点 O,∴∠ EOB= 90°,∵∠ EOD= 40°,∴∠ BOD= 50°,则∠ BOC 的度数为: 180°﹣ 50°= 130°.应选: B.【评论】本题主要考察了垂直的定义、互余以及互补的定义,正确掌握有关定义是解题重点.3.( 3 分)如图,是一个几何体的表面睁开图,则该几何体是()A .三棱柱B .四棱锥C.长方体D.正方体【剖析】由睁开图得这个几何体为棱柱,底面为三边形,则为三棱柱.【解答】解:由图得,这个几何体为三棱柱.应选: A.【评论】考察了几何体的睁开图,有两个底面的为柱体,有一个底面的为锥体.4.( 3 分)以下计算正确的选项是()2 3 6 2 3 6 3 4=a 7 3= ab3A .( a )= aB .a ?a = a C. a +a D.( ab)【剖析】依据幂的乘方,同类项的归并、同底数幂的乘法和积的乘方解答即可.【解答】解: A、( a 2)3=a6,正确;2 3 5B、 a ?a = a ,错误;3 4 不可以归并,错误;C、 a 与 a3 3 3D 、( ab)=a b ,错误;应选: A.【评论】本题考察幂的乘方和积的乘方,重点是依据法例进行解答.5.( 3 分)一个多边形的内角和是720°,这个多边形的边数是()A .4B.5C.6D.7【剖析】依据内角和定理180°?(n﹣ 2)即可求得.【解答】解:∵多边形的内角和公式为(n﹣ 2)?180°,∴( n﹣ 2)× 180°= 720°,解得 n= 6,∴这个多边形的边数是6.应选: C.【评论】本题主要考察了多边形的内角和定理即180°?( n﹣ 2),难度适中.6.( 3 分)某车间20 名工人日加工部件数如表所示:日加工部件数45678 人数2654 3这些工人日加工部件数的众数、中位数、均匀数分别是()A .5、6、5B.5、5、6C.6、5、6D.5、6、 6【剖析】依据众数、均匀数和中位数的定义分别进行解答即可.【解答】解: 5 出现了 6 次,出现的次数最多,则众数是5;把这些数从小到大摆列,中位数第10、 11 个数的均匀数,则中位数是= 6;均匀数是:=6;应选: D.【评论】本题考察了众数、均匀数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据依据从小到大(或从大到小)的次序摆列,假如数据的个数是奇数,则处于中间地点的数就是这组数据的中位数;假如这组数据的个数是偶数,则中间两个数据的均匀数就是这组数据的中位数.均匀数是指在一组数据中全部数据之和再除以数据的个数.7.( 3 分)如图,将矩形 ABCD 沿对角线BD 折叠,点 A 落在点 E 处, DE 交 BC 于点F.若∠ CFD = 40°,则∠ ABD 的度数为()A .50°B .60°C. 70°D. 80°【剖析】依据矩形的性质和平行线的性质获取∠FDA = 40°,依据翻折变换的性质获取∠ ADB=∠ EDB =20°,依据直角三角形的性质可求出∠ABD 的度数,即可求出答案.【解答】解:∵四边形ABCD 是矩形,∴AD∥ BC,∠ A= 90°,∴∠ FDA =∠ CFD = 40°,由翻折变换的性质获取∠ ADB =∠ EDB= 20°,∴∠ ABD= 70°.应选: C.【评论】本题考察平行线的性质、图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,依据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.8.( 3形分)如图,平行四边形ABCD 的周长为16,∠ B= 60°,设ABCD 的面积为 y,则表示y 与 x 的函数关系的图象大概是(AB 的长为)x,平行四边A.B.C.D.【剖析】过点A 作AE ⊥BC 于点E,建立直角△ABE,经过解该直角三角形求得度,而后利用平行四边形的面积公式列出函数关系式,联合函数关系式找到对应的图象【解答】解:如图,过点 A 作 AE⊥ BC 于点 E,AE 的长∵∠ B= 60°,设边AB 的长为 x,∴AE= AB?sin60°=x.∵平行四边形ABCD 的周长为12,∴BC=( 12﹣ 2x)= 6﹣ x,∴ y= BC?AE=( 6﹣ x)×x=﹣2x( 0≤ x≤ 6).x +则该函数图象是一张口向下的抛物线的一部分,察看选项, C 选项切合题意.应选: C.【评论】 考察了动点问题的函数图象.掌握平行四边形的周长公式和解直角三角形求得AD 、 BE 的长度是解题的重点.9.( 3 分)反比率函数的图象以下图, 则二次函数y = 2kx 2﹣ 4x+k 2的图象大概是 ()A .B .C .D .【剖析】 本题可先由反比率函数的图象获取字母系数k >﹣ 1,再与二次函数的图象的开口方向和对称轴的地点对比较看能否一致,最后获取答案.【解答】 解:∵函数y =的图象经过二、四象限,∴ k < 0,由图知当 x =﹣ 1 时, y =﹣ k < 1,∴ k >﹣ 1,∴抛物线 y = 2kx 2﹣4x+k 2张口向下,对称轴为 x =﹣= ,﹣ 1< < 0,∴对称轴在﹣ 1 与 0 之间,∵当 x =0 时, y =k 2> 1.应选: D .【评论】 本题主要考察了二次函数与反比率函数的图象与系数的综合应用,正确判断抛物线张口方向和对称轴地点是解题重点.属于基础题.10.( 3 分)如图,已知正方形 ABCD ,点 E , F 分别在 CD , BC 上,且∠ EAF =∠ DAE+∠ BAF ,则的值为()A .B .C .D .【剖析】 将△ ADE 旋转至△ ABH ,依据旋转的性质可得∠DAE =∠ BAH , AE = AH , DE= BH ,再利用” SAS “证明△ AEF ≌△ AHF ,从而得 EF = FH ,再依据勾股定理即可求22 222CE +CF = EF ,即有( CE ﹣ CF ) +2CE ?CF =( BF ﹣ DE ) +4BF?DE ,而 BF ﹣ DE = CE﹣ CF ,即可求解【解答】 解:如图,连结 EF ,将△ ADE 旋转至△ ABH∴∠ DAE =∠ BAH , AE = AH , DE = BH∴∠ EAF =∠ DAE +∠ BAF =∠ BAH+∠ BAF =∠ FAH∵∠ D =∠ ABC =∠ ABH = 90°∴∠ ABC+∠ ABH = 180°∴ C , B ,H 三点共线 ∵ AF = AF∴△ AEF ≌△ AHF ( SAS )∴ EF = FH = FB+BH = FB+DE∵ DE+CE = CF+BF∴ BF ﹣ DE = CE ﹣ CF∵ CE 2+CF 2= EF 2∴ CE 2+CF 2=( BF+DE )222∴( CE ﹣ CF ) +2CE?CF =( BF ﹣ DE ) +4 BF?DE∵ BF ﹣ DE = CE ﹣ CF∴ 2CE?CF = 4BF?DE∴=应选: A .【评论】 本题主要考察对正方形的性质,全等三角形的性质和判断,相像三角形的性质和判断,比率的性质,直角三角形的性质等知识点的理解和掌握,重点要经过作协助线,找出全等三角形,获取边与边的关系.再利用勾股定理进行解题.二、仔细填一填,试一试自己的身手 !(本大题共 6 小题,每题3 分,共接填写在答题卡相应地点上)11.(3 分)函数 的自变量 x 的取值范围是 x ≥ 0 且 x ≠ 1 .【剖析】 依据被开方数大于等于0,分母不等于 0 列式计算即可得解.【解答】 解:由题意得, x ≥ 0 且 x ﹣1≠ 0,18 分,请将结果直解得 x ≥0 且 x ≠ 1.故答案为: x ≥ 0 且 x ≠ 1.【评论】 本题考察了函数自变量的范围,一般从三个方面考虑:( 1)当函数表达式是整式时,自变量可取全体实数;( 2)当函数表达式是分式时,考虑分式的分母不可以为0;( 3)当函数表达式是二次根式时,被开方数非负.212.( 3 分)分解因式: x y ﹣ 4y = y ( x+2)(x ﹣ 2) .【剖析】 先提取公因式 y ,而后再利用平方差公式进行二次分解.【解答】 解: x 2y ﹣4y ,= y ( x 2﹣4),= y ( x+2)( x ﹣ 2).故答案为: y( x+2)( x﹣ 2).【评论】本题考察了提公因式法,公式法分解因式,利用平方差公式进行二次分解因式是解本题的难点,也是重点.13.( 3 分)如图,在△ ABC 中, D ,E 分别是 AB, AC 的中点,则=.【剖析】易证△ ADE ∽△ ABC,则=,因D,E分别是AB,AC的中点,则可得 DE : BC= 1: 2,即可求解.【解答】解:∵ D, E 分别是 AB, AC 的中点∴ DE∥ BC,DE =BC易证△ ADE ∽△ ABC∴==∴=故答案为【评论】本题主要考察相像三角形的性质,熟习相像三角形的性质:相像三角形的面积比是相像比的平方.14.( 3 分)如图,在△ ABC 中,∠ B=45°, tanC=,AB=,则AC=.【剖析】先过点 A 作 AD ⊥ BC,垂足是点2 2 2= 2,再依据∠ B= 45°,D ,得出 AD +BD = AB得出 AD = BD = 1,而后依据 tanC = ,得出求出 AC .【解答】 解:过点 A 作 AD ⊥ BC ,垂足是点 D ,∵AB =,= , CD = 2,最后依据勾股定理即可∴ AD 2+BD 2= AB 2= 2,∵∠ B = 45°,∴∠ BAD =∠ B = 45°,∴ AD = BD ,∴ AD 2= BD 2=1,∴ AD = BD = 1,∵ tanC = ,∴= ,∴ CD =2,∴ AC =故答案为:.== .【评论】 本题考察认识直角三角形,用到的知识点是勾股定理、解直角三角形等,重点是作出协助线,结构直角三角形.15.(3 分)《九章算术》是我国古代数学成就的优秀代表作,书中记录:“今有圆材埋壁中,不知大小.以锯锯之,深1 寸,锯道长 1 尺,问经几何?“其意思为: “如图,今有一圆形木材埋在墙壁中,不知其大小用锯子去锯这个木材,锯口深1 寸(即 DE =1 寸),锯道长 1 尺(即弦 AB = 1 尺),问这块圆形木材的直径是多少?”该问题的答案是26 寸(注: 1 尺= 10 寸)【剖析】延伸 CD ,交⊙ O 于点 E,连结 OA,由题意知CE 过点 O,且 OC⊥ AB, AD =BD= AB =5(寸),设圆形木材半径为2 2 2 r,可知 OD = r ﹣ 1,OA= r,依据 OA = OD +AD列方程求解可得.【解答】解:延伸CD ,交⊙O 于点 E,连结 OA,由题意知CE 过点 O,且 OC⊥ AB,则 AD = BD= AB= 5(寸),设圆形木材半径为r ,则 OD =r﹣ 1, OA= r,2 2 2,∵ OA = OD +AD∴ r 2=( r ﹣1)2+52,解得 r =13,因此⊙O 的直径为26 寸,故答案为:26 寸.【评论】本题考察的是垂径定理的应用,掌握垂直弦的直径均分这条弦,而且均分弦所对的两条弧及勾股定理是解题的重点.16.( 3 分)如图,已知 Rt △ AOB,∠ OBA= 90°,双曲线与 OA, BA 分别交于 C,D 两点,且 OC= 2AC, S四边形OBDC= 11,则 k= 12 .【剖析】第一设出点 B 坐标,再依据 AB⊥ x 轴,表示出 D 点坐标,而后运用且OC= 2AC,可得出 C 点及 A 点坐标,坐标转变线段长,表示出四边形OBDC 的面积,解出k 值.【解答】解:设 B( x, 0)则 D( x,)点 A 的横坐标也为:x过点 C 作 CE⊥ x 轴交 x 轴于点 E则△ COE∽△ AOB∵OC= 2AC∴∴点 C 的横坐标为:代入反比率函数分析式:y=得 y=∴C 点的坐标为:(,)又∵∴ A 点的纵坐标为:s 四边形OBDC= s△AOB﹣ s△ADC∴即:解得: k= 12故本题答案为:12【评论】本题考察反比率函数背景以下图形面积转变问题,用点坐标转变线段长是解题重点.三、专心做一做,显显自己的能力!(本大题共8 小题,满分72 分,解答写在答题卡上)17.( 6 分)计算:.【剖析】直接利用二次根式的性质以及特别角的三角函数值和负指数幂的性质、绝对值的性质分别化简得出答案.【解答】解:原式= 3﹣4×+﹣ 3=3﹣2+﹣3=﹣.【评论】本题主要考察了实数运算,正确化简各数是解题重点.18.( 8 分)如图, AB∥ CD ,AB= CD, BF⊥ AC 于点 F, DE ⊥ AC 于点E 求证:四边形 DEBF 是平行四边形.【剖析】由 AAS 证明△ ABF ≌△ CDE 得出 BF= DE .由 BF ∥ DE,即可得出四边形 DEBF 是平行四边形.【解答】证明:∵ AB∥ CD,∴∠ A=∠ C.∵ BF⊥ AC, DE ⊥ AC,∴∠ BFA=∠ DEC =90°, BF∥ DE.在△ ABF 和△ CDE 中,,∴△ ABF ≌△ CDE (AAS),∴BF= DE .又∵ BF∥ DE,∴四边形 DEBF 是平行四边形.【评论】本题考察了平行四边形的判断、全等三角形的判断与性质、平行线的判断与性质;娴熟掌握平行四边形的判断,证明三角形全等是解题的重点.19.( 8 分)四张大小、形状都相同的卡片上分别写有数字1, 2, 3, 4,把它们放入到不透明的盒子中摇匀.(1)从中随机抽出 1 张卡片,求抽出的卡片上的数字恰巧是偶数的概率;(2)从中随机抽出 2 张卡片,求抽出的 2 张卡片上的数字恰巧是相邻两整数的概率.【剖析】( 1)依据 4 个数字 1, 2, 3, 4 中偶数有 2 和 4,即可得出抽出的卡片上的数字恰巧是偶数的概率;(2)先利用画树状图展现全部 12 种等可能的结果数,再找出切合题意的结果数,而后依据概率公式求解.【解答】解:( 1) 4 个数字 1, 2, 3, 4 中偶数有 2 和 4,∴ P(偶数)==.(2)画树状图为:共有 12 种等可能的结果,此中两数恰巧是相邻整数的结果数为6,∴ P(恰巧是相邻整数)==.【评论】本题考察的是用列表法或画树状图法求概率.列表法或画树状图法能够不重复不遗漏的列出全部可能的结果,合适于两步达成的事件.用到的知识点为:概率=所讨状况数与总状况数之比.20.( 8 分)如图,在△ ABC 中,∠ ACB= 90°.小聪同学利用直尺和圆规达成了以下作图M, N①分别以点 A, B 为圆心,以大于 AB 长为半径画弧,两弧交于点 M ,N,过点作直线与AB 交于点 D ;② 连结CD,以点 D 为圆心,以必定长为半径画弧,交MN 于点E,交CD 于点F,以点C 为圆心,以相同定长为半径画弧,与CD 交于点G,以点G 为圆心,以EF 长为半径画弧与前弧交于点H .作射线CH 与 AB 交于点 K,请依据以上操作,解答以下问题( 1)由尺规作图可知:直线MN 是线段 AB 的垂直均分线,∠ DCK =∠ CDM .( 2)若 CD = 5, AK = 2,求 CK 的长.【剖析】( 1)利用基本作图(作线段的垂直均分线和作一个角等于已知角)填空;( 2)先利用 CD 为斜边上的中线获取 AD=CD = BD = 5.则 DK = 3,再利用∠ DCK =∠CDM 获取 CK∥ MN ,因此∠ CKD =∠ MDB = 90°,而后利用勾股定理计算 CK 的长.【解答】解:( 1)由作法得直线 MN 是线段 AB 的垂直均分线,∠ DCK =∠ CDM ;故答案为垂直均分;∠ CDM ;(2)∵∠ ACB= 90°, AD=BD ,∴ AD= CD=BD = 5.∴DK =AD﹣AK =3,∵∠DCK =∠CDM ,∴ CK∥ MN,∴∠ CKD =∠ MDB = 90°,∴CK===4.【评论】本题考察了作图﹣复杂作图:复杂作图是在五种基本作图的基础长进行作图,一般是联合了几何图形的性质和基本作图方法.解决此类题目的重点是熟习基本几何图形的性质,联合几何图形的基天性质把复杂作图拆解成基本作图,逐渐操作.21.( 10 分)已知对于 x 的方程 x 2﹣ 2kx+k2﹣ k﹣ 1= 0 有两个不相等的实数根x1, x2.( 1)求 k 的取值范围;( 2)若 x1﹣ 3x2= 2,求 k 的值.【剖析】( 1)由题意得出△≥0 从而得出答案;( 2)依据解方程组求出x1、 x2的值,将其代入x1﹣ 3x2= 2 中可求出k 值.2 2【解答】解:( 1)△=(﹣ 2k)﹣ 4(k ﹣ k﹣ 1)= 4k+4> 0,(2)∵,∴,∵x1?x2= k 2﹣k﹣ 1,∴( 3k+1)( k﹣ 1)= k 2﹣k﹣ 1,∴k1= 3, k2=﹣1,∵ k>﹣ 1,∴k= 3.【评论】本题考察了根与系数的关系,解题的重点是娴熟掌握根与系数的关系.22.(10 分)某商铺计划购进甲、乙两种商品,乙种商品的进价是甲种商品进价的九折,用3600 元购置乙种商品要比购置甲种商品多买10 件(1)求甲、乙两种商品的进价各是多少元?(2)该商铺计划购进甲、乙两种商品共80 件,且乙种商品的数目不低于甲种商品数目的 3 倍.甲种商品的售价定为每件80 元,乙种商品的售价定为每件70 元,若甲、乙两种商品都能卖完,求该商铺能获取的最大收益.【剖析】( 1)依据题意能够列出相应的分式方程,从而能够求得甲、乙两种商品的进价各是多少元,注意分式方程要查验;( 2)依据题意能够获取收益和购置甲种商品件数的函数关系式,而后一次函数的性质即可解答本题.【解答】解:( 1)设甲种商品的进价为x 元 /件,则乙种商品的进价为0.9x 元 /件,,解得, x= 40,经查验, x= 40 是原分式方程的解,∴=36,答:甲、乙两种商品的进价各是40 元 /件、 36 元 /件;( 2)设甲种商品购进m 件,则乙种商品购进(80﹣ m)件,总收益为w 元,w=( 80﹣ 40) m+( 70﹣ 36)( 80﹣m)= 6m+2720,∵ 80﹣m≥ 3m,∴ m≤ 20,∴当 m= 20 时, w 获得最大值,此时w= 2840,答:该商铺获取的最大收益是2840 元.【评论】本题考察一次函数的应用、分式方程的应用、一元一次不等式的应用,解答本题的重点是明确题意,利用一次函数的性质和不等式的性质解答,注意分式方程要查验.23.( 10 分)如图,在Rt △ABC 中,∠ ACB= 90°, AD 为∠ CAB 的均分线,点 O 在 AB 上,⊙ O 经过点 A, D 两点,与 AC, AB 分别交于点 E, F(1)求证: BC 与⊙O 相切;(2)若 AC= 8, AF= 10,求 AD 和 BC 的长.【剖析】( 1)连结OD.依据等腰三角形的性质获取∠ODA =∠ OAD.依据角均分线的定义获取∠ CAD=∠ BAD .依据平行线的性质获取∠ODB =∠ ACB= 90°,于是获取结论;( 2)连结DF .依据圆周角定理获取∠ADF = 90°,依据相像三角形的性质获取AD =4,由勾股定理获取CD ==4.依据相像三角形的性质即可获取结论.【解答】( 1)证明:连结OD.∵ OA= OD,∴∠ ODA=∠ OAD .又∵ AD 均分∠ CAB ,∴∠ CAD=∠ BAD.∴∠ ODA =∠ CAD ,∴ OD ∥AC ,∴∠ ODB =∠ ACB = 90°,∴ OD ⊥BC ,∴ BC 与 ⊙O 相切;( 2)解:连结 DF . ∵ AF 为直径,∴∠ ADF = 90°, ∴∠ ACD =∠ ADF .又∵∠ CAD =∠ FAD ,∴△ CAD ∽△ DAF , ∴=,∴ AD 2= CA?AF = 80,∴ AD =4 ,在 Rt △ACD 中, CD == 4.∵ OD ∥AC ,∴△ BOD ∽△ BAC ,∴= ,∴ =,∴ BC =.【评论】 本题考察了切线的判断和性质,极品飞车的定义,平行线的判断和性质,相像三角形的判断和性质,勾股定理,正确的作出协助线是解题的重点.24.( 12 分)如图 1,直线 1: y =﹣ x+1 与 x 轴、 y 轴分别交于点B 、点 E ,抛物线L : y =2ax +bx+c 经过点 B 、点 A (﹣ 3, 0)和点 C ( 0,﹣ 3),并与直线 l 交于另一点 D .( 1)求抛物线 L 的分析式;( 2)点 P 为 x 轴上一动点① 如图 2,过点 P 作 x 轴的垂线,与直线 1 交于点 M ,与抛物线 L 交于点 N .当点 P 在点 A 、点 B 之间运动时,求四边形 AMBN 面积的最大值;② 连结 AD , AC , CP ,当∠ PCA =∠ ADB 时,求点 P 的坐标.2【剖析】( 1)先求出 B 的坐标,再将 A 、 B 、 C 坐标代入 y = ax +bx+c 列方程组,而后求 解,即可求出抛物线的分析式;( 2)① 依据 S 四边形 AMBN = AB?MN = 2,=﹣ 2( x+ ) +因此当 x =﹣ 时, S 四边形 AMBN 最大值为;② 先联立方程组.求出 D 点的坐标,两种状况议论:Ⅰ.当点 P 在点 A 的右侧,∠ PCA=∠ ADB 时,△ PAC ∽△ ABD ;Ⅱ.当点 P 在点 A 的左侧,∠ PCA =∠ ADB 时,记此时的点 P 为 P 2,则有∠ P 2CA =∠ P 1CA .【解答】 解:( 1)∵ y =﹣ x+1 ,∴ B ( 1, 0),2将 A (﹣ 3, 0)、 C (0,﹣ 3),B ( 1,0)代入 y = ax +bx+c ,,∴∴抛物线 L 的分析式: y =x 2+2x ﹣ 3;( 2)设 P ( x , 0).① S 四边形AMBN=AB?MN ==﹣ 2( x+ )2+ ,∴当 x=﹣时, S 四边形AMBN最大值为;② 由,得,,∴D(﹣ 4,5),∵ y=﹣x+1,∴E( 0, 1),B( 1, 0),∴OB= OE,∴∠ OBD= 45°.∴BD=.∵ A(﹣ 3, 0), C( 0,﹣ 3),∴ OA= OC,AC= 3,AB=4.∴∠ OAC= 45°,∴∠ OBD =∠ OAC.Ⅰ.当点P 在点 A 的右侧,∠ PCA=∠ ADB 时,△ PAC∽△ ABD.∴,∴,∴,∴P1()Ⅱ.当点P 在点 A 的左侧,∠ PCA=∠ ADB 时,记此时的点P 为 P2,则有∠ P2CA=∠P1CA.过点 A 作 x 轴的垂线,交P2C 于点 K,则∠ CAK =∠ CAP1,又 AC 公共边,∴△ CAK≌△ CAP1(ASA)∴ AK= AP1=,∴ K(﹣ 3,﹣),∴直线CK :,∴ P2(﹣ 15, 0).P 的坐标: P1(), P2(﹣ 15, 0).【评论】本题考察了二次函数,娴熟掌握二次函数的基天性质和相像三角形的性质是解题的重点.。
浙江温岭第三中学2019初三学业水平第三次重点数学试题
【一】选择题(本大题有10小题,每题4分,共40分。
)
1.5的相反数是〔★〕
A 、-5
B 、51
-
C 、51
D 、5 2、在函数12y x =-
+中,自变量x
A 、2x -≥
B 、2x -≤
C 、2x ≠
D 、2x ≠- 3、解集在数轴上表示为如下图的不等式组是〔★〕
A 、⎩⎨⎧≥->02-x 3x
B 、⎩⎨⎧≤-<02-x 3x
C 、⎩⎨⎧≥-<02-x 3x
D 、⎩
⎨⎧≤->02-x 3x 4、以下说法正确的选项是〔★〕
A 、8的立方根2
B 、4的平方根是2
C 、任何数的0次幂都等于1
D 、实数A 绝对值是A
5、两个大小不同的球在水平面上靠在一起,组成如下图的几何体,那么该几何体的左视图〔★〕
6、以下运算中,结果正确的选项是〔★〕
A 、444a a a +=
B 、236()a a -=- C.824a a a ÷= D 、222()x y x y +=+
7、如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2﹕5,且三角尺的面积为0.4DM2,那么它的投影的面积为〔★〕
A.1DM2
B.2DM2
C.2.5DM2
D.10DM2 〔第7题〕 8、为建设生态温岭,我市某中学在植树节那天,组织初三年级八个班的学生到城西新区植树,各班植树情况如下表:
二 三 四 五222A 、这组数据的众数是18 B 、这组数据的中位数是19
C 、这组数据的平均数是20
D 、这组数据的极差是15
9、如图,某建筑物BC 上有一旗杆AB ,小明在与BC 相距12M 的F 处,由E 点观测到旗杆顶部A 的仰角为52°、底部B 的仰角为45°,小明的观测点与地面的距离EF 为
1.6M 、那么总高度AC 和旗杆AB 分别约为〔★〕〔结果精确到0.1M 、参考数据:2≈
1.41,SIN52°≈0.79,TAN52°≈1.28〕
第3题图
D C
F
B A E
A 、17M ,3.4MB.13.6M ,5MC.15.4M ,3.4MD.17M ,5M
10、如图,在平面直角坐标系xOy 中,
1(1,0)A ,2(3,0)A ,3(6,0)A ,4(10,0)A ,……,以
12A A 为对角线作第一个正方形1121AC A B ,以23A A 为对角线作第二个正方形2232A C A B ,以34A A 为对角线作第三个正方形3343A C A B ,…,顶点1B ,2B ,3B ,…都在第一象限,按照这样的规律依次进行下去,点B9的坐标为〔★〕、
A 、〔40.5,4.5〕B.〔50,5〕C.〔81,9〕D.〔100,10〕
【二】填空题(此题有6小题,每题5分,共30分)
11、化简:(X +1)(X -1)-X2=___★___.
12.化简:2111x x x x -+=++★、
13.从红桃A 〔红色〕、黑桃A 〔黑色〕、梅花A 〔黑色〕、方块A 〔红色〕四张牌中,
同时随机抽取两张,那么抽到两张都是红色牌的概率为★.
(第13题)(第1416题)
14.如图,抛物线Y =0〕经过点A (-1,1)和点
么不等式AX2+BX +C ≥3431+x 的解集为★. 15.如图,等腰梯形ABCD 中,AD ∥BC ,以A 为圆心,AD 为半径的圆与BC 切于点M ,与AB 交于点E ,假设AD =2,BC =6,那么图中扇形的周长为★.
16、如图,直线643y +-=x 与X 轴、Y 轴分别交于点A 、B ,画△OAB 的外接圆⊙P ,
点M 为OA 的中点,点N 是射线MA 上的一动点,以M 为圆心,MN 长为半径画圆,当⊙M 和⊙P 相切时,点N 的坐标为★、
【三】解答题(此题有8小题,共80分)
17.(此题8分)计算:9
27)31(2-+-TAN30°18.(此题8分)解方程X2+2X =48.
19.(此题8分)如图,四边形ABCD 中,AB ∥CD ,延长AB 到F ,使AB =BF ,连结
DF , 交BC 于点E ,点E 恰好是BC 的中点、
求证:四边形ABCD 是平行四边形、
20.(此题8分)某校原有600张旧课桌急需维修,经过A 、B 、C 三个工程队的竞标得知,A 、B 的工作效率相同,且都为C 队的2倍,假设由一个工程队单独完成,C 队比A 队要多用5天.求工程队A 平均每天维修课桌的张数.
21.(此题10分)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择的测量对象,测量方案如下〔确保测量过程中无安全隐患〕:
①先测出沙坑坑沿的圆周长34.54米;②甲同学直立于沙坑坑沿的圆周所在的平面
上,经过适当调整自己所处的位置,当他位于B 时恰好他的视线经过沙坑坑沿圆周上一点A 看到坑底S 〔甲同学的视线起点C 与点A ,点S 三点共线〕,经测量:AB =1.1米,BC =1.6米、
根据以上测量数据,求:
〔1〕圆锥形坑的深度、〔π取3.14〕
〔2〕如果要填埋这个土坑要准备多于多少的土方? 〔说明:圆锥体积公式为h ⋅=底S 31V ,π取3.14,结果精确到1米3〕
22.(此题12分)某校积极开展每天锻炼1小时活动,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.在图1中,八(1)班的人数为50.〔说明:组中值为190次的组别为180≤次数《200〕
请结合统计图完成以下问题:
〔1〕组中值为110次一组的频率为;
〔2〕请把频数分布直方图补充完整;
〔3〕如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学共有1000人,八年级的达标率为多少?
23、(此题L2分)如图,在直角坐标系XOY 中,以O 为圆心4单位长度为半径画圆,交Y 轴负半轴与点P ,弦AB ⊥X 轴于点C ,且AB 的长为34个单位长度.
(1)求出点B 的坐标;
(2)将AB 沿着X 轴的负方向平移4个单位后交X
求出过点P ,C ,C '的二次函数的解析式;
(3)直接写出将〔2绕着原点旋转180°所扫过的面积。
24.〔此题14分〕如图1,P 是X 负半轴上任意一点,过比例函数)0(y 111<=k x k 和)0(y 222>=k x k 的图像于点A 、B. 〔1〕假设4k 1-=,那么△AOP 的面积为,
假设Q 是Y 轴上任意一点且24k 21=-=k ,,那么△ABQ 的面积为;〔4分〕
〔2〕.BP AP =〔用含21,k k 的式子表示〕;〔2分〕
〔3〕当AQ ⊥Y 轴时〔如图2〕,AQ 延长线交)0(y 222>=k x k 的图像于点C , 求证:BC ∥PQ ;〔3分〕
〔4〕利用以上某些结论,解决以下两个问题中的其中一个问题:〔本小题总分值5分,如果选择①答对可得3分,如果选择②答对可得5分,请量力而行,选择适合自己
的一个问题〕
①在〔3〕的条件下,试探究用21,k k 表示△ABC 的面积.
②如图3,两个反比例函数)0(y 111<=k x k 和)0(y 222>=k x k ,点A 为非图像上的一点,过A 作X 轴的平行线分别交12y y y 轴、双曲线、双曲线于B 、C 、D ,过A 作过A 作Y 轴的平行线分别交12y y x 轴、双曲线、双曲线于E 、F 、G ,连接BE 、CF 、DG ,求证:BE ∥CF ∥DG.
温岭三中初中学业水平考试第三次模拟试卷
数学参考答案
19.(此题8分)略
20.(此题8分)设C 队每天维修课桌X 张, 根据题意得:102600600=-x x ……3分
解这个方程得:X =30……3分
经检验X =30是原方程的根,且符合题意,所以,2X =60……1分
答:A 队原来平均每天维修课桌60张、……1分
21、(此题10分)解:〔1〕取圆锥底面圆心O ,连接OS 、OA ,那么
∠O =∠ABC =90°,∠OAS =∠BAC ,
∴△SOA ∽△CBA ,……2分
∴错误!未找到引用源。
=错误!未找到引用源。
,
∴OS =错误!未找到引用源。
,……1分
∵OA =错误!未找到引用源。
≈5.5,BC =1.6,AB =1.2,……1分
∴OS =)(81.16.15.5米=⨯错误!未找到引用源。
≈7.3∴“圆锥形坑”的深度约为7.3米、……1分
(2)85.514.331r 31S 31V 22⨯⨯⨯=⋅=⋅=h h π底……2≈254〔米3〕〔进一法〕……1分
答:要准备多于254米3的土.
22.(此题12分)(1)0.16……4分〔2〕12人……423.(此题12分)(1)B 〔2,-23……5分〔2〕Y =X2-2分
24.(此题14分)
〔1〕2,3……各2分〔2〕21
k k -
……2分〔写成21k k 不扣分〕
〔3〕略……3分
〔4〕①S △ABC =121212122)(k 2)(k k k k k --=-〔没有去绝对值不扣分〕……3分 或②过A 画反比例函数Y3,证明略……5分 〔如果两题都做了按得分高的这一题计分〕。