广东省深圳市2020年高三数学第一次调研考试试题 理 (2020深圳一模)新人教A版
- 格式:doc
- 大小:1.34 MB
- 文档页数:17
2020年广东深圳高三一模理科数学试卷一、选择题(本大题共12题,每小题5分,共计60分。
)1. A.B.C.D.已知集合,,则( ).2. A.B.C.D.设,则的虚部为( ).3. A.B.C.D.某工厂生产的个零件编号为,,,,,现利用如下随机数表从中抽取个进行检测.若从表中第行第列的数字开始,从左往右依次读取数字,则抽取的第个零件编号为( ).4. A.B.C.D.记为等差数列的前项和,若,,则为( ).5. A.B.C. D.若双曲线的一条渐近线经过点,则该双曲线的离心率为().6. A.B.C.D.已知,则( ).7.A.B.C.D.的展开式中的系数为( ).8. A.B.C. D.函数的图像大致为( ).9. A. B. C. D.如图,网格纸上小正方形的边长为,粗线画出的是某四面体的三视图,则该四面体的外接球表面积为( ).10.A.B.C.D.已知动点在以,,为焦点的椭圆 ,动点在以为圆心,半径长为的圆上,则的最大值为( ).11.A.B.C.D.著名数学家欧拉提出了如下定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点,分别是的外心、垂心,且为中点,则( ).12.A.B. C. D.已知定义在上的函数的最大值为,则正实数的取值个数最多为( ).二、填空题(本大题共4题,每小题5分,共计20分。
)13.若,满足约束条件,则的最小值为 .14.设数列的前项和为,若,则 .15.很多网站利用验证码来防止恶意登录,以提升网络安全.某马拉松赛事报名网站的登录验证码由,,,,中的四个数字随机组成,将从左往右数字依次增大的验证码称为“递增型验证码”(如),已知某人收到了一个“递增型验证码”,则该验证码的首位数字是的概率为 .16.已知点和点,若线段上的任意一点都满足:经过点的所有直线中恰好有两条直线与曲线:相切,则的最大值为 .三、解答题(本大题共5题,每小题12分,共计60分。
2020广东省深圳市高考数学一模试卷(理科)(带解析)一、选择题:1.若集合A={2,4,6,8},B={x|x2﹣9x+18≤0},则A∩B=()A. {2,4}B. {4,6}C. {6,8}D. {2,8}2.若复数(a∈R)为纯虚数,其中i为虚数单位,则a=()A. 2B. 3C. ﹣2D. ﹣33.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是()A. B. C. D.4.等比数列{a n}的前n项和为S n=a•3n﹣1+b,则=()A. ﹣3B. ﹣1C. 1D. 35.直线l:kx+y+4=0(k∈R)是圆C:x2+y2+4x﹣4y+6=0的一条对称轴,过点A(0,k)作斜率为1的直线m,则直线m被圆C所截得的弦长为()A. B. C. D. 26.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2)的平面截该几何体,则截面面积为()A. 4πB. πh2C. π(2﹣h)2D. π(4﹣h)27.函数f(x)= •cosx的图象大致是()A. B.C. D.8.已知a>b>0,c<0,下列不等关系中正确的是()A. ac>bcB. a c>b cC. log a(a﹣c)>log b(b﹣c)D. >9.执行如图所示的程序框图,若输入p=2017,则输出i的值为()A. 335B. 336C. 337D. 33810.已知F是双曲线E:=1(a>0,b>0)的右焦点,过点F作E的一条渐近线的垂线,垂足为P,线段PF与E相交于点Q,记点Q到E的两条渐近线的距离之积为d2,若|FP|=2d,则该双曲线的离心率是()A. B. 2 C. 3 D. 411.已知棱长为2的正方体ABCD﹣A1B1C1D1,球O与该正方体的各个面相切,则平面ACB1截此球所得的截面的面积为()A. B. C. D.12.已知函数f(x)= ,x≠0,e为自然对数的底数,关于x的方程+ ﹣λ=0有四个相异实根,则实数λ的取值范围是()A. (0,)B. (2 ,+∞)C. (e+ ,+∞)D. (+ ,+∞)二、填空题:13.已知向量=(1,2),=(x,3),若⊥,则| + |=________.14.(﹣)5的二项展开式中,含x的一次项的系数为________(用数字作答).15.若实数x,y满足不等式组,目标函数z=kx﹣y的最大值为12,最小值为0,则实数k=________.16.已知数列{a n}满足na n+2﹣(n+2)a n=λ(n2+2n),其中a1=1,a2=2,若a n<a n+1对∀n∈N*恒成立,则实数λ的取值范围是________.三、解答题:17.△ABC的内角A、B、C的对边分别为a、b、c,已知2a= csinA﹣acosC.(1)求C;(2)若c= ,求△ABC的面积S的最大值.18.如图,四边形ABCD为菱形,四边形ACEF为平行四边形,设BD与AC相交于点G,AB=BD=2,AE= ,∠EAD=∠EAB.(1)证明:平面ACEF⊥平面ABCD;(2)若AE与平面ABCD所成角为60°,求二面角B﹣EF﹣D的余弦值.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民用电费用y(单位:元)关于月用电量x(单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电费用不超过260元的点80%,求a,b 的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y为该居民用户1月份的用电费用,求Y的分布列和数学期望.20.已成椭圆C:=1(a>b>0)的左右顶点分别为A1、A2,上下顶点分别为B2/B1,左右焦点分别为F1、F2,其中长轴长为4,且圆O:x2+y2= 为菱形A1B1A2B2的内切圆.(1)求椭圆C的方程;(2)点N(n,0)为x轴正半轴上一点,过点N作椭圆C的切线l,记右焦点F2在l上的射影为H,若△F1HN 的面积不小于n2,求n的取值范围.21.已知函数f(x)=xlnx,e为自然对数的底数.(1)求曲线y=f(x)在x=e﹣2处的切线方程;(2)关于x的不等式f(x)≥λ(x﹣1)在(0,+∞)上恒成立,求实数λ的值;(3)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1﹣x2|<2a+1+e﹣2.22.在直角坐标系中xOy中,已知曲线E经过点P(1,),其参数方程为(α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系.(1)求曲线E的极坐标方程;(2)若直线l交E于点A、B,且OA⊥OB,求证:为定值,并求出这个定值.23.已知f(x)=|x+a|,g(x)=|x+3|﹣x,记关于x的不等式f(x)<g(x)的解集为M.(1)若a﹣3∈M,求实数a的取值范围;(2)若[﹣1,1]⊆M,求实数a的取值范围.答案解析部分一、<b >选择题:</b>1.【答案】B2.【答案】C3.【答案】B4.【答案】A5.【答案】C6.【答案】B7.【答案】C8.【答案】D9.【答案】B10.【答案】B11.【答案】D12.【答案】C二、<b >填空题:</b>13.【答案】514.【答案】-515.【答案】316.【答案】[0,+∞)三、<b >解答题:</b>17.【答案】(1)∵2a= csinA﹣acosC,∴由正弦定理可得:2sinA= sinCsinA﹣sinAcosC,∵sinA≠0,∴可得:2= sinC﹣cosC,解得:sin(C﹣)=1,∵C∈(0,π),可得:C﹣∈(﹣,),∴C﹣= ,可得:C=(2)∵由(1)可得:cosC=﹣,∴由余弦定理,基本不等式可得:3=b2+a2+ab≥3ab,即:ab≤1,(当且仅当b=a时取等号)∴S△ABC= absinC= ab≤ ,可得△ABC面积的最大值为18.【答案】(1)证明:连接EG,∵四边形ABCD为菱形,∴AD=AB,BD⊥AC,DG=GB,在△EAD和△EAB中,AD=AB,AE=AE,∠EAD=∠EAB,∴△EAD≌△EAB,∴ED=EB,则BD⊥EG,又AC∩EG=G,∴BD⊥平面ACEF,∵BD⊂平面ABCD,∴平面ACEF⊥平面ABCD(2)解法一:过G作EF的垂线,垂足为M,连接MB,MG,MD,易得∠EAC为AE与面ABCD所成的角,∴∠EAC=60°,∵EF⊥GM,EF⊥BD,∴EF⊥平面BDM,∴∠DMB为二面角B﹣EF﹣D的平面角,可求得MG= ,DM=BM= ,在△DMB中,由余弦定理可得:cos∠BMD= ,∴二面角B﹣EF﹣D的余弦值为;解法二:如图,在平面ABCD内,过G作AC的垂线,交EF于M点,由(1)可知,平面ACEF⊥平面ABCD,∵MG⊥平面ABCD,∴直线GM、GA、GB两两互相垂直,分别以GA、GB、GM为x、y、z轴建立空间直角坐标系G﹣xyz,可得∠EAC为AE与平面ABCD所成的角,∴∠EAC=60°,则D(0,﹣1,0),B(0,1,0),E(),F(),,,设平面BEF的一个法向量为,则,取z=2,可得平面BEF的一个法向量为,同理可求得平面DEF的一个法向量为,∴cos<>= = ,∴二面角B﹣EF﹣D的余弦值为.19.【答案】(1)解:当0≤x≤200时,y=0.5x;当200<x≤400时,y=0.5×200+0.8×(x﹣200)=0.8x﹣60,当x>400时,y=0.5×200+0.8×200+1.0×(x﹣400)=x﹣140,所以y与x之间的函数解析式为:y=(2)解:由(1)可知:当y=260时,x=400,则P(x≤400)=0.80,结合频率分布直方图可知:0.1+2×100b+0.3=0.8,100a+0.05=0.2,∴a=0.0015,b=0.0020(3)解:由题意可知X可取50,150,250,350,450,550.当x=50时,y=0.5×50=25,∴P(y=25)=0.1,当x=150时,y=0.5×150=75,∴P(y=75)=0.2,当x=250时,y=0.5×200+0.8×50=140,∴P(y=140)=0.3,当x=350时,y=0.5×200+0.8×150=220,∴P(y=220)=0.2,当x=450时,y=0.5×200+0.8×200+1.0×50=310,∴P(y=310)=0.15,当x=550时,y=0.5×200×0.8×200+1.0×150=410,∴P(y=410)=0.05.故Y的概率分布列为:所以随机变量Y的数学期望EY=25×0.1+75×0.2+140×0.3+220×0.2+310×0.15+410×0.05=170.520.【答案】(1)解:由题意知2a=4,所以a=2,所以A1(﹣2,0),A2(2,0),B1(0,﹣b),B2(0,b),则直线A2B2的方程为,即bx+2y﹣2b=0,所以= ,解得b2=3,故椭圆C的方程为(2)解:由题意,可设直线l的方程为x=my+n,m≠0,联立,消去x得(3m2+4)y2+6mny+3(n2﹣4)=0,(*)由直线l与椭圆C相切,得△=(6mn)2﹣4×3×(3m2+4)(n2﹣4)=0,化简得3m2﹣n2+4=0,设点H(mt+n,t),由(1)知F1(﹣1,0),F2(1,0),则• =﹣1,解得:t=﹣,所以△F1HN的面积= (n+1)丨﹣丨= ,代入3m2﹣n2+4=0,消去n化简得= 丨m丨,所以丨m丨≥ n2= (3m2+4),解得≤丨m丨≤2,即≤m2≤4,从而≤ ≤4,又n>0,所以≤n≤4,故n的取值范围为[ ,4]21.【答案】(1)解:对函数f(x)求导得f′(x)=lnx+1,∴f′(e﹣2)=lne﹣2+1=﹣1,又f(e﹣2)=e﹣2lne﹣2=﹣2e﹣2,∴曲线y=f(x)在x=e﹣2处的切线方程为y﹣(﹣2e﹣2)=﹣(x﹣e﹣2),即y=﹣x﹣e﹣2;(2)解:记g(x)=f(x)﹣λ(x﹣1)=xlnx﹣λ(x﹣1),其中x>0,由题意知g(x)≥0在(0,+∞)上恒成立,下面求函数g(x)的最小值,对g(x)求导得g′(x)=lnx+1﹣λ,令g′(x)=0,得x=eλ﹣1,当x变化时,g′(x),g(x)变化情况列表如下:min极小值=g(eλ﹣1)=(λ﹣1)eλ﹣1﹣λ(eλ﹣1﹣1)=λ﹣eλ﹣1,∴λ﹣eλ﹣1≥0,记G(λ)=λ﹣eλ﹣1,则G′(λ)=1﹣eλ﹣1,令G′(λ)=0,得λ=1,当λ变化时,G′(λ),G(λ)变化情况列表如下:()max(λ)极大值=G(1)=0,故λ﹣eλ﹣1≤0当且仅当λ=1时取等号,又λ﹣eλ﹣1≥0,从而得到λ=1(3)解:先证f(x)≥﹣x﹣e﹣2,记h(x)=f(x)﹣(﹣x﹣e﹣2)=xlnx+x+e﹣2,则h′(x)=lnx+2,令h′(x)=0,得x=e﹣2,当x变化时,h′(x),h(x)变化情况列表如下:。
2020届广东省深圳市高三下学期第一次调研数学(理)试题一、单选题1.集合1{|1}2A x x=-<<,集合B={x|x2<x},则A∩B=()A.112⎛⎫-⎪⎝⎭,B.(﹣1,0)C.12⎛⎫⎪⎝⎭,D.(0,1)【答案】C【解析】先化简集合B,再利用交集的定义求解.【详解】∵集合1{|1}2A x x=-<<,集合B={x|x2<x}={x|0<x<1},∴A∩B={x|0<x12<}=(0,12).故选:C.【点睛】本题考查主要集合的基本运算,还考查运算求解能力,属于基础题.2.下列函数中为奇函数的是()A.y=x2﹣2x B.y=x2cos x C.y=2x+2﹣x D.11x y lnx-=+【答案】D【解析】根据题意,依次分析选项中函数的奇偶性,综合即可得答案.【详解】对于A,y=x2﹣2x,其定义域为R,有f(﹣x)=x2+2x,f(﹣x)≠f(x)且f(﹣x)≠﹣f(x),即函数f(x)既不是奇函数也不是偶函数,不符合题意;对于B,y=x2cos x,其定义域为R,有f(﹣x)=x2cos x=f(x),f(x)为偶函数,不符合题意;对于C,y=2x+2﹣x,其定义域为R,有f(﹣x)=2x+2﹣x=f(x),f(x)为偶函数,不合题意;对于D,y=ln 11xx-+,有11xx-+>0,解可得﹣1<x<1,即其定义域为(﹣1,1),有f(﹣x)=ln 11xx+=--ln11xx-=-+f(x),为奇函数,符合题意;故选:D.本题考查函数奇偶性的判断,关键是函数奇偶性的定义,属于基础题.3.已知复数z=i2019+i2020,则z的共轨复数z=()A.﹣1+i B.1﹣i C.1+i D.﹣1﹣i【答案】C【解析】直接利用复数i4n=1运算化简,然后利用共轭复数的概念得答案.【详解】∵i4n=1,∴复数z=i2019+i2020=i3+1=1﹣i,∴z的共轨复数z=1+i.故选:C.【点睛】本题考查了复数的高次乘方运算和共轭复数的概念,还考查了运算求解的能力,属于基础题.4.已知π是圆周率,e为自然对数的底数,则下列结论正确的是()A.lnπ>ln3>log3e B.lnπ>log3e>ln3C.ln3>log3e>lnπD.ln3>lnπ>log3e【答案】A【解析】利用对数函数的性质求解.【详解】∵函数对数y=lnx和y=log3x在(0,+∞)上单调递增,且π>3>e,∴lnπ>ln3>lne=1,又∵log3e<log33=1,∴lnπ>ln3>log3e,故选:A.【点睛】本题考查利用对数函数的性质比较大小,属于基础题,5.将直线l:y=2x+1绕点4(1,3)按逆时针方向旋转45°得到直线l′,则直线l′的方程为()A.2x﹣y+1=0 B.x﹣y+2=0 C.3x﹣2y+3=0 D.3x+y﹣6=0【答案】D【解析】直接利用到角公式和点斜式方程求出结果.直线l :y =2x +1绕点4(1,3)按逆时针方向旋转45°得到直线l ′, 设直线l ′的斜率为k ,则根据到角公式的应用,245112k tan k-︒==+,解得k =﹣3,所以直线l ′的方程为y ﹣3=﹣3(x ﹣1),整理得3x +y ﹣6=0. 故选:D . 【点睛】本题主要考查到角公式,直线方程,还考查学生的运算能力和转换能力,属于基础题. 6.已知数列{a n }为等比数列,若a 1+a 4=2,a 12+a 42=20,则a 2a 3=( ) A .﹣8 B .8 C .﹣16 D .16【答案】A【解析】直接利用关系式的转化和等比性质的应用求出结果. 【详解】数列{a n }为等比数列,若a 1+a 4=2,所以:22114424a a a a ++=,因为a 12+a 42=20, 所以2a 1a 4=﹣16, 整理得a 2a 3=a 1a 4=﹣8. 故选:A . 【点睛】本题主要考查等比数列的性质的应用,还考查运算求解能力,属于基础题. 7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A .9πB .223πC .283πD .343π【答案】D【解析】根据几何体的三视图可得直观图为:该几何体为上面为一个半径为2的半球,下面为底面半径为2,高为3的半圆柱体. 【详解】由三视图可知:该几何体为上面为一个半径为2的半球,下面为底面半径为2,高为3的半圆柱体. 如图所示:故V 231234232233πππ=⨯⨯⨯+⨯⨯=. 故选:D . 【点睛】本题主要考查三视图和直观图形之间的转换,几何体的体积和表面积公式的应用,还考查空间想象和运算的能力,属于基础题.8.已知过原点O 的直线l 与曲线():4xC y x e =-相切,则l 的斜率为( )A .e -B .2e -C .3-D .e【答案】B【解析】设切点为()(),4mm m e -,然后利用导数求出切线方程,将()0,0代入即可.【详解】由题意设切点为()(),4mm m e-,()4x y x e =-Q ,()3x y x e '∴=-,()3m k m e ∴=-∵y′=e x (x ﹣3).所以,切线l 的方程为()()()43mmy m e em x m --=--,因为切线l 过原点,可得2440m m -+=,2m ∴=,2k e =-. 故选:B . 【点睛】本题考查导数的几何意义与切线的求法,属于基础题.9.珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》•2013年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”.未记数(或表示零)时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是5515.现选定“个位档”、“十位档”、“百位档”和“千位档”,若规定每档拨动一珠靠梁(其它各珠不动),则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为()A.12B.25C.38D.13【答案】C【解析】这是一个古典概型,基本事件总数n=24=16,然后利用列举法得到这个数能被3整除包含的基本事件数,代入公式求解。
圳市育科究院市教育2020年深圳市高三第一次调研考试又绝密★启封并使用完毕前试题类型:A圳市育科究院市教E是AC的中点,∴到点A,C的距离相等的点位于平面B ED'内,同理可知,到点B',D的距离相等的点位于平面ACF内,cos4EF<<,故应选B.二、填空题:圳市究院市13. 1−14. 32 15. 3 16.4516.解析:如图,不难发现直线1F M与圆O相切于点M,且1||MF b=,2)(sin cos)3cos(2π)x x x.)求函数()f x的最小正周期;已知△ABC的内角A,B,C的对边分别为a,b1,sin2sinC B,2,求△ABC的面积.解:(1)2)(sin cos)3cos(π2)x x x22sin cos2sin cos3cos2x x x x xsin23cos21x xπ2sin(2)13x,…………………………………4分()f x的最小正周期为2ππ2T. …………………………………………(2)π()2sin()113f A A,πsin()03A,ππ5π2333A,π3A,即π3A. …………………………………………………………由正弦定理及sin2sinC B,可得2c b. …………………………………由余弦定理得2222cosa b c bc A,可得b=. ……………………10分圳市育科学究院市教育科3b=,123sin23ABCS b c A. ……………………………………12分【命题意图】综合考查三角函数的基本运算、三角函数性质,考查利用正弦、余弦定理分)111A B C的所有棱长都相等,平面平面11C C.平面AB111AC B的余弦值)证明:设直线1AB与直线BA1A为菱形,11A B AB,分111C C C A,G为1A B的中点,故1G A B,1C G G,且1AB,1C G平面AB,1A B平面(法一)取BC中点O为坐标原点,如图,分别以,OA OC建立空间直角坐标系O xyz. ……6分不妨设棱柱的棱长为2,1(0,1,0),(0,0,3),(3,0,0),(0,1,0)C A B,1(3,0,3)AC,…………分11(3,1,0)AC AC,11(0,2,0)B C BC……………………8分设平面11A AC的一个法向量为1n,且111(,,n x y z111n AC,11n AC,则11111n ACn AC,得30330x yx z,取1z,则1x,3y,1(1,3,1)n,……………………………………………………………………9分设平面11AB C的一个法向量为2n,且2222(,,)n x y z,那么21n AC,211n B C,21211n ACn B C,得33020x zy,取1z,则1x,0y,2(1,0,1)n,……………………………………………………………………11分121212210cos552||||n nn nn n,,圳市育科学研院市教育科学即二面角111A AC B. …………………………………12分(法二)同(法一)建立空间直角坐标系,得1(3,0,3)AC,…………7分0003,,)(0,1,3)y z,点3,1,3),1(3,0,BA1(0,1,3)AA,由于1A B平面1,所以1BA是平面11B一个法向量. ………………9分设平面11A AC的一个法向量为n,且(,,)n x y z1n AA,1n AC,11n AAn AC,得30330y zx z,取1z,则1x,3y,(1,3,1)n, (11)1112310cos5||||65BA nBA nBA n,,二面角111A AC B的余弦值为105. ……………………………………(法三)如图,连接1AC,交1AC于点M,11AAC C是菱形,11A M AC.1A G平面11AB C,故1AG AC,11A M A,1AC平面1A MG,GM平面1A MG,1GM AC,……7分1A MG为二面角111A AC B的平面角,不妨设棱柱的棱长为2,G,M是△1A BC边1A B,1AC上的中点,112BC,……………11B C中点为N,连接1A N,BN,易得平面11BB C C,1A N BN,16A B,162AG,102, (10)11210cos510GMA MGA M,圳市院市教育二面角111A AC B. …………………………………12分【命题意图】考查线面垂直判断定理、线面垂直性质定理等基本知识,考查空间想象能OM ON⋅为定值1b=,设椭圆的半焦距为24a=,……………………………………,使得OM ON⋅为定值,2,0),设直线l:2216(16x k x++y4(2OM ON⋅=OM ON⋅为定值,则43OM ON⋅=,存在实数23t=,使得OM ON⋅为定值43. …………………………12分(法二)设存在实数=t t,使得OM ON⋅为定值,(2,0)A−,一般情况设:2(0)l x my m=−≠,00(,)M x y,圳市科学研究院市教联立2x my=−与2214xy+=,易知202284mxm−=+,0244mym=+,……6分222284(,)44m mMm m−++,………………………………………………7分m2t mOM ON⋅=OM ON⋅为定值,0012(84)4t t=−,此时43OM ON⋅=,……………………当直线l与x轴重合,且时,点(2,0)M,点也有43OM ON⋅=,………………………………………………………综上,存在实数t=OM ON⋅为定值4【命题意图】本题以直线与椭圆为载体,其几何关系向量表达为背景,决几何问题,主要考查椭圆的基本量,直线与椭圆的位置关系、向量的数量积运算,考查学生的逻辑推理,数学运算等数学核心素养及思辨能力(2)由频率分布直方图可认为该市全体参加预赛学生的预赛成绩Z服从正态分布()2,Nμσ,其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组区间的中点值作代表),且2362σ=. 利用该正态分布,估计全市参加预赛的全体学生中预赛圳市究院市教成绩不低于91分的人数;(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下:①每人的复赛初始分均为100分;②参赛学生可在开始答题前自行决定答题数量n,每一题都需要“花”掉(即减去)2(,Nμσ0.9545,P易知样本中成绩不低于60分的学生共有0.007520100⨯⨯分的学生中随机地抽取(,0.7)B n1.5Xξ=,,…………………………………………………………题的资格,甲需要“花”掉的分数为:………………………………………………设甲答完题的最终分数为,则()M n21000.05() 1.05n n n=−++20.05(10)105n=−−+,…………………………10分由于*n∈N,所以当10n=时,()M n取最大值105,即复赛成绩的最大值为105,圳市究院市教所以若学生甲期望获得最佳的复赛成绩,则他的答题数量n应为10. ……………12分【命题意图】考查频率分布直方图,建模能力;考查超几何分布模型,正态分布,二项分布;考查分析问题、解决问题的能力;处理数据能力,决策问题.(2)不等式222cos(2sin)()x a x af x+≤恒成立,即不等式2cos(2sin)cosx a x≤恒成立,令sin[1,1]x t=∈−,则等价于不等式2cos2(1)t a t≤−…①恒成立,………………6分圳市究院市教(法一)①若21t=,即1t=±时,不等式①显然成立,此时Ra∈;……………7分②若11t−<<时,不等式①等价于2cos21tat≥−…②,令2()cos21t t tΦ=+−(01)t≤≤,则()2(sin2)t t t'Φ=−,(1)2(1sin2)0'Φ=−>,∴由(1)不难知道存在唯一的实数(0,1t)∈,使得()0t'Φ=,圳市教育科学研究院市教育科学∴()t Φ在0[0,)t 上单调递减,在0(,1]t 上单调递增,又(0)0Φ=,且(1)cos20Φ=<,∴max ()0t Φ=,即()0H t ≤,………………11分 综上所述,满足题意的实数a 的取值范围为[1,)+∞. ………………………12分(法三)当0t =时,由2cos 2(1)t a t ≤−得1a ≥, ……………………7分下证当且仅当1a ≥时,不等式①在[1,1]t ∈−时恒成立,只需证不等式①在[0,1]t ∈时恒成立即可, ……………………8分 ①若cos20t ≤时,即π[,1]4t ∈时,不等式①显然成立; …………………9分 ②若cos20t >时,即π[0)4t ,∈时,2cos 2(1)t a t ≤−等价于2221cos2t att t≤−…③, 令tan t θ=π(0)4θ≤<,则不等式③等价于2tan 2cos 2attθ≤, …………………10分 又不等式tan sin x x x ≥≥在π[0,)2x ∈时显然成立(证明略), …………………11分π[0)4t ,∈,∴π2[0,)2t ∈,∴2sin 2t t ≥,∴2sin 2tan 2tan 2cos2cos2at a t a t t t t≥=≥,tan t θθ=>,∴tan 2tan 2t θ≥, ∴2tan 2cos 2attθ≤,即不等式③成立,亦即不等式①成立, 综上所述,满足题意的实数a 的取值范围为[1,)+∞. ………………………12分 【命题意图】 本题以基本初等函数及不等式为载体,考查学生利用导数分析、解决问的能力,分类讨论思想及逻辑推理、数学运算等数学核心素养,具有较强的综合性.22.(本小题满分10分)选修4-4:坐标系与参数方程如图,有一种赛车跑道类似“梨形”曲线,由圆弧BC ,AD 和线段AB ,CD 四部分组成,在极坐标系Ox 中,π(2,)3A ,2π(1,)3B ,4π(1,)3C ,π(2,)3D −,弧BC ,AD 所在圆的圆心分别是(0,0),(2,0),曲线1M 是弧BC ,曲线2M 是弧AD .(1)分别写出1M ,2M 的极坐标方程;(2)点E ,F 位于曲线2M 上,且π3EOF ∠=, 求△EOF 面积的取值范围.ABCDOx(第22题图)圳市究院市教解:(1)由题意,1M的极坐标方程是2π4π1()33ρθ=≤≤,……………………2分记圆弧AD所在圆的圆心为1(2,0)O,易得极点O在圆弧AD所在圆上,解得13t≤≤,即实数t的取值范围为[1,3]. ……………………………………5分(说明:分类讨论求解亦可,可相应给分.)圳市究院市教(2) 易知222222()23231f x x t t x t t xx x x=+−++−≥+−++−=+−,……6分。
广东省深圳市2020年高三第一次调研考试数学(理)试题本试卷共21小题,满分150分 考试用时120分钟 注意事项:1.答卷前,考生首先检查答题卡是否整洁无缺损,监考教师分发的考生信息条形码是否正确;之后务必用0.5毫米黑色字迹的签字笔在答题卡指定位置填写自己的学校、姓名和考生号,同时,将监考教师发放的条形码正向准确粘贴在答题卡的贴条形码区,请保持条形码整洁、不污损。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上不按要求填涂的,答案无效。
3.非选择题必须用0.5毫米黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再做答漏涂、错涂、多涂的答案无效5.考生必须保持答题卡的整洁,考试结束后,将答题卡交回。
参考公式:若锥体的底面积为S ,高为h ,则锥体的体积为V =13Sh . 若球的半径为R ,则球的表面积为S=4πR 2,体积为V=43πR 2,回归方程为y bx a =+u r , 其中:()()()121,.n i i i n i i x x y y a y bx x x===-=--∑∑r u r u r r r 一、选择题:本大题共8个小题;每小题5分,共40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.化简sin 2020o的结果是A .sin 33oB .cos33o A .-sin 33o B .-cos33o2.已知i 是虚数单位,则复数i 13(1+i )= A .l+i B .l -i C .-l+I D .-l -i 3.图l 是一个几何体的三视图,根据图中数据,可得该几何体的表面积、体积分别是A .32π、1283π B .16π、323πC .12π、163π D .8π、163π4.双曲线221x my -=的实轴长是虚轴长的2倍,则rn= A .14B .12C .2D .45.等差数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列。
第一列 第二列 第三列 第一行 2 3 5 第二行 8 6 14 第三行 11 9 13则a 4的值为 A .18 B .15 C .12 D .20 6.我们把各位数字之和为6的四位数称为“六合数”(如2020是“六合数”),则“六合数”中首位为2的“六合数”共有 A .18个 B .15个 C .12个 D .9个7.函数y = 1n|x -1|的图像与函数y=-2 cos πx (-2≤x ≤4)的图像所有交点的横坐标之和等于 A .8 B .6 C .4 D .2 8.函数y=f (x ),x∈D,若存在常数C ,对任意的x l ∈D,仔在唯一的x 2∈D,使得12()()f x f x C =,则称函数f (x )在D 上的几何平均数为C .已知f (x )=x 3,x ∈[1,2],则函数f (x )=x 3在[1,2]上的几何平均数为A 2B .2C .4D .2二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.本大题分为必做题和选做题两部分.(一)必做题:第9、10、11、12、13题为必做题,每道试题考生都必须作答.9.若52345012345(12),x a a x a x a x a x a x +=+++则a 3= 。
10.容量为60的样本的频率分布直方图共有n (n>1)个小矩形,若其中一个小矩形的面积等于其余n -1个小矩形面积和的15,则这个小矩形对应的频数是____ .11.已知Ω= {(x ,y )|x+ y ≤6,x≥0,y ≥0},A={(x ,y )|x ≤4,y>0,x -y 2≥0},若向区域Ω上随机投一点P ,则点P 落入区域A 的概率是 . 12.若执行图2中的框图,输入N=13,则输出的数等于 。
(注:“S=0”,即为“S←0”或为“ S ..=0”.)13.设集合A={(x ,y )|(x 一4)2+y 2=1},B={(x ,y )|(x -t )2+(y -at+ 2)2=l},如果命题“t ∃∈R,A B ≠∅I ”是真命题,则实数a 的取值范围是 。
(二)选做题:第14、1 5题为选做题,考生只能选做一题,两题全答的,只计算前一题的得分. 14.(坐标系与参数方程选做题)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的参数方程为1x ty t ⎧=⎪⎨=+⎪⎩(t 为参数),曲线C 2的极坐标方程为ρsin θ-ρcos θ =3,则C l 与C 2交点在直角坐标系中的坐标为 。
15.(几何证明选讲选做题)如图3,在⊙O 中,直径AB 与弦CD 垂直,垂足为E ,EF ⊥BC ,垂足为F ,若AB=6,CF ·CB=5,则AE= 。
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数f (x )=2 sin 63x ππ⎛⎫+⎪⎝⎭(0≤x ≤5),点A 、B 分别是函数y=f (x )图像上的最高点和最低点. (1)求点A 、B 的坐标以及OA u u u r ·OB uuu r的值;(2)没点A 、B 分别在角α、β的终边上,求tan (2αβ-)的值.17.(本小题满分12分)一次考试中,五名学生的数学、物理成绩如下表所示:学生 A 1 A 2 A 3 A 4 A 5 数学(x 分 89 91 93 95 97 物理(y 分) 87 89 89 92 93(1)请在图4的直角坐标系中作出这些数据的散点图,并求出这些数据的同归方程;(2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X表示选中的同学的物理成绩高于90分的人数,求随机变量X的分布列及数学期望E(X)的值.18.(木小题满分14分)»BC 如图5,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CA B=45o,∠DAB=60o,F为的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图6).(1)求证:OF//平面ACD;(2)求二面角C- AD-B的余弦值;»BD上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求直(3)在线AG与平面ACD所成角的正弦值;若不存在,请说明理由.19.(本小题满分14分)已知数列{a n}满足:a1=1,a2=(a≠0),a n+2=p·2 1nnaa+(其中P为非零常数,n∈N *)(1)判断数列{1nnaa+}是不是等比数列?(2)求a n;(3)当a=1时,令b n=2nnnaa+,Sn为数列{b n}的前n项和,求S n。
20.(本小题满分14分)已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.(1)求椭圆C的方程;(2)如图7,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.21.(本小题满分14分) 已知f (x )=x-ax(a>0),g (x )=2lnx+bx 且直线y=2x -2与曲线y=g (x )相切. (1)若对[1,+∞)内的一切实数x ,小等式f (x )≥g(x )恒成立,求实数a 的取值范围;(2)当a=l 时,求最大的正整数k ,使得对[e ,3](e=2.71828…是自然对数的底数)内的任意k 个实数x 1,x 2,…,x k 都有121()()()16()k k f x f x f x g x -+++≤L 成立;(3)求证:*2141(21)()41ni i n n n N i=>+∈-∑.参考答案说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则. 2.对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分数. 一、选择题:本大题每小题5分,满分40分.二、填空题:本大题每小题5分,满分30分. 9. 80; 10. 10; 11.278; 12.1213; 13.340≤≤a ; 14.)5,2(; 15.1. 三、解答题 16.(本小题满分12分)已知函数)50)(3π6πsin(2)(≤≤+=x x x f ,点A 、B 分别是函数y f x =()图像上的最高点和最低点.(1)求点A 、B 的坐标以及⋅的值;(2)设点A 、B 分别在角α、β的终边上,求)2tan(βα-的值. 解:(1)50≤≤x Θ, ππ7π3636x π∴≤+≤, …………………………………1分∴1ππsin()1263x -≤+≤. ……………………………………………………………2分 当πππ632x +=,即1=x 时,ππsin()163x +=,)(x f 取得最大值2;当ππ7π636x +=,即5=x 时,ππ1sin()632x +=-,)(x f 取得最小值1-. 因此,点A 、B 的坐标分别是(1,2)A 、(5,1)B -. (4)分152(1)3OA OB ∴⋅=⨯+⨯-=u u u r u u u r. ……………………………………………………6分(2)Q 点)2,1(A 、)1,5(-B 分别在角α、β的终边上,tan 2α∴=,51tan -=β, …………………………………………8分Θ212()55tan 21121()5β⨯-==---, ………………………………………………10分 ∴52()2912tan(2)5212()12αβ---==+⋅-. ………………………………………………12分 【说明】 本小题主要考查了三角函数)sin()(ϕω+=x A x f 的图象与性质,三角恒等变换,以及平面向量的数量积等基础知识,考查了简单的数学运算能力.图417.(本小题满分12分)一次考试中,五名同学的数学、物理成绩如下表所示:(1)请在图4的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程; (2)要从4名数学成绩在90分以上的同学中选2人参加一项活动,以X 表示选中的同学的物理成绩高于90分的人数,求随机变量X 的分布列及数学期望)(X E 的值. 解:(1)散点图如右图所示.…………1x =59795939189++++=93,y =59392898987++++=90,,4042 0)2()4()(22222512=+++-+-=-∑=i ix x303422)1(0)1()2()3()4())((51=⨯+⨯+-⨯+-⨯-+-⨯-=--∑=i i iy y x x,300.7540b ==,69.75bx =,20.25a y bx =-=. ………………………5分故这些数据的回归方程是:ˆ0.7520.25yx =+. ………………………6分(2)随机变量X 的可能取值为0,1,2. ……………………………………7分22241(0)=6C P X C ==;1122242(1)=3C C P X C ==;22241(2)=6C P X C ==. …………10分 故X 的分布列为:……………11分()E X ∴=610⨯+321⨯+612⨯=1. …………………………………………………12分【说明】本题主要考察读图表、线性回归方程、概率、随机变量分布列以及数学期望等基础知识,考查运用概率统计知识解决简单实际问题的能力,数据处理能力. 18.(本小题满分14分)ABCD⋅O ⋅F图5图6如图5,O ⊙的直径4=AB ,点C 、D 为O ⊙上两点,且=45CAB ∠o,∠DAB 60=o,F 为»BC 的中点.沿直径AB 折起,使两个半圆所在平面互相垂直(如图6).(1)求证://OF 平面ACD ;(2)求二面角C -AD-B 的余弦值;(3)在»BD上是否存在点G ,使得FG //平面ACD ?若存在,试指出点G 的位置,并求直线AG 与平面ACD 所成角的正弦值;若不存在,请说明理由.(法一):证明:(1)如右图,连接CO ,οΘ45=∠CAB ,AB CO ⊥∴, 又F Θ为»BC的中点,ο45=∠∴FOB , AC OF //∴.⊄OF Θ平面ACD ,⊂AC 平面ACD , ∴//OF 平面ACD .……………………3分 解:(2)过O 作AD OE ⊥于E ,连CE . AB CO ⊥Θ,平面ABC ⊥平面ABD . ∴CO ⊥平面ABD . 又⊂AD Θ平面ABD , AD CO ⊥∴,⊥∴AD 平面CEO ,CE AD ⊥,则∠CEO 是二面角C -AD-B 的平面角. ………………………………5分Θο60=∠OAD ,2=OA , 3=∴OE .由CO ⊥平面ABD ,⊂OE 平面ABD ,得CEO ∆为直角三角形,Θ2=CO ,∴7=CE .∴CEO ∠cos =73=721. …………………………………………………………8分(3)设在»BD上存在点G ,使得FG //平面ACD , Θ//OF 平面ACD , ∴平面//OFG 平面ACD ,AD OG //∴,==60BOG BAD ∠∠o .因此,在»BD上存在点G ,使得FG //平面ACD ,且点G 为»BD 的中点.……10分 连AG ,设AG 与平面ACD 所成角为α,点G 到平面ACD 的距离为h . ΘACD S ∆=CE AD ⨯⨯21=7221⨯⨯=7,OAD GAD S S ∆∆==3221⨯⨯=3,∴由ACD -G V =AGD -C V ,得h ⨯⨯731=2331⨯⨯,得7212=h . …………12分在AOG ∆中,2==OG AO ,ο120=∠AOG ,由余弦定理得AG =32,…13分AG h =∴αsin =77.…………………………………………………14分 (法二):证明:(1)如图,以AB 所在的直线为y 轴,以OC 所在的直线为z 轴,以O 为原点,作空间直角坐标系xyz O -,则()0,20A ,-,()200,,C .)2,2,0()0,2,0()2,0,0(=--=AC,Q 点F 为»BC的中点,∴点F 的坐标为(,)2,2,0(=. 2OF AC ∴=u u u r u u ur ,即//OF AC . ⊄OF Θ平面ACD ,⊂AC 平面ACD ,∴//OF 平面ACD . …………………………………………………………3分解:(2)60DAB ∠=oQ ,∴点D的坐标()013,,D -,AD =u u u r .设二面角--C AD B 的大小为θ,()1,,n x y z =u r为平面ACD 的一个法向量.由110,0,n AC n AD ⎧⋅=⎪⎨⋅=⎪⎩u r u u u rur u u u r有()()()),,0,2,20,,,0,x y z xy z ⎧⋅=⎪⎨⋅=⎪⎩即220,0.y z y +=⎧⎪+=取1=x ,解得3-=y ,3=z .1n ∴u r=()331,,-. ……………………………………………5分取平面ADB 的一个法向量2n u u r=()100,,, ………………………………………6分1212cos 7n n |n ||n |θ⋅∴===⋅u r u u ru r u u r .………………………8分 (3)设在»BD上存在点G ,使得FG //平面ACD , Θ//OF 平面ACD ,∴平面//OFG 平面ACD ,则有AD OG //.设(0)OG AD λλ=>u u u r u u u r,AD =u u u rQ,)0OG ,,λ∴=u u u u u r .又2OG =u u u r Q,2=,解得1λ=±(舍去1-).)10OG ,∴=u u u r ,则G 为»BD的中点. 因此,在»BD上存在点G ,使得FG //平面ACD ,且点G 为»BD 的中点.……11分 设直线AG 与平面ACD 所成角为α,(0,2,0)AG =--=u u u rQ ,根据(2)的计算(11n =u r为平面ACD 的一个法向量,11sin cos(90)||||AG n AG n αα⋅∴=-===⋅ou u u r u r u u ur u r 因此,直线AG 与平面ACD. ……………………………14分 【说明】本题主要考察空间点、线、面位置关系,线面角、二面角及三角函数等基础知识,考查空间想象能力、运算能力和推理论证能力,考查用向量方法解决数学问题的能力. 19.(本小题满分14分)已知数列{}n a 满足:11=a ,2(0)a a a =≠,nn n a ap a 212++⋅=(其中p 为非零常数,*N n ∈).(1)判断数列}{1nn a a +是不是等比数列? (2)求n a ;(3)当1=a 时,令2n n nna b a +=,n S 为数列{}n b 的前n 项和,求n S . 解:(1)由nn n a a p a 212++⋅=,得n n n n a a p a a 112+++⋅=. ……………………………1分 令1n n na c a +=,则1c a =,1n n c pc +=. Q 0≠a ,10c ∴≠,p c cnn =+1(非零常数),∴数列}{1nn a a+是等比数列. ……………………………………………………3分(2)Q 数列{}n c 是首项为a ,公比为p 的等比数列,∴111n n n c c p a p --=⋅=⋅,即11n n naap a -+=. ……………………………4分当2n ≥时,230121121()()()1n n n n n n n a a a a a ap ap ap a a a -----=⋅⋅⋅⋅=⨯⨯⨯⨯L L23212n n n a p-+-=, ………………………………………………6分Q 1a 满足上式, 2321*2,N n n n n a a pn -+-∴=∈. …………………………7分(3)12212211()()n n n n n n n n na a a ap ap a p a a a --++++=⋅=⨯=Q, ∴当1=a 时,212n n n nna b np pa -+==. …………………………………………8分 132112n n S p p n p -∴=⨯+⨯++⨯L , ① 232121 1(1)n n n p S p n p n p -+=⨯++-⨯+⨯L ② ∴当21p ≠,即1p ≠±时,①-②得:22132121212(1)(1)1n n n n n p p p S p p pnpnp p-++--=+++-=--L , 即221222(1),1(1)1n n n p p np S p p p+-=-≠±--. …………………………11分而当1p =时,(1)122n n n S n +=+++=L , …………………………12分 当1p =-时,(1)(1)(2)()2n n n S n +=-+-++-=-L .………………………13分综上所述,221222(1),1,2(1),1,2(1), 1.(1)1n n n n n p n n S p p p np p p p +⎧+=⎪⎪+⎪=-=-⎨⎪⎪--≠±⎪--⎩……………………………14分 【说明】考查了等比数列的通项公式、等比数列求和公式、简单递推数列求通项、错位求和等知识,考查了学生的运算能力,以及化归与转化、分类讨论的思想. 20.(本小题满分14分)已知两点)0,1(1-F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、2PF 构成等差数列.(1)求椭圆C 的方程;(2)如图7,动直线:l y kx m =+与椭圆C 有且仅有一个公共点,点,M N 是直线l 上的两点,且l M F ⊥1,l N F ⊥2. 求四边形12F MNF 面积S 的最大值.解:(1)依题意,设椭圆C 的方程为22221x y a b +=.Q 1122PF F F PF 、、构成等差数列, ∴1122224a PF PF F F =+==, 2a =.又1c =Q ,23b ∴=.∴椭圆C 的方程为22143x y+=. ……………………………………………………4分 图7(2) 将直线l 的方程y kx m =+代入椭圆C 的方程223412x y +=中,得01248)34(222=-+++m kmx x k . …………………………5分由直线l 与椭圆C 仅有一个公共点知,2222644(43)(412)0k m k m ∆=-+-=, 化简得:2243m k =+. …………………………7分设11d F M ==,22d F M =(法一)当0k ≠时,设直线l 则12tan d d MN θ-=⨯,12d d MN k-∴=,221212121()22d d d d S d d k k --=+==m m 14++Θ2243m k =+,∴当0k ≠时,3>m ,3343131=+>+m m ,32<S . 当0=k 时,四边形12F MNF 是矩形,S =. ……………………………13分 所以四边形12F MNF 面积S 的最大值为 ………………………………14分(法二)Θ222222212222()2(53)11m k k d d k k +++=+==++, 222122233311m k k d d k k -+====++. MN ∴===.四边形12F MNF 的面积121()2S MN d d =+)(11212d d k ++=, …………11分22221222122)1(1216)2(11++=+++=k k d d d d k S12)211(41622≤-+-=k . ………………………………………………13分当且仅当0k =时,212,S S ==max S =所以四边形12F MNF 的面积S 的最大值为 …………………………14分 【说明】本题主要考查椭圆的方程与性质、直线方程、直线与椭圆的位置关系等基础知 识,考查学生运算能力、推理论证以及分析问题、解决问题的能力,考查分类讨论、数形结合、化归与转化思想. 21.(本小题满分14分)已知)0()(>-=a xax x f ,bx x x g +=ln 2)(,且直线22-=x y 与曲线)(x g y =相切.(1)若对),1[+∞内的一切实数x ,不等式)()(x g x f ≥恒成立,求实数a 的取值范围; (2)当1=a 时,求最大的正整数k ,使得对]3,[e ( 2.71828e =⋅⋅⋅是自然对数的底数)内的任意k 个实数k x x x ,,,21Λ都有)(16)()()(121k k x g x f x f x f ≤+++-Λ成立; (3)求证:)12ln(14412+>-∑=n ii ni )(*N n ∈. 解:(1)设点),(00y x 为直线22-=x y 与曲线)(x g y =的切点,则有22ln 2000-=+x bx x . (*)b xx g +='2)(Θ,220=+∴b x . (**)由(*)、(**)两式,解得0=b ,x x g ln 2)(=. ……………………………2分由)()(x g x f ≥整理,得x x xaln 2-≤,1≥x Θ,∴要使不等式)()(x g x f ≥恒成立,必须x x x a ln 22-≤恒成立.设x x x x h ln 2)(2-=,2ln 22)1(ln 22)(--=⋅+-='x x xx x x x h ,xx h 22)(-=''Θ,∴当1≥x 时,0)(≥''x h ,则)(x h '是增函数,0)1()(='≥'∴h x h ,)(x h 是增函数,1)1()(=≥h x h ,1≤a .…………………5分因此,实数a 的取值范围是10≤<a . ………………………………………6分(2)当1=a 时,xx x f 1)(-=, 011)(2>+='xx f Θ,)(x f ∴在]3,[e 上是增函数,)(x f 在]3,[e 上的最大值为38)3(=f . 要对]3,[e 内的任意k个实数kx x x ,,,21Λ都有)(16)()()(121k k x g x f x f x f ≤+++-Λ成立,必须使得不等式左边的最大值小于或等于右边的最小值,Θ当3121====-k x x x Λ时不等式左边取得最大值,e x k =时不等式右边取得最小值.21638)1(⨯≤⨯-∴k ,解得13≤k . 因此,k 的最大值为13. ………………………………………10分(3)证明(法一):当1=a 时,根据(1)的推导有,),1(+∞∈x 时,)()(x g x f >,即)1(21ln x x x -<. ………………………………………………………11分 令1212-+=k k x ,得)12121212(211212ln +---+<-+k k k k k k ,化简得144)12ln()12ln(2-<--+k kk k , ………………………………13分 ∑∑==-<--+=+ni n i i ii i n 121144)]12ln()12[ln()12ln(. ………………………14分 (法二)数学归纳法:当1=n 时,左边=34,右边=3ln , 根据(1)的推导有,),1(+∞∈x 时,)()(x g x f >,即x xx ln 21>-. 令3=x ,得3ln 2313>-,即3ln 34>. 因此,1=n 时不等式成立. ………………………………11分(另解:25>e Θ,2716625)25(44>=>∴e ,27ln 4>∴,即3ln 34>.)假设当k n =时不等式成立,即)12ln(14412+>-∑=k i iki , 则当1+=k n时,1)1(4)1(4)12ln(1)1(4)1(41441442212112-++++>-+++-=-∑∑=+=k k k k k i i i i ki k i , 要证1+=k n 时命题成立,即证)32ln(1)1(4)1(4)12ln(2+>-++++k k k k , 即证1232ln 1)1(4)1(42++>-++k k k k .在不等式x x x ln 21>-中,令1232++=k k x ,得 1)1(4)1(4)32121232(211232ln2-++=++-++<++k k k k k k k k . 1+=∴k n 时命题也成立. ………………………………………13分根据数学归纳法,可得不等式)12ln(14412+>-∑=n i ini 对一切*N n ∈成立. …14分 【说明】本题主要考查函数的性质、导数运算法则、导数的几何意义及其应用、不等式的求解与证明、数学归纳法等综合知识,考查学生的计算推理能力及分析问题、解决问题的能力及创新意识.命题: 喻秋生、姚亮、宋晓勤 审题:魏显峰。