解几专题2:圆锥曲线的齐次1
- 格式:docx
- 大小:6.25 MB
- 文档页数:7
+ = y 圆锥曲线齐次式与点乘双根法一,圆锥曲线齐次式与斜率之积(和)为定值x 2 y 2例 1:Q 1 , Q 2 为椭圆 2b 2 + b2 线OD ,求 D 的轨迹方程.= 1上两个动点,且OQ 1 ⊥ OQ 2 ,过原点O 作直线Q 1Q 2 的垂解法一(常规方法):设Q 1 (x 1 , y 1 ),Q 2 (x 2 , y 2 ) , D (x 0 , y 0 ) ,设直线Q 1Q 2 方程为 y = kx + m ,⎧ y = kx + m⎪联立⎨ x 2 ⎪⎩ 2b 2 y 2b2 1 化简可得:(2b 2k 2 + b 2 )x 2 + 4kmb 2 x + 2b 2 (m 2 - b 2 ) = 0 ,所以x 1x 2 = 2b 2 (m 2 + b 2 ) 2b 2k 2 + b 2, y 1 y 2 = b 2 (m 2 - 2b 2k 2 ) 2b 2k 2 + b 2因为OQ 1 ⊥ OQ 2 所以2b 2 (m 2 + b 2 ) b 2 (m 2 - 2b 2k 2 ) 2(m 2 - b 2 )m 2 - 2b 2k 2x 1x 2 + y 1 y 2 = 2b 2k 2 + b 2 + 2b 2k 2 + b 2 = 2k 2+1 + 2k 2 +1 =0∴3m 2 = 2b 2 (1+ k 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y对比于1 2 0y 0 y 0⎨ 20 00 0y y ⎧- x 0 = k y = kx + m ,则⎪ y 0x 代入* 中,化简可得: x 2 + y 2= 2b 2. 3 ⎪ 0 + y = m ⎪ y 0 ⎩ 0解法二(齐次式):⎧ mx + ny= 1 ⎧ mx + ny = 1 ⎪ ⎪ 设直线Q 1Q 2 方程为 mx + ny = 1,联立⎨ x 2 + y 2 =⇒ ⎨ x 2 + y 2- =⎪⎩ 2b2b21⎪⎩ 2b2 b21 0x 2 y22x 2 y 2 2 2 2 22b 2 + (m x + ny ) b 2= 0 化简可得: 2b 2 + m x b 2- n y- 2mnxy = 0 整理成关于 x , y x , y 的齐次式: (2 - 2b 2n 2 ) y 2 + (1- 2m 2b 2 ) x 2 - 4mnb 2xy = 0 ,进而两边同时除以 x 2,则2 2 2 2 2 21- 2m 2b 2(2 - 2b n )k - 4mnb k +1- 2m b= 0 ⇒ k 1k 2 =2 - 2b 2n 21- 2m 2b 2因为OQ 1 ⊥ OQ 2 OQ 1 ⊥ OQ 2 所以 k 1k 2 = -1,2 - 2b 2n2= -1∴3 = 2b 2 (m 2 + n 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y 对比于1 2⎧x 0= my 0 y 0⎪ x 2 + y 22mx + ny = 1,则⎨ 0 0y 代入* 中,化简可得: x 2+ y 2= b 2 .3 0 = n ⎪ x 2 + y 2 ⎩ 0 0例 2:已知椭圆 x 2 + 24= 1,设直线l 不经过点P (0,1) 的直线交于 A , B 两点,若直线 PA , PB 的斜率之和为-1,证明:直线l 恒过定点.⎩ ⎩解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标 新坐标(x , y ) ⇒ (x ', y ')即(0,1) ⇒ (0, 0)⎧ x ' = x ⎧ A → A ' 所以⎨ y ' = y -1 ⇒ ⎨B → B '原来 k + k = -1⇒y 1 -1 + y 2 -1 = -1 则转换到新坐标就成为: y 1 ' + y 2 '= -1PAPBx x x ' x ' 1 21 2即k 1 '+ k 2 ' = -1设直线l 方程为: mx '+ ny ' = 1原方程: x 2 + 4 y 2 = 4 则转换到新坐标就成为: x '2 + 4( y '+1)2= 4展开得: x '2 + 4 y '2+ 8 y ' = 0⎨⎪x' ⎩ ⎩ 构造齐次式: x '2 + 4 y '2+ 8 y '(mx '+ ny ') = 0整理为: (4 + 8n ) y '2 + 8mx ' y '+ x '2= 0两边同时除以 x '2 ,则(4 + 8n )k '2+ 8mk '+1 = 0所以 k '+ k ' = -8m= -1 所以 2m - 2n = 1 ⇒ m = n + 1124 + 8n 21 x '而 mx '+ ny ' = 1 ∴(n + )x '+ ny ' = 1 ⇒ n (x '+ y ') + -1 = 0 对于任意 n 都成立.2 2⎧x '+ y ' = 0则: ⎪⇒ -1 = 0 ⎩ 2⎧ x ' = 2 ⎨ y ' = -2,故对应原坐标为⎧ x = 2 ⎨ y = -1所以恒过定点(2, -1) .x 2例 3:已知椭圆y 2+ = 1,过其上一定点 P (2,1) 作倾斜角互补的两条直线,分别交于椭 8 2圆于 A , B 两点,证明:直线 AB 斜率为定值.解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标新坐标(x , y ) ⇒ (x ', y ')即(2,1) ⇒ (0, 0)所以⎧x ' =x - 2⇒⎧A →A '⎨y '=y -1⎨B →B '⎩⎩原来k +k = 0 ⇒ y1-1+y2-1= 0 则转换到新坐标就成为:y1'+y2'= 0PA PB x - 2 x -1 x ' x '1 2 1 2即k1 '+k2' = 0设直线 AB 方程为: mx '+ny ' = 1原方程: x2 + 4 y2 = 8 则转换到新坐标就成为: (x '+ 2)2 + 4( y '+1)2 = 8 展开得: x '2 + 4 y '2 + 4x '+ 8 y ' = 0构造齐次式: x '2 + 4 y '2 + 4x '(mx '+ny ') + 8 y '(mx '+ny ') = 0整理为: y '2 (4 + 8n) +x ' y '(4n + 8m) + (1 + 4m)x '2 = 0两边同时除以 x '2 ,则(4 + 8n)k '2 + (4n + 8m)k '+1+ 4m = 0所以 k '+k ' =-4n + 8m= 0 所以 n =-2m1 2 4 +8n1而mx '+ny ' = 1 ∴mx '+ (-2m) y ' = 1 ⇒mx - 2my -1 = 0 .所以k =21平移变换,斜率不变,所以直线AB 斜率为定值.21 2 1 1 2 2 1 2 1 21 二,点乘双根法例 4:设椭圆中心在原点O ,长轴在 x 轴上,上顶点为 A ,左右顶点分别为 F 1 , F 2 ,线段OF 1 ,OF 2 中点分别为 B 1 , B 2 ,且△AB 1B 2 是面积为 4 的直角三角形.(1) 求其椭圆的方程(2) 过 B 1 作直线l 交椭圆于 P , Q 两点,使 PB 2 ⊥ QB 2 ,求直线l 的方程.x 2y 2解:(1) + = 20 4(2)易知:直线l 不与轴垂直,则设直线l 方程为: y = k (x + 2) , P (x 1, y 1 ), Q (x 2 , y 2 )因为 PB ⊥ QB,则,22PB 2 QB 2 =0所以(x - 2, y )(x - 2, y ) = 0 ⇒ (x - 2)(x - 2) + k 2(x + 2)(x + 2) = 0 *⎧ y = k (x + 2) ⎪2 2 2现联立⎨ x 2+ y 2 = ⇒ x ⎩ 20 4+ 5k (x + 2) - 20 = 0则方程 x 2 + 5k 2 (x + 2)2 - 20 = 0 可以等价转化(1+ 5k 2)( x - x )( x - x ) = 012即 x 2 + 5k 2 (x + 2)2 - 20 = (1+ 5k 2)(x - x )(x - x )令 x = 2 , 4 + 80k 2- 20 = (1+ 5k 2)( x 1 - 2)( x 2 - 2) ⇒ ( x 1 - 2)( x 2 - 2) =80k 2 -16 1+ 5k 2令 x = -2 , 4 + 0 - 20 = (1+ 5k 2)( x + 2)( x + 2) ⇒ ( x + 2)( x + 2) = -161 2 1 21+ 5k 21结合(x1 - 2)(x2- 2) +k (x1 + 2)(x2 + 2) = 0 *化简可得:80k 2 -161+ 5k 2+-16= 01+ 5k 280k 2 -16k 2 -16 = 0 ⇒ 64k 2 =16 ⇒k 2 =1∴k =±1 4 2所以直线l 方程为: y =± 1(x + 2) . 22。
圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I 卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】已知椭圆x 24+y 2=1,设直线l 不经过P 2(0,1)点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.Q (2,-1)2025高中数学八大核心知识圆锥曲线平移齐次化解决圆锥曲线中斜率和积问题与定点问题(解析版)【手电筒模型·1定+2动】直线y =kx +m 与椭圆x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,P (x 0,y 0)为椭圆上异于AB 的任意一点,若k AP ⋅k BP =定值或k AP +k BP =定值(不为0),则直线AB 会过定点.(因为三条直线形似手电筒,固名曰手电筒模型).补充:若y =kx +m 过定点,则k AP ⋅k BP =定值,k AP +k BP k=定值.2020·新高考1卷·22C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.题型一已知定点求定值C :y 2=4x ,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:∠POQ =90°.椭圆E:x22+y2=1,经过点M(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A(0,-1),证明:直线AP与AQ的斜率之和为2.A1,3 2,O为坐标原点,E,F是椭圆C:x24=y23=1上的两个动点,满足直线AE与直线AF关于直线x=1对称.证明直线EF的斜率为定值,并求出这个定值;点F(1,0)为椭圆x24+y23=1的右焦点,过F且垂直于x轴的直线与椭圆E相交于C、D两点(C在D的上方),设点A、B是椭圆E上位于直线CD两侧的动点,且满足∠ACD=∠BCD,试问直线AB的斜率是否为定值,请说明理由.:x22+y2=1,A0,-1,经过点1,1,且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ斜率之和为2.C :x 24+y 23=1,过F 作斜率为k (k ≠0)的动直线l ,交椭圆C 于M ,N 两点,若A 为椭圆C 的左顶点,直线AM ,AN 的斜率分别为k 1,k 2,求证:k k 1+k k 2为定值,并求出定值.题型二已知定值求定点全国卷理)已知椭圆x 24+y 2=1,设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.C:x24+y2=1,设直线l不经过点P2(0,1)且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:直线l过定点.C:y2=2px(p>0)上的点P(1,y0)(y0>0)到其焦点的距离为2.(1)求点P的坐标及抛物线C的方程;(2)若点M、N在抛物线C上,且k PM•k PN=-12,证明:直线MN过定点.C :x 24+y 23=1,P 1,32 ,若直线l 交椭圆C 于A ,B (A ,B 异于点P )两点,且直线PA 与PB 的斜率之积为-94,求点P 到直线l 距离的最大值.E :x 2a 2+y 2b2=1(a >b >0)的离心率为33,椭圆E 的短轴长等于4.(1)求椭圆E 的标准方程;x 26+y 24=1(2)设A 0,-1 ,B 0,2 ,过A 且斜率为k 1的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交⊙C :x 2+y -1 2=1于异于点B 的点P ,Q ,设直线PQ 的斜率为k 2,直线BM ,BN 的斜率分别为k 3,k 4.①求证:k 3⋅k 4为定值; ②求证:直线PQ 过定点.圆锥曲线中斜率和积为定值问题与定点问题(平移齐次化)1.真题回顾2020新高考I 卷2.题型梳理题型1:已知定点求定值题型2:已知定值求定点【例题】已知椭圆x 24+y 2=1,设直线l 不经过P 2(0,1)点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.Q (2,-1)【平移+齐次化处理】Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理将椭圆向下平移一个单位,(为了将P 2(0,1)平移到原点)椭圆方程化为C :x 24+(y +1)2=1,(左加右减,上减下加为曲线平移)设直线l 对应的直线l ′为mx +ny =1,椭圆方程化简为14x 2+y 2+2y =0,把一次项化成二次结构,将2y 乘上mx +ny 即可此时椭圆方程变成:14x 2+y 2+2y mx +ny =0⇒2n +1 y 2+2mxy +14x 2=0Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系由于平移不会改变直线倾斜角,即斜率和仍然为-1,而P 2点此时为原点,设平移后的A (x A ,y A ),B (x B ,y B ),即y A -0x A -0+y B -0x B -0=-1,将椭圆方程两边同除以x 2,令k =y x ,得2n +1 k 2+2mk +14=0,结合两直线斜率之和为-1,即k 1+k 2=-2m 2n +1=-1,得2m =2n +1,∴m -2n =1,Step 3:得出定点,此时别忘了,还要平移回去!∴直线l ′恒过点Q ′(2,-2),向上平移一个单位进行还原在原坐标系中,直线l 过点Q (2,-1).【手电筒模型·1定+2动】直线y =kx +m 与椭圆x 2a 2+y 2b2=1a >b >0 交于A ,B 两点,P (x 0,y 0)为椭圆上异于AB 的任意一点,若k AP ⋅k BP =定值或k AP +k BP =定值(不为0),则直线AB 会过定点.(因为三条直线形似手电筒,固名曰手电筒模型).补充:若y =kx +m 过定点,则k AP ⋅k BP =定值,kAP +k BP k=定值.【坐标平移+齐次化处理】(左加右减,上减下加为曲线平移)Step 1:平移点P 到原点,写出平移后的椭圆方程,设出直线方程,并齐次化处理Step 2:根据斜率之积或斜率之和与韦达定理的关系得到等式,求得m ,n 之间的关系,Step 3:得出定点,此时别忘了,还要平移回去!【补充】椭圆E :x 2a 2+y 2b2=1(a >b >0),P (x 0,y 0)是椭圆上一点,A ,B 为随圆E 上两个动点,PA 与PB 的斜率分别为k 1,k 2.(1)k 1+k 2=0,证明AB 斜率为定值:x 0y 0⋅b 2a2(y ≠0);(2)k 1+k 2=t (t ≠0),证明AB 过定点:x 0-2y 0t,-y 0-2x 0t ⋅b 2a2 ;(3)k 1⋅k 2==b 2a 2,证明AB 的斜率为定值-y 0x 0(x 0≠0);(4)k 1⋅k 2=λλ≠b 2a 2 ,证明AB 过定点:x 0λa 2+b 2λa 2-b 2,-y 0λa 2+b 2λa 2-b 2 .以上称为手电筒模型,注意点P 不在椭圆上时,上式并不适用,常数也需要齐次化乘“12”2020·新高考1卷·22C :x 2a 2+y 2b2=1(a >b >0)的离心率为22,且过点A 2,1 .(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得DQ 为定值.【详解】(1)由题意可得:c a =224a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)[方法一]:通性通法设点M x 1,y 1 ,N x 2,y 2 ,若直线MN 斜率存在时,设直线MN 的方程为:y =kx +m ,代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0,可得x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2,因为AM ⊥AN ,所以AM ·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,根据y 1=kx 1+m ,y 2=kx 2+m ,代入整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0,所以k 2+1 2m 2-61+2k 2+km -k -2 -4km 1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,因为A (2,1)不在直线MN 上,所以2k +m -1≠0,故2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13k ≠1 ,所以直线过定点直线过定点P 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,由AM ·AN=0得:x 1-2 x 1-2 +y 1-1 -y 1-1 =0,得x 1-2 2+1-y 21=0,结合x 216+y 213=1可得:3x 12-8x 1+4=0,解得:x 1=23或x 2=2(舍).此时直线MN 过点P 23,-13 .令Q 为AP 的中点,即Q 43,13,[方法二]【最优解】:平移坐标系将原坐标系平移,原来的O 点平移至点A 处,则在新的坐标系下椭圆的方程为(x +2)26+(y +1)23=1,设直线MN 的方程为mx +ny =4.将直线MN 方程与椭圆方程联立得x 2+4x +2y 2+4y =0,即x 2+(mx +ny )x +2y 2+(mx +ny )y =0,化简得(n +2)y 2+(m +n )xy +(1+m )x 2=0,即(n +2)y x 2+(m +n )yx +(1+m )=0.设M x 1 ,y 1 ,N x 2,y 2 ,因为AM ⊥AN 则k AM ⋅k AN =y 1x 1⋅y 2x 2=m +1n +2=-1,即m =-n -3.代入直线MN 方程中得n (y -x )-3x -4=0.则在新坐标系下直线MN 过定点-43,-43,则在原坐标系下直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 的中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法三]:建立曲线系A 点处的切线方程为2×x6+1×y 3=1,即x +y -3=0.设直线MA 的方程为k 1x -y -2k 1+1=0,直线MB 的方程为k 2x -y -2k 2+1=0,直线MN 的方程为kx -y +m =0.由题意得k 1⋅k 2=-1.则过A ,M ,N 三点的二次曲线系方程用椭圆及直线MA ,MB 可表示为x 26+y 23-1+λk 1x -y - 2k 1+1 k 2x -y -2k 2+1 =0(其中λ为系数).用直线MN 及点A 处的切线可表示为μ(kx -y +m )⋅(x +y -3)=0(其中μ为系数).即x 26+y 23-1+λk 1x -y -2k 1+1 k 2x - y -2k 2+1 =μ(kx -y +m )(x +y -3).对比xy 项、x 项及y 项系数得λk 1+k 2 =μ(1-k ),①λ4+k 1+k 2 =μ(m -3k ),②2λk 1+k 2-1 =μ(m +3).③将①代入②③,消去λ,μ并化简得3m +2k +1=0,即m =-23k -13.故直线MN 的方程为y =k x -23 -13,直线MN 过定点P 23,-13.又AD ⊥MN ,D 在以AP 为直径的圆上.AP 中点43,13即为圆心Q .经检验,直线MN 垂直于x 轴时也成立.故存在Q 43,13 ,使得|DQ |=12|AP |=223.[方法四]:设M x 1,y 1 ,N x 2,y 2 .若直线MN 的斜率不存在,则M x 1,y 1 ,N x 1,-y 1 .因为AM ⊥AN ,则AM ⋅AN=0,即x 1-2 2+1-y 21=0.由x 216+y 213=1,解得x 1=23或x 1=2(舍).所以直线MN 的方程为x =23.若直线MN 的斜率存在,设直线MN 的方程为y =kx +m ,则x 2+2(kx +m )2-6=1+2k 2x -x 1 x -x 2 =0.令x =2,则x 1-2 x 2-2 =2(2k +m -1)(2k +m +1)1+2k 2.又y -m k 2+2y 2-6=2+1k 2y -y 1 y -y 2 ,令y =1,则y 1-1 y 2-1 =(2k +m -1)(-2k +m -1)1+2k 2.因为AM ⊥AN ,所以AM ⋅AN =x 1-2 x 2-2 +y 1-1 y 2-1 =(2k +m -1)(2k +3m +1)1+2k 2=0,即m =-2k +1或m =-23k -13.当m =-2k +1时,直线MN 的方程为y =kx -2k +1=k (x -2)+1.所以直线MN 恒过A (2,1),不合题意;当m =-23k -13时,直线MN 的方程为y =kx -23k -13=k x -23-13,所以直线MN 恒过P 23,-13.综上,直线MN 恒过P 23,-13,所以|AP |=423.又因为AD ⊥MN ,即AD ⊥AP ,所以点D 在以线段AP 为直径的圆上运动.取线段AP 的中点为Q 43,13 ,则|DQ |=12|AP |=223.所以存在定点Q ,使得|DQ |为定值.【整体点评】(2)方法一:设出直线MN 方程,然后与椭圆方程联立,通过题目条件可知直线过定点P ,再根据平面几何知识可知定点Q 即为AP 的中点,该法也是本题的通性通法;方法二:通过坐标系平移,将原来的O 点平移至点A 处,设直线MN 的方程为mx +ny =4,再通过与椭圆方程联立,构建齐次式,由韦达定理求出m ,n 的关系,从而可知直线过定点P ,从而可知定点Q 即为AP 的中点,该法是本题的最优解;方法三:设直线MN :y =kx +m ,再利用过点A ,M ,N 的曲线系,根据比较对应项系数可求出m ,k 的关系,从而求出直线过定点P ,故可知定点Q 即为AP 的中点;方法四:同方法一,只不过中间运算时采用了一元二次方程的零点式赋值,简化了求解x 1-2 x 2-2 以及y 1-1 y 2-1 的计算.题型一已知定点求定值C :y 2=4x ,过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点.证明:∠POQ =90°.【解析】直线PQ :x =my +4,P x 1,y 1 ,Q x 2,y 2由x =my +4,得1=x -my4则由x =my +4y 2=4x ,得:y 2=4x ⋅x -my 4,整理得:y x 2+m y x -1=0,即:y 1x 1⋅y 2x 2=-1.所以k OP ⋅k OQ =y 1y 2x 1x 2=-1,则OP ⊥OQ ,即:∠POQ =90°椭圆E :x 22+y 2=1,经过点M (1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A (0,-1),证明:直线AP 与AQ 的斜率之和为2.【解析】设直线PQ :mx +n (y +1)=1,P x 1,y 1 ,Q x 2,y 2 则m +2n =1.由mx +n (y +1)=1x 22+y 2=1,得:x 22+[(y +1)-1]2=1.则x 22+(y +1)2-2(y +1)[mx +n (y +1)]=0,故(1-2n )y +1x 2-2m y +1x +12=0.所以y 1+1x 1+y 2+1x 2=2m 2n -1=2.即k AP +k AQ =y 1+1x 1+y 2+1x 2=2.A 1,32 ,O 为坐标原点,E ,F 是椭圆C :x 24=y 23=1上的两个动点,满足直线AE 与直线AF 关于直线x =1对称.证明直线EF 的斜率为定值,并求出这个定值;【答案】(提示:k 1+k 2=0答案:12)点F (1,0)为椭圆x 24+y 23=1的右焦点,过F 且垂直于x 轴的直线与椭圆E 相交于C 、D 两点(C 在D 的上方),设点A 、B 是椭圆E 上位于直线CD 两侧的动点,且满足∠ACD =∠BCD ,试问直线AB 的斜率是否为定值,请说明理由.解法1常规解法依题意知直线AB 的斜率存在,设AB 方程:y =kx +m A x 1,y 1 ,B x 2,y 2代入椭圆方程x 24+y 23=1得:4k 2+3 x 2+8kmx +4m 2-12=0(*)∴x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3由∠ACD =∠BCD 得k AC +k BC =0∵C 1,32 ,∴y 1-32x 1-1+y 2-32x 2-1=kx 1+m -32x 1-1+kx 2+m -32x 2-1=0∴2kx 1x 2+m -32-k x 1+x 2 -2m +3=0∴2k ⋅4m 2-124k 2+3+m -32-k -8km 4k 2+3-2m +3=0整理得:(6k -3)(2k +2m -3)=0∴2k +2m -3=0或6k -3=0当2k +2m -3=0时,直线AB 过定点C 1,32,不合题意∴6k -3=0,k =12,∴直线AB 的斜率是定值12解法2齐次化:设直线AB 的方程为m (x -1)+n y -32 =1椭圆E 的方程即:3[(x -1)+1]2+4y -32 +322=12即:4y -32 2+12y -32+6(x -1)+3(x -1)2=0联立得:(4+12n )y -32 2+(12m +6n )y -32 (x -1)+(6m +3)(x -1)2=0即(4+12n )y -32x -1 2+(12m +6n )y -32x -1+(6m +3)=0∴由∠ACD =∠BCD 得k AC +k BC =y 1-32x 1-1+y 2-32x 2-1=-(12m +6n )(4+12n )=0即:n =-2m∴直线AB 的斜率为-m n =12,是定值.:x 22+y 2=1,A 0,-1 ,经过点1,1 ,且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 斜率之和为2.解法1常规解法:证明:由题意设直线PQ 的方程为y =k x -1 +1k ≠0 ,代入椭圆方程x 22+y 2=1,可得1+2k 2 x 2-4k k -1 x +2k k -2 =0,由已知得1,1 在椭圆外,设P x 1,y 1 ,Q x 2,y 2 ,x 1x 2≠0,则x 1+x 2=4k k -1 1+2k 2,x 1x 2=2k k -21+2k 2,且Δ=16k 2k -1 2-8k k -2 1+2k 2 >0,解得k >0或k <-2.则有直线AP ,AQ 的斜率之和为k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-k x 2=2k +2-k 1x 1+1x 2=2k +2-k ⋅x 1+x 2x 1x 2=2k +2-k ⋅4k k -12k k -2=2k -2k -1 =2.即有直线AP 与AQ 斜率之和2.解法2齐次化:上移一个单位,椭圆E和直线L:x 22+y -1 2=1mx +ny =1,mx +ny =1过点1,2 ,m +2n =1,m =1-2n ,x 2+2y -1 2=2,x 2+2y 2-4y =0,2y 2+x 2-4y mx +ny =0,-4n +2 y2-4mxy +x 2=0,∵x ≠0,同除x 2,得-4n +2 y x2-4m yx+1=0,k 1+k 2=-4m -4n +2=2m 1-2n =2mm=2.C :x 24+y 23=1,过F 作斜率为k (k ≠0)的动直线l ,交椭圆C 于M ,N 两点,若A 为椭圆C 的左顶点,直线AM ,AN 的斜率分别为k 1,k 2,求证:k k 1+kk 2为定值,并求出定值.将椭圆沿着AO 方向平移,平移后的椭圆方程为(x −2)24+y 23=1⇒x 24+y 23+x =0设直线MN 方程为mx +ny =1,代入椭圆方程得x 24+y 23+x (mx +ny )=0,两侧同时除以x 2得13y x 2−n y x +1−4m 4=0,k 1+k 2=3n ,k 1k 2=34−3m ,k =k MN=−mn,因为mx +ny =1过定点F (3,0)⇒m =13,所以k k 1+kk 2=4题型二已知定值求定点全国卷理)已知椭圆x 24+y 2=1,设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.(1)根据椭圆的对称性,P 3-1,32 ,P 41,32两点必在椭圆C 上,又P 4的横坐标为1,∴椭圆必不过P 11,1 ,∴P 20,1 ,P 3-1,32 ,P 41,32 三点在椭圆C 上,把P 20,1 ,P 3-1,32 代入椭圆C ,得:1b 2=11a 2+34b2=1,解得a 2=4,b 2=1,∴椭圆C 的方程为x 24+y 2=1.(2):解法1常规解法:①当斜率不存在时,设l :x =m ,A m ,y A ,B m ,-y A ,∵直线P 2A 与直线P 2B 的斜率的和为-1,∴k P 2A +k P 2B =y A -1m +-y A -1m =-2m=-1,解得m =2,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l :y =kx +t ,t ≠1 ,A x 1,y 1 ,B x 2,y 2 ,联立y =kx +tx 2+4y 2-4=0,整理,得1+4k 2 x 2+8ktx +4t 2-4=0,x 1+x 2=-8kt 1+4k 2,x 1x 2=4t 2-41+4k 2,则k P 2A+k P 2B =y 1-1x 1+y 2-1x 2=x 2kx 1+t -x 2+x 1kx 2+t -x 1x 1x 2=8kt 2-8k -8kt 2+8kt1+4k 24t 2-41+4k 2=8k t -14t +1 t -1=-1,又t ≠1,∴t =-2k -1,此时Δ=-64k ,存在k ,使得Δ>0成立,∴直线l 的方程为y =kx -2k -1,当x =2时,y =-1,∴l 过定点2,-1 .解法2齐次化:下移1个单位得E :x 24+y +1 2=1⇒x 24+y 2+2y =0,设平移后的直线:A B :mx +ny =1,齐次化:x 2+4y 2+8y mx +ny =0,8n +4 y 2+8mxy +x 2=0,∵x ≠0同除以x 2,8n +4 y x 2+8m y x +1=0,8n +4 k 2+8mk +1=0,k 1+k 2=-8m 8n +4=-1,8m =8n +4,2m -2n =1,∴mx +ny =1过2,-2 ,上移1个单位2,-1 .C :x 24+y 2=1,设直线l 不经过点P 2(0,1)且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:直线l 过定点.不平移齐次化【解析】设直线l :mx +n (y -1)=1......(1)由C :x 24+y 2=1,得x 24+[(y -1)+1]2=1即:x 24+(y -1)2+2(y -1)=0......(2)由(1)(2)得:x 24+(y -1)2+2(y -1)[mx +n (y -1)]=0整理得:(1+2n )y -1x2+2m ⋅y -1x +14=0则k P 2A +k P 2B =y 1-1x 1+y 2-1x 2=-2m1+2n =-1,则2m =2n +1,代入直线l :mx +n (y -1)=1,得:l :(2n +1)x +2n (y -1)=2显然,直线过定点(2,-1).C :y 2=2px (p >0)上的点P (1,y 0)(y 0>0)到其焦点的距离为2.(1)求点P 的坐标及抛物线C 的方程;(2)若点M 、N 在抛物线C 上,且k PM •k PN =-12,证明:直线MN 过定点.答案:(2)(9,-2)C :x 24+y 23=1,P 1,32 ,若直线l 交椭圆C 于A ,B (A ,B 异于点P )两点,且直线PA 与PB 的斜率之积为-94,求点P 到直线l 距离的最大值.解法1齐次化:公共点P 1,32 ,左移1个单位,下移32个单位,C :x +124+y +3223=1A B:mx +ny =1,3x 2+6x +4y 2+3y =0,4y 2+3x 2+6x +2y mx +ny =0,12n +4 y 2+62m +n xy +6m +3 x 2=0,等式两边同时除以x 2,12n +4 y x2+62m +n yx+6m +3 =0,k PA ⋅k PB =-94,6m +312n +4=-94,-12m -94n =1,mx +ny =1过-12,-94 ,右移1个单位,上移32个单位,过Q 12,-34,∴P 到直线l 的距离的最大值为PQ 的值为1-12 2+32--34 2=854,由于854>12,∴点P 到直线l 距离的最大值854已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的离心率为33,椭圆E 的短轴长等于4.由k 3⋅k 4=k BP ⋅k BQ ,即t -t 2=-2,∴t =22+83,此时Δ2=4 k 29>0,∴PQ 的方程为y =k x +22(1)求椭圆E 的标准方程;x 6+y 24=1(2)设A 0,-1,B 0,2,过A 且斜率为k 1的动直线l 与椭圆E 交于M ,N 两点,直线BM ,BN 分别交⊙C :x 2+ y -12=1于异于点B 的点P ,Q ,设直线PQ 的斜率为k 2,直线BM ,BN 的斜率分别为k 3,k 4.①求证:k 3⋅k 4为定值;②求证:直线PQ 过定点.3答案:(2)-2;(3) 0,2【小问1详解】4c=33 由题意 a b 2+c 2=a 22b = 解得2==ba c =2所以椭圆的标准方程为:x 6+62y 24=1;【小问2详解】2①设MN 的方程为y =k 1x -1,与x 6+y 24=1联立得: 3k 2 1+2x 2-6k 1x -9=0,x 1+x 2=6k 13k 21+293k 21+2 1+1>0设M (x 1,y 1),N (x 2,y 2),则 x 1x 2=- Δ1=72 2k 2,∴k 3⋅k 4=y 1-2x 1⋅y 2-2x 2= k 1x 1-3 2x 2-3 k x 1x 2=k 21x 1x 2-3k 1(x 1+x 2)+9x 1x 2=-2【法二】平移坐标系+齐次化处理将坐标系中的图像整体向下平移2个单位,2平移后的椭圆方程为:x 6+ 22y +4=1,整理得:2x 2+3y 2+12y =0,设平移后的直线MN 的方程为:mx +ny =1,代入点 0,-3得mx -y3=1,y则有2x 2+3y 2+12y mx - 3=0,整理得:-y 2+12mxy +2x 2=0y令k =x,将-y 2+12mxy +2x 2=0两边同除x 2,得-k 2+12mk +2=0,故k 3⋅k 4=-2y m '说明:因为平移后k 3=x m 'y n ',k 4=x n ',而式子-y 2+12mxy +2x 2=0中x ,y 的值对应平移后的m '和n '所以同除x 2后得到的就是一个以k 3和k 4为根一个关于k 的一元二次方程.②设PQ 的方程为y =k 2x +t ,与x 2+ y -12=1联立 k 22+1x 2+2k 2 t -1x +t t -2=0,2k 2t -1k 22+1t -2tk 22+1 2-t 2+2t >0设P (x 3,y 3),Q (x 4,y 4)则 x 3x 4= Δ2=4 k 2 x 3+x 4=-∴k BP ⋅k BQ =y 3-2x 3⋅y 4-2x 4= k 2x 3+t -2 2x 4+t -2 k x 3x 4=k 22x 3x 4+k 2 t -2 x3+x 4+ t -22x 1x 2=k 2 2t t -2-2k 2 2 t -2 t -1+ k 2 2+1 t -22t t -2=k 22t -2k 22 t -1 2+1 t -2 + k 2t =t -2t ,故直线PQ 恒过定点0,2.破解离心率问题之建立齐次式和几何化一.选择题(共9小题)1如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率为()A.63B.233C.12D.222如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,且PF 1=3F 1Q ,若PF 2垂直于x 轴,则椭圆C 的离心率为()A.13B.12C.33D.323设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点.圆x 2+y 2=a 2+b 2与双曲线C 的右支交于点A ,且2|AF 1|=3|AF 2|,则双曲线离心率为()A.125B.135C.132D.134如图,F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 是双曲线与圆x 2+y 2=a 2+b 2在第二象限的一个交点,点Q 在双曲线上,且F 2Q =2F 1P,则双曲线的离心率为()A.102B.173C.394D.3755设圆锥曲线Γ的两个焦点分别为F 1,F 2.若曲线Γ上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=5:4:2,则曲线Γ的离心率等于()A.43或12B.43或34C.2或47D.43或476设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,AF 2⊥x 轴,若|AF 1|,|AF 2|,|F 1F 2|成等差数列,则椭圆的离心率为()A.13B.19C.223D.247如图,F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 是双曲线与圆x 2+y 2=a 2+b 2在第二象限的一个交点,点Q 在双曲线上,且F 1P =13F 2Q,则双曲线的离心率为()A.102B.173C.394D.3758如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该双曲线离心率e 的取值范围为()A.[2,3+1]B.[3,2+3]C.[2,2+3]D.[3,3+1]9已知在菱形ABCD 中,∠BCD =60°,曲线C 1是以A ,C 为焦点,且经过B ,D 两点的椭圆,其离心率为e 1;曲线C 2是以A ,C 为焦点,渐近线分别和AB ,AD 平行的双曲线,其离心率为e 2,则e 1e 2=()A.12B.33C.1D.233二.多选题(共1小题)10已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,下列结论正确的是()A.椭圆的离心率e =3-1B.双曲线的离心率e =2C.椭圆上不存在点A 使得AF 1 ⋅AF 2<0 D.双曲线上存在点B 使得BF 1 ⋅BF 2<0三.填空题(共9小题)11已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 与双曲线N 的离心率之积为.12如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆x 2a 2+y 2b2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点为M ,且OT =3OM则该椭圆的离心率为.13如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是.14如图,在平面直角坐标系xOy中,F为椭圆x2a2+y2b2=1(a>b>0)的右焦点,B,C 分别为椭圆的上、下顶点,直线BF与椭圆的另一个交点为D,且直线CD的斜率为12,则该椭圆的离心率为.15如图,在平面直角坐标系xOy中,点A位椭圆E:x2a2+y2b2=1(a>b>0)的左顶点,点B、C在椭圆上,若四边形OABC为平行四边形,且∠OAB=45°,则椭圆E的离心率等于.ABCO xy16已知F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点,过F1的直线l与圆x2+y2=a2相切,且与双曲线的两渐近线分别交于点A,B,若(F2A+F2B)∙AB=0,则该双曲线C的离心率为.17已知F1,F2分别是双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点,c是双曲线C的半焦距,点A 是圆O:x2+y2=c2上一点,线段F2A交双曲线C的右支于点B,且有|F2A|=a,AB=23AF2,则双曲线C的离心率是.18设圆锥曲线C的两个焦点分别为F1,F2,若曲线C上存在点P满足|PF1|:|F1F2|:|PF2|=6:5:4,则曲线C的离心率等于.19已知双曲线x2a2-y2b2=1(a>0,b>0)右支上有一点A,它关于原点的对称点为B,双曲线的右焦点为F,满足AF∙BF=0,且∠ABF=π6,则双曲线的离心率e的值是.破解离心率问题之建立齐次式和几何化一.选择题(共9小题)1如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率为()A.63B.233C.12D.22【解答】解:设右焦点F (c ,0),将y =b 2代入椭圆方程可得x =±a 1-b 24b2=±32a ,可得B -32a ,b 2 ,C 32a ,b2,由∠BFC =90°,可得k BF ∙k CF =-1,即有b2-32a -c ∙b232a -c =-1,化简为b 2=3a 2-4c 2,由b 2=a 2-c 2,即有3c 2=2a 2,由e =c a ,可得e 2=c 2a2=23,可得e =63,故选:A .2如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,且PF 1=3F 1Q ,若PF 2垂直于x 轴,则椭圆C 的离心率为()A.13B.12C.33D.32【解答】解:设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),设P (m ,n ),n >0,由PF 2垂直于x 轴可得m =c ,由n 2=b 21-c 2a 2=b 4a2,可得n =b 2a ,设Q (s ,t ),由PF 1 =3F 1Q ,可得-c -c =3(s +c ),-b 2a=3t ,解得s =-53c ,t =-b23a,将Q -53c ,-b 23a 代入椭圆方程可得259⋅c 2a 2+b 29a2=1,即25c 2+a 2-c 2=9a 2,即有a 2=3c 2,则e =c a =33,故选:C .3设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点.圆x 2+y 2=a 2+b 2与双曲线C 的右支交于点A ,且2|AF 1|=3|AF 2|,则双曲线离心率为()A.125B.135C.132D.13【解答】解:可设A 为第一象限的点,且|AF 1|=m ,|AF 2|=n ,由题意可得2m =3n ,①由双曲线的定义可得m -n =2a ,②由勾股定理可得m 2+n 2=4(a 2+b 2),③联立①②③消去m ,n ,可得:36a 2+16a 2=4a 2+4b 2,即b 2=12a 2,则e =c a =1+b 2a2=1+12=13,故选:D .4如图,F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 是双曲线与圆x 2+y 2=a 2+b 2在第二象限的一个交点,点Q 在双曲线上,且F 2Q =2F 1P,则双曲线的离心率为()A.102B.173C.394D.375【解答】解:设F 1(-c ,0),F 2(c ,0),由x 2+y 2=a 2+b 2=c 2x 2a2-y 2b2=1整理可得:(b 2+a 2)x 2=a 2c 2+a 2b 2,即c 2x 2=a 2(a 2+b 2)+a 2b 2=a 2(a 2+2b 2),因为点P 是双曲线与圆x 2+y 2=a 2+b 2在第二象限的一个交点,所以x p =-a a 2+2b 2c,y 2=c 2-x 2=c 2-a 2c 2+a 2b 2c 2=c 4-a 2c 2-a 2b 2c 2=c 2(c 2-a 2)-a 2b 2c 2=(c 2-a 2)b 2c 2=b 4c 2,所以点P 坐标为-a a 2+2b 2c ,b 2c,设点Q (m ,n ),则F 1P =c -a a 2+2b 2c ,b 2c,F 2Q=(m -c ,n ),由F 2Q =2F 1P可得2c -2a a 2+2b 2c =m -c n =2b 2c ,所以m =3c -2a a 2+2b 2c n =2b 2c,因为点Q (m ,n )在双曲线x2a 2-y 2b 2=1上,所以3c -2a a 2+2b 2c2a 2-2b 2c2b 2=1,整理可得:9c 2a 2-12b 2+c 2a +4(b 2+c 2)c 2-4b 2c2=1,所以9c 2a 2=12b 2+c 2a -3,即3c 2a2+1=4b 2+c 2a ,两边同时平方可得:9c 4a4+6c 2a 2+1=16b 2+16c 2a 2=16c 2-16a 2+16c 2a 2=32c 2a 2-16,所以9c 4a4-26c 2a 2+17=0,即9e 4-26e 2+17=0,(9e 2-17)(e 2-1)=0,可得:e 2=179或e 2=1(舍),所以e =173,故选:B .5设圆锥曲线Γ的两个焦点分别为F 1,F 2.若曲线Γ上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=5:4:2,则曲线Γ的离心率等于()A.43或12B.43或34C.2或47D.43或47【解答】解:由题意可设:|PF 1|=5t ,|F 1F 2|=4t ,|PF 2|=2t (t >0).当圆锥曲线Γ为椭圆时,2c =|F 1F 2|=4t ,2a =|PF 1|+|PF 2|=7t .∴离心率e =c a =47;当圆锥曲线Γ为双曲线时,2c =|F 1F 2|=4t ,2a =|PF 1|-|PF 2|=3t ,∴离心率e =c a =43.综上可知,圆锥曲线Γ的离心率为43或47.故选:D .6设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,AF 2⊥x 轴,若|AF 1|,|AF 2|,|F 1F 2|成等差数列,则椭圆的离心率为()A.13B.19C.223D.24【解答】解:∵|AF 1|,|AF 2|,|F 1F 2|成等差数列,∴2|AF 2|=|AF 1|+|F 1F 2|,由椭圆定义可得,|AF 1|+|AF 2|=2a ,∴|AF 2|=b 2a ,|AF 1|=2a -b 2a ,4c 2+b 2a 2 =2a -b 2a 4,2b 2a =2a -b 2a +2c ,可得3e 2+2e -1=0,所以椭圆的离心率e =13;故选:A .7如图,F 1,F2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点P 是双曲线与圆x 2+y 2=a 2+b 2在第二象限的一个交点,点Q 在双曲线上,且F 1P =13F 2Q,则双曲线的离心率为()A.102B.173C.394D.375【解答】解:F 1(-c ,0),F 2(c ,0),联立x 2+y 2=a 2+b 2=c 2x 2a2-y 2b2=1,解得x 2=(a 2+2b 2)a 2c 2y 2=b 4c 2,∵P 在第二象限,∴P -a c a 2+2b 2,b 2c,设Q (m ,n ),则F 1P =c -a c a 2+2b 2,b 2c,F 2Q =(m -c ,n ),由F 1P =13F 2Q ,得13(m -c )=c -a a 2+2b 2c ,13n =b 2c ,∴m =4c -3a a 2+2b 2c ,n =3b 2c,又m 2a 2-n 2b 2=1,∴16c 2a 2-24c 2+b 2a +9(c 2+b 2)c 2-9b 2c2=1,化简得:4c 4a 4-14c2a 2+10=0,即2e 4-7e 2+5=0,解得:e 2=52或e 2=1(舍).可得e =102(e >1).故选:A .8如图,已知双曲线x 2a 2-y 2b2=1(a >0,b >0)上有一点A ,它关于原点的对称点为B ,点F 为双曲线的右焦点,且满足AF ⊥BF ,设∠ABF =α,且α∈π12,π6,则该双曲线离心率e 的取值范围为()A.[2,3+1]B.[3,2+3]C.[2,2+3]D.[3,3+1]【解答】解:在Rt ΔABF 中,|OF |=c ,∴|AB |=2c ,在直角三角形ABF 中,∠ABF =α,可得|AF |=2c sin α,|BF |=2c cos α,取左焦点F ,连接AF ,BF ,可得四边形AFBF 为矩形,∴||BF |-|AF ||=|AF |-|AF |=2c |cos α-sin α|=2a ,∴e =c a =1|cos α-sin α|=12cos α+π4,∵π12≤α≤π6,∴π3≤α+π4≤5π12,∴cos α+π4 ∈6-24,12 ,2cos α+π4 ∈3-12,22,∴e ∈[2,3+1],故选:A .9已知在菱形ABCD 中,∠BCD =60°,曲线C 1是以A ,C 为焦点,且经过B ,D 两点的椭圆,其离心率为e 1;曲线C 2是以A ,C 为焦点,渐近线分别和AB ,AD 平行的双曲线,其离心率为e 2,则e 1e 2=()A.12B.33C.1D.233【解答】解:∵∠BCD =60°,∴∠BCA =30°,设OB =1,则BC =2,OC =3,∵椭圆C 1是以A ,C 为焦点,且经过B ,D 两点的椭圆,∴c =OC =3,2a =BA +BC =2+2=4,得a =2,则椭圆的离心率为e 1=c a =32,则双曲线C 2是以A ,C 为焦点渐近线分别和AB ,AD 平行的双曲线,则双曲线中c =OC =3,AB 的斜率k =tan30°=33,即b a =33,则b 2a 2=13,即c 2-a 2a 2=c 2a 2-1=13,得e 22=13+1=43,则e 2=43=23,则e 1e 2=32×23=1,故选:C .二.多选题(共1小题)10已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,下列结论正确的是()A.椭圆的离心率e =3-1B.双曲线的离心率e =2C.椭圆上不存在点A 使得AF 1 ⋅AF 2<0D.双曲线上存在点B 使得BF 1 ⋅BF 2<0【解答】解:椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1,若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,设椭圆的右焦点坐标(c ,0),则正六边形的一个顶点c 2,3c2,对于A .将c 2,3c 2 代入椭圆方程,得:c 24a 2+3c 24b 2=1,结合e 1=c a,a 2=b 2+c 2,可得e 41-8e 21+4=0,因为e 1∈(0,1),解得e 1=3-1,故A 正确;对于B .把c 2,3c 2 代入双曲线的渐近线方程y =n m x (不妨设m >0,n >0),得32c =n m ×12c ,所以n m=3,则双曲线的离心率e 2=1+n m2=2,故B 正确;对于C .当A 点是短轴的端点时,∠F 1AF 2最大,由c a =3-1,得c 2a 2=4-23,又c 2=a 2-b 2,从而可得b 2a 2=23-3,c 2b2=4-2323-3=233>1,所以c >b ,则12∠F 1AF 2>π4,即∠F 1AF 2>π2,所以AF 1 .AF 2 <0,故C 错误;对于D .当B 点在实轴的端点时,向量BF 1 与向量BF 2 夹角为π,此时,BF 1 .BF 2<0,故D 正确;故选:ABD .三.填空题(共9小题)11已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 与双曲线N 的离心率之积为 2(3-1) .【解答】解:不妨设m ,n >0,可设椭圆的焦点坐标F (-c ,0),C (c ,0),正六边形的一个顶点B 12c ,32c,由|FB |+|CB |=2a ,即c +3c =2a ,解得椭圆的e 1=c a =23+1=3-1;双曲线的渐近线的斜率为tan60°=3,即nm=3,可得双曲线的离心率为e 2=1+n 2m2=1+3=2.即有椭圆M 与双曲线N 的离心率之积为2(3-1).故答案为:2(3-1).12如图,在平面直角坐标系xOy 中,A 1,A 2,B 1,B 2为椭圆x 2a 2+y 2b2=1(a >b >0)的四个顶点,F 为其右焦点,直线A 1B 2与直线B 1F 相交于点T ,线段OT 与椭圆的交点为M ,且OT =3OM则该椭圆的离心率为 5-172 .【解答】解:直线A 1B 2的方程为y =b a x +b ,直线B 1F 的方程为y =bcx -b ,联立方程组y =ba x +by =b c x -b,解得T 2ac a -c ,ab +bca -c .∵OT =3OM,∴M2ac 3(a -c ),ab +bc 3(a -c ),把M 代入椭圆方程得:4a 2b 2c 29(a -c )2+a 2b 2(a +c )29(a -c )2=a 2b 2,即4c 2+(a +c )2=9(a -c )2,化简得:2a 2+c 2-5ac =0,∴e 2-5e +2=0,解得e =5-172或e =5+172(舍去).故答案为:5-172.13如图,在平面直角坐标系xOy 中,已知A ,B 1,B 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右、下、上顶点,F 是椭圆C 的右焦点.若B 2F ⊥AB 1,则椭圆C 的离心率是 5-12 .【解答】解:F (c ,0),A (a ,0),B 1(0,-b ),B 2(0,b ),∴FB 2 =(-c ,b ),B 1A =(a ,b ),∵B 2F ⊥AB 1,∴FB 2 ∙B 1A=-ac +b 2=0,∴a 2-c 2-ac =0,化为:e 2+e -1=0,0<e <1.解得e =5-12,故答案为:5-12.14如图,在平面直角坐标系xOy 中,F 为椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,B ,C 分别为椭圆的上、下顶点,直线BF 与椭圆的另一个交点为D ,且直线CD 的斜率为12,则该椭圆的离心率为 22 .【解答】解:由题意可得B (0,b ),C (0,-b ),F (c ,0),由直线BF 的方程bx +cy =bc 代入椭圆方程b 2x 2+a 2y 2=a 2b 2,消去y ,可得x =2a 2ca 2+c 2,y =b (c 2-a 2)c 2+a 2,即为D 2a 2c a 2+c 2,b (c 2-a 2)c 2+a2,直线CD 的斜率为12,可得b (c 2-a 2)+b (c 2+a 2)2a 2c=12,即有a 2=2bc ,由a 2=b 2+c 2,可得b =c =22a ,即e =c a =22.故答案为:22.15如图,在平面直角坐标系xOy 中,点A 位椭圆E :x 2a 2+y 2b2=1(a >b >0)的左顶点,点B 、C 在椭圆上,若四边形OABC 为平行四边形,且∠OAB =45°,则椭圆E 的离心率等于 63 .A B CO xy【解答】解:∵AO 是与x 轴重合的,且四边形OABC 为平行四边形,∴BC ⎳OA ,则B 、C 两点的纵坐标相等,B 、C 的横坐标互为相反数,∴B 、C 两点是关于y 轴对称的.由题知:OA =a四边形OABC 为平行四边形,则BC =OA =a ,可设B -a 2,y C a 2,y ,代入椭圆方程解得:|y |=32b ,设D 为椭圆的右顶点,由于∠OAB =45°,四边形OABC 为平行四边形,则∠COx =45°,对C 点:tan45°=32b a 2=1,解得a =3b ,根据a 2=c 2+b 2得a 2=c 2+13a 2,即有c 2=23a 2,e 2=23,即e =63.故答案为:63.16已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与圆x 2+y 2=a 2相切,且与双曲线的两渐近线分别交于点A ,B ,若(F 2A +F 2B )∙AB =0,则该双曲线C 的离心率为 3 .【解答】解:法1(代数法):因为l 与⊙O :x 2+y 2=a 2相切,所以直线斜率k =±a b,由对称性不妨考虑k =a b 情形.又双曲线C 的渐近线方程为y =±b ax ,则l 垂直其中一条渐近线,故l 与一渐近线的交点A ,即为该渐近线与⊙O 在第二象限的交点,可得A -a 2c ,ab c ,如图,设AB 中点为M ,由(F 2A +F 2B )∙AB =0,即2F 2M ∙AB =0,则有F 2M ⊥l ,又OA ⊥l ,故OA ⎳F 2M ,且O 为F 1F 2的中点,所以A 为F 1M 的中点,则A ,M 三等分F 1B ,由F 1B =3F 1A ,得B 3b 2c -c ,3ab c,由B 在另一渐近线y =b ax 上,即有3ab c =b a 3b 2c-c ,则c 2=3a 2,故离心率e =3.法2(几何法):设∠BOF 2=θ,则∠AOB =π-2θ,由题意易知|AF 1|=b ,|AB |=2b ,在Rt ΔOAB 中,tan ∠AOB =tan (π-2θ)=2b a ,又tan θ=b a ,则有-2b a1-b a 2=2b a,即b 2=c 2-a 2=2a 2,故离心率e =3.法3(参数方程法):直线l 的参数方程为x =-c +b c t y =a c t (t 为参数),代入y =b a x ,可得B 对应的参数t B =bc 2b 2-a 2又A 对应的参数t A =b ,由(F 2A +F 2B )∙AB =0及l 与⊙O :x 2+y 2=a 2相切,可知F 1B =3F 1A ,即t B =3t A ,则bc 2b 2-a2=3b ,则有c 2=3a 2,故离心率e =3.故答案为:3.17已知F 1,F 2分别是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,c 是双曲线C 的半焦距,点A 是圆O :x 2+y 2=c 2上一点,线段F 2A 交双曲线C 的右支于点B ,且有|F 2A |=a ,AB =23AF 2 ,则双曲线C 的离心率是 62 .【解答】解:由|F 2A |=a ,AB =23AF 2 ,可得|AB |=23a ,|BF 2|=13a ,由双曲线的定义可得|BF 1|=2a +13a =73a ,在直角三角形ABF 1中,|AF 1|2=|BF 1|2-||AB 2=499a 2-49a 2=5a 2, 在直角三角形AF1F 2中,|F 1F 2|2=|AF 1|2+|AF 2|2,即为4c 2=5a 2+a 2=6a 2,则e =c a =62.故答案为:62.18设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|:|F 1F 2|:|PF 2|=6:5:4,则曲线C 的离心率等于 12或52 .【解答】解:∵|PF 1|:|F 1F 2|:|PF 2|=6:5:4,∴|PF 1|+|PF 2|=2|F 1F 2|,①若圆锥曲线C 是椭圆,则2a =4c ,∴e =c a =12;②若圆锥曲线C 是双曲线,则e =2c 2a =|F 1F 2||PF 1|-|PF 2|=56-4=52.故答案为:12或52.19已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)右支上有一点A ,它关于原点的对称点为B ,双曲线的右焦点为F ,满足AF ∙BF =0,且∠ABF =π6,则双曲线的离心率e 的值是 1+3 .【解答】解:AF ∙BF =0,可得AF ⊥BF ,在Rt ΔABF 中,|OF |=c ,∴|AB |=2c ,在直角三角形ABF 中,∠ABF =π6,可得|AF |=2c sin π6=c ,|BF |=2c cos π6=3c ,取左焦点F ,连接AF ,BF ,可得四边形AFBF 为矩形,∴||BF |-|AF ||=|AF |-|AF |=3c -c =2a ,∴e =c a =23-1=3+1.故答案为:3+1.。
齐次式法与圆锥曲线斜率有关的一类问题本文介绍了利用“齐次式”法解决圆锥曲线斜率有关的顶点定值问题。
针对定点问题,文章提出了引入变量参数表示直线方程、数量积、比例关系等的方法,以寻找不受参数影响的量。
对于直线过定点问题,可以通过设出直线方程,利用韦达定理和已知条件找出k和m的一次函数关系式,代入直线方程解决。
在圆锥曲线中,有很多常见的定点模型,熟练掌握这些结论可以事半功倍。
举例来说,文章给出了一个07山东省的例题。
该题要求证明直线l过定点,并求出该定点的坐标。
通过设定直线方程,利用已知条件和韦达定理,可以求出直线方程中的k和m的关系式,代入方程解得定点坐标。
文章还提供了一些解题技巧,例如如何选择直线,如何转化题目条件等。
总的来说,本文介绍了一种解决定点问题的方法,并以圆锥曲线为例,详细说明了几种常见的定点模型。
文章语言简洁明了,逻辑清晰,对于解决类似问题有很大的帮助。
练7:已知点A(-1,0),B(1,-1)和抛物线C:y=4x,O为坐标原点,过点A的动直线l交抛物线C于M、P,直线MB交抛物线C于另一点Q,如图。
I)证明:OM·OP为定值;II)若△POM的面积为5,求向量OM与OP的夹角;III)证明直线PQ恒过一个定点。
解:(I)设点M(m,4m),则动直线l的斜率为k=4/m。
由于A、M、P三点共线,故有k·(-1)+4=m,即m=4/(k+1)。
又因为直线MB与抛物线C有两个交点,设另一点为Q(q,4q),则有q=-1/4.因此,OM·OP=|(m,4m)·(q,4q)|=|16(mq)^2|=|16/(k+1)^2|,为定值。
II)设∠PO M=α,则OM·OP·cosα=5.又因为△POM的面积为5,所以OM·OP·sinα=5.由此可得tanα=1,又因为α∈(0,π),所以α=45°。
因此,向量OM与OP的夹角为45°。
巧用齐次化方法解圆锥曲线问题
解:齐次化方法可以通过将圆锥曲线转换为齐次方程组来求解。
首先,我们将圆锥曲线的参数方程转换为齐次方程组:
z= ax^2 + by^2 + c
这可以写成:
x^2/a + y^2/b - z/c = 0
求解这个齐次方程组的方法是用拉格朗日原理,即:
L(x,y,z,λ) = x^2/a + y^2/b - z/c + λ(x^2+y^2-z) = 0
这样,我们可以从这个齐次方程组中求解x,y,z和λ。
继续:
将上述齐次方程组对x、y和z求导,可得:
∂L/∂x = 2x/a + 2λx = 0
∂L/∂y = 2y/b + 2λy = 0
∂L/∂z = -1/c + λ = 0
由此,有:
x = -aλ
y = -bλ
z = cλ
将其代入齐次方程组,获得:
-a^2λ^2 + -b^2λ^2 + cλ = 0
根据齐次方程的特点,λ必须为0,所以:
x = 0
y = 0
z = 0
因此,齐次化方法可以求解出圆锥曲线的参数方程:x = 0, y = 0, z = 0。
继续:
上述结果表明,x、y和z值均为0,意味着圆锥曲线的中心位于坐标原点。
此外,通过使用拉格朗日方程,我们可以计算出λ的值:
λ = 0
因此,圆锥曲线的方程为:
z = 0
也就是说,圆锥曲线是一条平面曲线,其中心位于坐标原点。
圆锥曲线同构齐次化全文共四篇示例,供读者参考第一篇示例:圆锥曲线在数学中是一类非常经典的曲线,包括圆、椭圆、抛物线和双曲线等。
圆锥曲线同构齐次化是在研究圆锥曲线的过程中常用的一种方法,它可以简化问题的处理,并帮助我们更好地理解曲线的性质。
本文将介绍圆锥曲线同构齐次化的基本概念和应用,希望能帮助读者更好地理解这一重要的数学工具。
一、圆锥曲线的定义和分类在介绍圆锥曲线同构齐次化之前,我们先来简单了解一下圆锥曲线的定义和分类。
圆锥曲线是平面上的一类曲线,它们可以用数学方程表示。
在笛卡尔坐标系中,圆锥曲线的一般方程可以写成:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0其中A、B、C、D、E、F为常数,且至少有一个系数不为零。
通过选择不同的系数,我们可以得到不同类型的圆锥曲线。
根据方程中系数的不同取值,圆锥曲线可以分为四类:圆、椭圆、抛物线和双曲线。
它们的特点如下:- 圆:A = C,B = 0,A、B、C均为正数或均为负数。
- 椭圆:A > 0,B^2 - 4AC < 0。
- 抛物线:B^2 - 4AC = 0。
- 双曲线:B^2 - 4AC > 0。
圆锥曲线同构齐次化是一种数学方法,通过将圆锥曲线的方程进行特定的变换,使得曲线的表达更加简洁、清晰,方便研究和分析。
具体来说,圆锥曲线同构齐次化的定义如下:设u = ax + by,v = cx + dy其中a、b、c、d为待定系数,使得曲线的方程变为:三、圆锥曲线同构齐次化的应用圆锥曲线同构齐次化在数学研究中有着广泛的应用,以下是一些常见的应用场景:1. 研究圆锥曲线的性质通过同构齐次化,我们可以将圆锥曲线的方程化简为一个更加简单的形式,从而更容易研究其性质。
可以求得曲线的焦点、方程的焦点、方程的直线等信息。
2. 解决圆锥曲线相关问题在数学问题中,有时需要对圆锥曲线进行分析和求解。
通过同构齐次化,可以简化问题的处理,让求解过程更加直观、便捷。
大招一 齐次化妙解圆锥曲线斜率问题“齐次”,即次数相等的意思,例如22()f x ax bxy cy =++称为二次齐式,即二次齐次式的意思,因为()f x 中每一项都是关于x 、y 的二次项。
当圆锥曲线遇到斜率之和或者斜率之积的问题,可以先平移图形,将公共点平移到原点,注意平移口诀是 “左加右减,上减下加”,你没有看错,“上减下加”,因为是在y 同侧进行加减,我们以往记的“上加下减”都是在y 的异侧。
例如要证明直线AP 与AQ 的斜率之和或者斜率之积为定值,将公共点A 平移到原点,设平移后的直线为1mx ny +=(为什么这样设?因为这样齐次化更加方便),与圆锥联立,一次项乘以mx ny +,常数项乘以2mx ny +(),构造220ay bxy cx ++=,然后等式两边同时除以2x (前面注明x 不等于0),得到2()0y y a b c x x++=,化简为20ak bk c ++=,可以直接利用韦达定理得出斜率之和或者斜率之积,即可得出答案,如果是过定点题目,还需要还原直线,之前如何平移,现在反平移回去。
总结方法为:1平移,2联立并齐次化,3同除x 2,4韦达定理,证明完毕,如果过定点,还需要还原。
优点是:大大减小了计算量,提高准确率!如果你掌握这个方法,你会知道以前的方法有多么的low !缺点:1mx ny +=不能表示过圆点的直线。
例1.已知抛物线C :y 2=2px (p >0)上一点A (2,a )到其焦点的距离为3. (Ⅰ)求抛物线C 的方程;(Ⅱ)过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点,证明:∠POQ=90°.例2、(2015年陕西文科卷)如图,椭圆经过点,且离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.2222:1(0)x y E a b a b+=>>(0,1)A-2E (1,1)k E ,P Q A AP AQ例3、(2017年全国卷文科)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.例4、(2017年全国卷理)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
大招一 齐次化妙解圆锥曲线斜率问题“齐次”,即次数相等的意思,例如22()f x ax bxy cy =++称为二次齐式,即二次齐次式的意思,因为()f x 中每一项都是关于x 、y 的二次项。
当圆锥曲线遇到斜率之和或者斜率之积的问题,可以先平移图形,将公共点平移到原点,注意平移口诀是 “左加右减,上减下加”,你没有看错,“上减下加”,因为是在y 同侧进行加减,我们以往记的“上加下减”都是在y 的异侧。
例如要证明直线AP 与AQ 的斜率之和或者斜率之积为定值,将公共点A 平移到原点,设平移后的直线为1mx ny +=(为什么这样设?因为这样齐次化更加方便),与圆锥联立,一次项乘以mx ny +,常数项乘以2mx ny +(),构造220ay bxy cx ++=,然后等式两边同时除以2x (前面注明x 不等于0),得到2()0y y a b c x x++=,化简为20ak bk c ++=,可以直接利用韦达定理得出斜率之和或者斜率之积,即可得出答案,如果是过定点题目,还需要还原直线,之前如何平移,现在反平移回去。
总结方法为:1平移,2联立并齐次化,3同除x 2,4韦达定理,证明完毕,如果过定点,还需要还原。
优点是:大大减小了计算量,提高准确率!如果你掌握这个方法,你会知道以前的方法有多么的low !缺点:1mx ny +=不能表示过圆点的直线。
例1.已知抛物线C :y 2=2px (p >0)上一点A (2,a )到其焦点的距离为3. (Ⅰ)求抛物线C 的方程;(Ⅱ)过点(4,0)的直线与抛物线C 交于P ,Q 两点,O 为坐标原点,证明:∠POQ=90°.例2、(2015年陕西文科卷)如图,椭圆经过点,且离心率为. (Ⅰ)求椭圆的方程;(Ⅱ)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.2222:1(0)x y E a b a b+=>>(0,1)A-2E (1,1)k E ,P Q A AP AQ例3、(2017年全国卷文科)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.例4、(2017年全国卷理)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
[快乐数学]圆锥曲线之齐次化好久没更新了。
这次咱更个容易点的。
介绍一下齐次化在圆锥曲线大题中的应用。
但是这种方法存在不给分的可能,下一篇专栏我再介绍一种替代方法。
1.基本内容其实很容易。
我们知道,对于二元齐次方程,我们可以通过一些变换把它变成关于y/x的方程。
当我们需要讨论y/x的关系时就可以构造齐次式来求解。
由于我们研究的是圆锥曲线所以我们往往会得到一个二次方程。
所以使用它的条件就是已知信息要能用关于y/x的韦达定理表示。
刚刚讲的在高考中应该是可以直接使用的。
真正的争议点就在于建立已知问题和y/x的关系上。
有些情况会用到平移变换,而这在高中能否直接使用存在争议。
2.实例1说了那么多你可能也没看懂。
下面用一个实例帮助你理解。
这题呢有常规解法。
大致思路就是:利用OQ1与OQ2垂直,设点和直线y=kx+m得到k,m,b的关系。
根据OD与Q1Q2垂直,设点,我们还能得到k,m和D点的关系。
根据以上两个关系求得轨迹方程。
计算量比齐次化的方法稍微大很小一丢丢。
这道题给了两个垂直,其实就是两个向量垂直。
(垂直我个人建议转化为向量垂直,利用点积为0,避免斜率不存在的分类讨论) 对于Q1Q2来说,用向量表示要两个点再加上表达OD的一个点总共要3个点才能表达垂直关系。
而OQ1和OQ2垂直只需要两个点。
咱们优先考量OQ1和OQ2垂直设Q1(x1,y1),Q2(x2,y2)就有x1x2+y1y2=0也就是但是这个变换不等价与原来的式子。
请自行检验x1,x2为0的情况。
(常规方法也需要的)然后我们就构造出了一个关于y/x的结果,而且恰好是韦达定理形式的。
接下来才是齐次化的精髓。
用1的代换构造齐次式。
我们刚刚要单独拎出来检验的是x1,x2为0的时候,也就是Q1Q2斜率不存在的情况。
因此我们可以考虑设Q1Q2:y=kx+m因为这种方程加上刚刚的检验可以包括所有的直线。
然后我们联立直线和椭圆。
精髓来了啊。
变换直线方程为1=F(x,y)的形式。
中学数学教学参考(上旬)2021年第3期^•题探索巧用齐次化方法解圆锥曲线问题项海圆,黄永明(云南师范大学数学学院)摘要:圆锥曲线问题,由于其侧重对学生数学运算和逻辑推理的考查,成为高考数学的一个重要考点。
本文以2020年圆锥曲线内容的高考题为例,巧用齐次化方法解决圆锥曲线中斜率之和为定值或斜率之积 为定值的问题。
关键词:圆锥曲线;齐次化方法 文章编号:1002-2171 (2021)3-0040-031问题的提出圆锥曲线问题是高中解析几何的重点和难点,对于此类问题,学生往往先将直线方程与圆锥曲线方程 联立方程组,然后进行消元,再利用韦达定理求得两 根的关系,最后根据题目的已知条件进行转换和计算 得到想要的结果(简称“常规解法”)。
但是,这种方法 计算量大且复杂,让很多学生不敢下笔,望而却步。
笔者运用齐次化方法解决圆锥曲线中斜率之和为定 值或斜率之积为定值的问题,从而简化解题步骤,提 高解题的正确率。
2模型构建,初探齐次化方法例1已知椭圆C :誓+ y =1,B (0,1),P ,Q 为C 上的两个动点.々阳=|~。
求证:直线P Q 过定点。
证明:椭圆匸::^ + >;2 = 1,识0,1),/5,〇向下平移1个单位后分别得到椭圆B〇(B ^\ ,c r(y + I )2 = 1, Bf C 0,、'幻0),P ',Q ',如图1。
设直线P 'Q '的方程为将平移后的椭圆和直线P 'Q '的方y 程联立得图1—+ (^+D 2 =1 9^ ==>x 2 + 3y 2 + 63^ • (m x + ny )=mocJ rny = 10=>*r2 + 67/1:?:3/+(3 + 672)3;2 = 0,等式两边同时除以:c2 得 1 + 6m • f + ( 3 + 6n ) ( f ) = 0。
令易知《就是直线O P '和OQ '的斜率),得X(3 + 672)Z 2+6m Z +l = 0,所以々B P •々BQ =々〇p ,•々O Q '== |■,解得《=_ +。
圆锥曲线中的齐次化处理策略1、已知椭圆2222:1(0)x y C a b a b+=>>的离心率为e =(2)A ,1 (1)求C 的方程;(2)点,M N 在C 上,且,,AM AN AD MN D ⊥⊥为垂足,证明:存在定点Q ,使得DQ 为定值2、已知点(2)A ,1在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P Q 、两点,直线,AP AQ 的斜率之和为Q (1)求C 的方程及渐近线方程;(2)求直线l 的斜率。
3.已知双曲线2222:1(00)x y T a b a b-=>>,过点(2)P ,1且其中一焦点F 到渐近线的距离为1; (1)求T 的方程;(2)过点P 作两条相互垂直的直线PA PB ,分别交T 于A B 、两点,求P 到直线AB 的距离最大值。
4、已知椭圆2222:1(0)x y C a b a b +=>>的长轴为双曲线22184x y -=的实轴,且C 过点()2P ,1 (1)求C 的方程;(2)设点A B ,是椭圆上异于点P 的两个点,直线PA PB ,斜率均存在,分别记为12k k ,,若1212k k =-,试问直线AB 是否过定点,若经过,求出定点坐标,若不经过请说明理由.5、已知椭圆2222:1(0)x y C a b a b +=>>,点312M ⎛⎫- ⎪⎝⎭,在C 上,椭圆C 的四顶点的连线构成的四边形面积为(1)求C 的方程;(2)设A 为椭圆长轴的左端点,P Q 、为C 上异于长轴的顶点的两点,记直线AP AQ ,的斜率为12k k ,若122k k =,试问直线PQ 是否过定点?若是求出定点坐标,若不是请说明理由.6、已知椭圆E 离心率为e =⎭(1)求E 的方程;(2)设不过原点O 的直线l 与E 交于P Q 、两点,且直线QP PQ OQ 、、的斜率满足2OP OQ PQ K K K =,求直线l的斜率.7、已知椭圆2222:1(0)x y C a b a b +=>>离心率为12,过C 的右焦点且垂直于x 轴的直线PM 交C 于P M 、(点P 位于x 轴上方)两点,且OPM ∆面积为3,2O 为坐标原点。
齐次化在圆锥曲线中的应用
圆锥曲线中常见一类问题,其特点是条件中的两直线斜率之和或之积是一个指定常数.这类问题的求解方法很多,但是采用齐次化方法,可以将这两种题型统一处理.
一、两直线斜率之积为常数
二、两直线斜率之和为常数
三、与斜率之和、斜率之积相关的问题
四、巩固练习
1、(2017年全国Ⅰ卷理科20)已知椭圆C :22
22=1x y a b
+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,
),P 4(1)中恰有三点在椭圆C 上. (1)求C 的方程;
(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,
证明:l 过定点.
试题分析:(1)根据3P ,4P 两点关于y 轴对称,由椭圆的对称性可知C 经过3P ,4P 两点.另外由
2222
1113
4a b a b +>+
知,C 不经过点P 1,所以点P 2在C 上.因此234,,P P P 在椭圆上,代入其标准方程,即可求出C 的方程;(2)先设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,再设直线l 的方程,当l 与x 轴垂直
时,通过计算,不满足题意,再设l :y kx m =+(1m ≠),将y kx m =+代入2
214x y +=,写出判别式,
利用根与系数的关系表示出x 1+x 2,x 1x 2,进而表示出12k k +,根据121k k +=-列出等式表示出k 和m 的关系,从而判断出直线恒过定点.
试题解析:(1)由于3P ,4P 两点关于y 轴对称,故由题设知C 经过3P ,4P 两点. 又由
2222
1113
4a b a b
+>+知,C 不经过点P 1,所以点P 2在C 上. 因此2
22
1
1,131,
4b a b ⎧=⎪⎪⎨⎪+=⎪⎩解得224,1.a b ⎧=⎪⎨=⎪⎩ 故C 的方程为2214x y +=.
(2)常规解法:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2,
如果l 与x 轴垂直,设l :x =t ,由题设知0t ≠,且||2t <,可得A ,B 的坐标分别为(t
,(t
,).
则121k k +-=-,得2t =,不符合题设. 从而可设l :y kx m =+(1m ≠).将y kx m =+代入2
214x y +=得222(41)8440k x kmx m +++-=.
由题设可知2
2
=16(41)0k m ∆-+>.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2841
km
k -+,x 1x 2=22
4441m k -+. 而121212
11y y k k x x --+=+121211kx m kx m x x +-+-=+1212122(1)()
kx x m x x x x +-+=.
由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=.
即222448(21)(1)04141m km k m k k --+⋅+-⋅=++.解得1
2
m k +=-
.
当且仅当1m >-时,0∆>,于是l :12m y x m +=-
+,即1
1(2)2
m y x ++=--,所以l 过定点(2,1-). 注:椭圆的对称性是椭圆的一个重要性质,判断点是否在椭圆上,可以通过这一方法进行判断;证明直线过定点的关键是设出直线方程,通过一定关系转化,找出两个参数之间的关系式,从而可以判断过定点情况.另外,在设直线方程之前,若题设中未告知,则一定要讨论直线斜率不存在和存在两种情况,其通法是联立方程,求判别式,利用根与系数的关系,再根据题设关系进行化简.
2、(2017年全国Ⅰ卷文科20)设A ,B 为曲线C :y =2
4
x 上两点,A 与B 的横坐标之和为4.
(1)求直线AB 的斜率;
(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM
⊥BM ,求直线AB 的方程.
试题解析:(1)设A (x 1,y 1),B (x 2,y 2),则12x x ≠,2114
x y =,2
224x y =,x 1+x 2=4,
于是直线AB 的斜率1212
1214
y y x x k x x -+===-.。