广州市白云区2020届中考第一次模拟考试数学试题有答案
- 格式:doc
- 大小:1.03 MB
- 文档页数:13
广东省广州市白云区太和中学2022-2023学年第二学期九年级数学中考复习第一次模拟测试题(附答案)一.选择题(满分30分)1.2022的相反数是()A.B.﹣C.2022D.﹣2022 2.2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为()A.47×107B.4.7×107C.4.7×108D.0.47×1093.若分式有意义,则x的取值范围是()A.x>2B.x≤2C.x=2D.x≠24.一组数据:3,4,4,6,若添加一个数据6,则不发生变化的统计量是()A.平均数B.中位数C.众数D.方差5.如图,a∥b,∠1=43°,则∠2的度数是()A.137°B.53°C.47°D.43°6.如图,D、E为△ABC边上的点,DE∥BC,,△ADE的面积等于2,则四边形DBCE的面积等于()A.8B.9C.16D.257.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.48.某工厂今年元月份的产量是50万元,3月份的产值达到了72万元.求2、3月份的产值平均增长率,设这两个月的产值平均月增长率为x,依题意可列方程()A.72(1+x)2=50B.50(1+x)2=72C.50(1﹣x)2=72D.72(1﹣x)2=509.将4个数a、b、c、d排成2行、2列,两边各加一条竖直线记成,定义=ad ﹣bc.例如=8×5﹣9×3=40﹣27=13.则方程=﹣9的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.只有一个实数根10.如图,点A是y轴正半轴上的一个定点,点B是反比例函数(x>0)图象上的一个动点,当点B的纵坐标逐渐增大时,△OAB的面积将()A.逐渐增大B.不变C.逐渐减小D.先增大后减小二.填空题(满分18分)11.分解因式:x2﹣9y2=.12.正五边形的一个内角是度.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后不放回,再随机摸取一个小球,则两次取出的小球标号的和等于5的概率为.14.在同一坐标系中,图形a是图形b向上平移3个单位长度,再向左平移2个单位得到,如果图形a中A点的坐标为(4,﹣2),则图形b中与A点对应的A'点的坐标为.15.已知直线y1=x,,的图象如图,若无论x取何值,y总取y1、y2、y3中的最小值,则y的最大值为.16.如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,CA于点G,H,点P是线段GC上的动点,PQ⊥AC 于点Q,连接PH.下列结论:①CE⊥DF;②DE+DC=AC;③EA=AH;④PH+PQ的最小值是,其中所有正确结论的序号是.三.解答题(满分72分)17.计算:()﹣1+4cos45°﹣+(2023﹣π)0.18.解不等式组,并将其解集在数轴上表示出来.19.今年“五•一”期间,文昌市某旅行社接待文昌一日游和三日游的旅客共1500人,共收取旅游费50万元,其中一日游每人收费100元,三日游每人收费800元.该旅行社接待的一日游和三日游旅客各多少人?20.先化简,然后从﹣1,0,1,3中选一个合适的数代入求值.21.“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)22.如图,AB是⊙O的直径,点E是劣弧BD上一点,∠P AD=∠AED,且DE=,AE 平分∠BAD,AE与BD交于点F.(1)求证:P A是⊙O的切线;(2)若tan∠DAE=,求EF的长;(3)延长DE,AB交于点C,若OB=BC,求⊙O的半径.23.在△ABC中,点D,E分别是AB,AC边上的点,DE∥BC.基础理解:(1)如图1,若AD=4,BD=3,求的值;证明与拓展:(2)如图2,将△ADE绕点A逆时针旋转度,得到△AD1E1,连接BD1,CE1.①求证:=;②如图3,若∠BAC=90°,AB<AC,AD=6,△ADE在旋转过程中,点D1恰好落在DE上时,连接EE1,=,则△E1D1E的面积为.24.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.参考答案一.选择题(满分30分)1.解:2022的相反数等于﹣2022,故选:D.2.解:470000000=4.7×108,故选:C.3.解:依题意得:x﹣2>0,解得x>2.故选:A.4.解:A、原来数据的平均数是,添加数字6后平均数为,故不符合题意;B、原来数据的中位数是4,添加数字6后中位数仍为4,故符合题意;C、原来数据的众数是4,添加数字6后众数为4和6,故不符合题意;D、原来数据的方差=[(3﹣)2+2×(4﹣)2+(6﹣)2]=,添加数字6后的方差=[(3﹣)2+2×(4﹣)2+2×(6﹣)2]=,故方差发生了变化,故不符合题意;故选:B.5.解:∵a∥b,∠1=43°,∴∠2=∠1=43°.故选:D.6.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:AB=1:3,相似三角形的面积比是相似比的平方,∴S△ADE:S△ABC=1:9,∴△ADE的面积:四边形DBCE的面积=1:8,又∵△ADE的面积等于2,∴四边形DBCE的面积等于16.故选:C.7.解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴AD=AB=×8=4,又∵OD=3,∴OA===5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.8.解:根据题意,得:50(x+1)2=72.故选:B.9.解:∵方程=﹣9,∴x2﹣6x=﹣9,∴x2﹣6x+9=0,∴Δ=(﹣6)2﹣4×1×9=0,∴方程=﹣9有两个相等的实数根,故选:B.10.解:根据反比例函数的增减性可知,反比例函数y=(x>0)图象y随x的增大而减小,所以OA不变,△OAB的高随着点B的纵坐标逐渐增大而减小,所以△OAB的面积将逐渐减小.故选:C.二.填空题(满分18分)11.解:原式=(x﹣3y)(x+3y).故答案为:(x﹣3y)(x+3y).12.解:(5﹣2)•180°=540°,540°÷5=108°,所以正五边形的一个内角的度数是108度.13.解:画树状图如下:共有12种等可能的结果,其中两次取出的小球标号和等于5的结果有4种,∴两次取出的小球标号和等于5的概率为=,故答案为:.14.解:∵图形a是图形b向上平移3个单位长度得到的,再向左平移2个单位得到,图形a中点A的坐标为(4,﹣2),∴设图形b中与点A对应的点A′的坐标为(x,y),则y+3=﹣2,x﹣2=4,解得y=﹣5,x=6∴点A′的坐标为(6,﹣5).故答案为:(6,﹣5).15.解:∵无论x取何值,y总取y1、y2、y3中的最小值,∴y的取值如图所示,∴y的最大值为直线y2与y3的交点的纵坐标,联立,解得,所以,当x=3时,y的值最大,为2.故答案为:2.16.解:∵正方形ABCD,∴CD=AD,∠CDE=∠DAF=90°,∴∠ADF+∠CDF=90°,在△CDE和△DAF中,,∴△CDE≌△DAF(ASA),∴∠DCE=∠ADF,∴∠DCF+∠CDF=90°,∴∠DGC=90°,∴CE⊥DF,故①正确;∵CE平分∠ACD,∴∠DCE=∠HCG,在△GCD和△GCH中,,∴△GCD≌△GCH(ASA),∴CD=CH,∠CDH=∠CHD,∵正方形ABCD,∴CD∥AB,∴∠CDF=∠AFD,∴∠CHD=∠AFD,∵∠CHD=∠AHF,∴∠AFD=∠AHF,∴AF=AH,∴AC=AH+CH=AF+CD=DE+CD,故②正确,设DE=AF=AH=a,∵∠AHF=∠DHC,∠CDF=∠AFH,∴△DHC∽△FHA,∴=,∴=,∴a=﹣1,∴DE=AF=AH=﹣1,∴AE=1﹣DE=2﹣,∴EA≠AH,故③错误;∵△GCD≌△GCH,∴DG=GH,∵CE⊥DF,∴CG垂直平分DH,∴DP=PH,当DQ⊥HC时,PH+PQ=DP+PQ有最小值,过点D作DM⊥HC,则DM的长度为PH+PQ的最小值,∵S△ADC==,∴DM=,故④正确.故答案为:①②④.三.解答题(满分72分)17.解:原式=2+4×﹣2+1=2+2﹣2+1=3.18.解:由①得:x≤1,由②得:x<6,∴不等式组的解集为x≤1,解集表示在数轴上,如图所示:.19.解:设接待1日游旅客x人,接待3日游旅客y人,根据题意得,解得,答:该旅行社接待1日游旅客1000人,接待3日游旅客500人.20.解:==,∵a2﹣1≠0,a≠0,∴a≠±1,a≠0,∴当a=3时,原式==.21.解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.22.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠ABD=90°,∵∠P AD=∠AED,∠AED=∠ABD,∴∠P AD=∠ABD,∴∠DAB+∠P AD=90°,即∠P AB=90°,∴AB⊥P A,∵AB是⊙O的直径,∴P A是⊙O的切线;(2)解:连接BE,如图:∵AB是⊙O的直径,∴∠AEB=90°,∵AE平分∠BAD,∴∠DAE=∠BAE,∴=,∠DAE=∠BAE=∠DBE,∴BE=DE=,tan∠DAE=tan∠BAE=tan∠DBE==,∴=,∴EF=1;(3)解:连接OE,如图:∵OE=OA,∴∠AEO=∠OAE,∵∠OAE=∠DAE,∴∠AEO=∠DAE,∴OE∥AD,∴=,∵OA=OB=BC,∴=2,∴=2,∵DE=,∴CE=2,CD=CE+DE=3设BC=OB=OA=R,∵∠BDC=∠BAE,∠C=∠C,∴△CBD∽△CEA,∴=,即=,∴R=2,∴⊙O的半径是2.23.(1)解:∵DE∥BC,AD=4,BD=3,∴;(2)①证明:∵将△ADE绕点A逆时针旋转度,得到△AD1E1,∴AD=AD1,AE=AE1,∠BAD1=∠CAE1,∵DE∥BC,∴,∴,∴△ABD1∽△ACE1,∴;②解:由①可知,△ABD1∽△ACE1,∴,∵将△ADE绕点A逆时针旋转度,得到△AD1E1,∴AD=AD1=6,∠D1AE1=∠DAE=90°,∴AE=AE1==8,DE=D1E=10,过点A作AM⊥DE于点M,则DM=D1M=AD×cos∠ADE=3.6,∴D1E=10﹣3.6×2=2.8,∴∠D1AE1=∠DAE=90°,∴∠DAD1=∠EAE1,∵AD=AD1,AE=AE1,∴∠ADE=∠AEE1,∴∠AED+∠AEE1=∠AED+∠ADE=90°,∴∠D1EE1=90°,∴EE1=9.6,∴△E1D1E的面积为=,故答案为:13.44.24.解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点C(0,4),∴,解得:.∴抛物线的表达式为y=﹣+x+4;(2)点D的坐标为(﹣8,8),理由:将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,如图,过点D作DE⊥x轴于点E,∵A(﹣2,0)、B(8,0),C(0,4),∴OA=2,OB=8,OC=4.∵,,∴.∵∠AOC=∠COB=90°,∴△AOC∽△COB,∴∠ACO=∠CBO.∵∠CBO+∠OCB=90°,∴∠ACO+∠OCB=90°,∴∠ACB=90°,∵将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,∴点D,C,B三点在一条直线上.由轴对称的性质得:BC=CD,AB=AD.∵OC⊥AB,DE⊥AB,∴DE∥OC,∴OC为△BDE的中位线,∴OE=OB=8,DE=2OC=8,∴D(﹣8,8);由题意得:S△ACD=S△ABC,∴四边形OADC的面积=S△OAC+S△ADC =S△OAC+S△ABC=OC•OA+AB•OC=4×2+10×4=4+20=24;(3)①当点P在BC上方时,如图,∵∠PCB=∠ABC,∴PC∥AB,∴点C,P的纵坐标相等,∴点P的纵坐标为4,令y=4,则﹣+x+4=4,解得:x=0或x=6,∴P(6,4);②当点P在BC下方时,如图,设PC交x轴于点H,∵∠PCB=∠ABC,∴HC=HB.设HB=HC=m,∴OH=OB﹣HB=8﹣m,在Rt△COH中,∵OC2+OH2=CH2,∴42+(8﹣m)2=m2,解得:m=5,∴OH=3,∴H(3,0).设直线PC的解析式为y=kx+n,∴,解得:.∴y=﹣x+4.∴,解得:,.∴P(,﹣).综上,点P的坐标为(6,4)或(,﹣).。
2020年广东省广州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在实数−3,0,5,3中,最小的实数是()A. −3B. 0C. 5D. 32.如图是五个相同的小正方体搭成的几何体,其俯视图是()A.B.C.D.3.下列计算中,正确的是()A. (a2)3⋅a3=a9B. (a−b)2=a2+2ab−b2C. x2⋅x4=x8D. √2⋅√3=√54.如图,将△ABC沿AB方向平移至△DEF,且AB=5,BD=2,则CF的长度为()A. 4B. 5C. 3D. 25.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的统计图,则参加绘画兴趣小组的频数是()。
A. 8B. 9C. 11D. 126.在下列性质中,菱形具有而矩形不具有的性质是()A. 内角和等于360°B. 对角相等C. 对角线平分一组对角D. 邻角互补7.不等式组{2x−1>1−x≤2的解集为()A. x>1B. −2≤x<1C. x≥−2D. 无解8.已知:如图,将∠ABC放置在正方形网格纸中,其中点A、B、C均在格点上,则tan∠ABC的值是()A. 2B. 12C. √52D. 2√559.已知一元二次方程x2−2018x+10092=0的两个根为α,β,则α2β+αβ2=()A. 10093B. 2×10093C. −2×10093D. 3×1009310.如图,在平面直角坐标系中,点A坐标为(2,1),直线l与x轴,y轴分别交于点B(−4,0),C(0,4),当x轴上的动点P到直线l的距离PE与到点A的距离PA之和最小时,则点E的坐标是()A. (−2,2)B. (−32,52) C. (−12,72) D.(1,0)二、填空题(本大题共6小题,共18.0分)11.太阳的半径大约为696000000,将数据696000000用科学记数法表示为______.12.已知a<0,b>0,化简√(a−b)2=______.13.分式方程2xx−3=1的解是______.14.如图,已知∠ABC=30°,以O为圆心、2cm为半径作⊙O,使圆心O在BC边上移动,则当OB=______ cm时,⊙O与AB相切.15.一个圆锥的高线长是8cm,底面直径为12cm,则这个圆锥的侧面积是______.16.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3√5,且∠ECF=45°,则CF的长为__________.三、计算题(本大题共1小题,共10.0分)17.先化简,再求值:a2−2aba−b −b2b−a,其中a=1+√3,b=−1+√3.四、解答题(本大题共8小题,共92.0分)18.计算:√83−2cos60°−(π−2018)0+|1−√4|19.如图,在平行四边形ABCD中,连接对角线AC,延长AB至点E,使BE=AB,连接DE,分别交BC,AC交于点F,G.(1)求证:BF=CF;(2)若BC=6,DG=4,求FG的长.20.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是______名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.21.已知一次函数y=ax+b与反比例函数y=3b−ax 的图象交于点(12,2),求:(1)这两个函数的解析式;(2)两个函数图象另一个交点的坐标.22.某超市用1200元购进一批甲玩具,用800元购进一批乙玩具,所购甲玩具件数是乙玩具件数的54,已知甲玩具的进货单价比乙玩具的进货单价多1元.(1)求:甲、乙玩具的进货单价各是多少元?(2)玩具售完后,超市决定再次购进甲、乙玩具(甲、乙玩具的进货单价不变),购进乙玩具的件数比甲玩具件数的2倍多60件,求:该超市用不超过2100元最多可以采购甲玩具多少件?23.尺规作图(保留作图痕迹,不写作法和证明)如图,已知:△ABC,∠ACB=90°,求作:⊙O,使圆心O在AC边上,且⊙O与AB,BC均相切.24.如图,在平面直角坐标系中.直线y=−x+3与x轴交于点B,与y轴交于点C,抛物线y=ax2+bx+c经过B,C两点,与x轴负半轴交于点A(−1,0),连结AC.(1)求抛物线的解析式;(2)如图1,若点P(m,n)是抛物线上在第一象限内的一点,求四边形OCPB面积S关于m的函数表达式及S的最大值;(3)如图2,若M为抛物线的顶点,点Q在直线BC上,点N在直线BM上,Q,M,N三点构成以MN为底边的等腰直角三角形,求点N的坐标.25.如图,∠ABD=∠BCD=90°,DB平分∠A DC,过点B作BM//CD交AD于M,连接CM交DB于N。
2020年广州市数学中考第一次模拟试卷含答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<35.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形6.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:27.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .88.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)9.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm10.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°11.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额10 20 30 50 100 人数 2 4 5 3 1A .众数是100B .中位数是30C .极差是20D .平均数是3012.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4二、填空题13.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.17.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.计算:103212sin45(2π)-+--+-o .22.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?23.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 24.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .25.已知222111x x x A x x ++=---. (1)化简A ;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.3.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.4.B解析:B【解析】【分析】根据点A 的坐标找出b 值,令一次函数解析式中y=0求出x 值,从而找出点B 的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.5.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.6.A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.详解:当y=7.5时,7.5=4x﹣12x2,整理得x2﹣8x+15=0,解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意;y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 9.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.10.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.11.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.12.A解析:A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.二、填空题13.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.17.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式112132=+-⨯+=111313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根.23.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.24.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC22FC FB+=2234+,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.25.(1)11x-;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.【详解】(1)原式=2(1)(1)(1)1x xx x x+-+--=111x xx x+---=11x xx+--=11x-(2)不等式组的解集为1≤x<3 ∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=11x-中x≠1,∴当x=1时,A=11x-无意义.②当x=2时,A=11x-=1=12-1考点:分式的化简求值、一元一次不等式组.。
2024年广东省广州市白云区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2024-的相反数是( )A .2024-B .2024C .12024-D .12024【答案】B【分析】本题主要考查了求一个数的相反数,只有符号不同的两个数互为相反数,0的相反数是0,据此求解即可.【详解】解:2024-的相反数是2024,故选:B .2.一个几何体的三视图如图所示,则这个几何体是( )A .B .C .D .【答案】D【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行解答即可.【详解】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D .【点睛】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.3.下列运算正确的是( )A .()326m m =B .236m m m ⋅=C .22m m -=-D .222m m m ÷=4.某校举行“喜迎中国共产党建党105周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是( )A .方差是0B .中位数是95C .众数是5D .平均数是905.不等式组23322322x x x -≥⎧⎪⎨+->⎪⎩的解集在数轴上表示为()A .B .C .D .3232x x ->--5x >-,∴不等式的解集为:51x -<≤-,故选:A .6.已知一次函数y ax b =+经过点()2,3--,正比例函数1y ax =不经过第三象限,则反比例函数2b y x=的图象位于( )A .第一、第二象限B .第一、第三象限C .第二、第三象限D .第二、第四象限7.端午节,赛龙舟,小亮在点P 处观看400米直道竞速赛,如图所示,赛道AB 为东西方向,赛道起点A 位于点P 的北偏西30︒方向上,终点B 位于点P 的北偏东60︒方向上,400AB =米,则点P 到赛道AB 的距离为( )米.A .B .C .87D .173 3ta n303AC PC x ∴=⋅︒=60CPB ∠=︒ta n603BC PC x∴=⋅︒=AB 8.某校组织540名学生去外地参观,现有A ,B 两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B 型客车比每辆A 型客车多坐15人,单独选择B 型客车比单独选择A 型客车少租6辆.设A 型客车每辆坐x 人,根据题意可列方程( )A .54015x -﹣540x =6B .540x ﹣54015x +=6C .54015x +﹣540x =6D .540x ﹣54015x -=6列出相应的方程.9.如图,ABC 的内切圆I 与BC ,CA ,AB 分别相切于点D ,E ,F ,若I 的半径为r ,FDE α∠=,则()AF CD AC +-的值和A ∠的大小分别为( )A .0,1802α︒-B .r ,180α︒-C ,90α︒-D ,902α︒-【答案】A 【分析】本题考查三角形的内切圆,圆周角定理,切线长定理等知识.连接,IF IE .利用切线长定理,可得,,,AF AE CD CE IF AB IE AC =⊥⊥=,从而得到AF CD AC +-,再由圆周角定理,可得22EIF EDF α∠=∠=,即可.【详解】解:如图,连接,IF IE .∵ABC 的内切圆I 与BC ,CA ,AB 分别相切于点D ,E ,F ,∴,,,AF AE CD CE IF AB IE AC =⊥⊥=,∴090,C A C F CD A AE CE AC A A AFI AEI C =+︒+--=-=∠=∠=,∴22EIF EDF α∠=∠=,∴3601802A AFI AEI EIF α∠=︒-∠-∠-∠=︒-.故选:A1021-=-,则关于x 的方程()222210x k x k --+-=根的情况是( )A .无实数根B .有两个相等的实数根C .有两个实数根D .有两个不相等的实数根【答案】C 【分析】本题考查了算术平方根的非负性,一元二次方程根的判别式.熟练掌握算术平方根的非二、填空题11.2023年10月26日上午,神州十七号载人飞船载着杨洪波、唐胜杰、江新林3名航天员奔赴“天宫”,从2003年的神舟五号到2023年的神州十七号,20年中国载人航天工程共有20位航天员问鼎苍穹,截止到目前为止,我国航天员在太空的时间已累计达到近21200个小时,其中,数字21200用科学记数法表为.12.若点()11A y -,,212B y ⎛⎫ ⎪⎝⎭,,()32C y ,在抛物线()22y x k =-+上,则1y ,2y ,3y 的大小关系为 (用“>”连接)13.2023年5月30日是第7个全国科技工作者日,某中学举行了科普知识手抄报评比活动,共有100件作品获得一、二、三等奖和优胜奖,根据获奖结果绘制如图所示的折线图,若将获奖作品按四个等级所占比例绘制成扇形统计图,则“二等奖”对应扇形的圆心角度数为 .14.如图,正方形ABCD 的边长为4,点E 在边BC 上,F 为对角线BD 上一动点,连接CF ,EF ,若CF EF +的最小值CE = .∵正方形ABCD ,∴4AB BC ==∠,又∵BF BF =,15.如图,已知AD 是ABC 的角平分线,DE ,DF 分别是ABD △和ACD 的高,四边形AEDF 的面积为60,5DF =,则ADE V 中AD 边上的高为 .16.如图,矩形ABCD 中,9AB =,12AD =,点P 从A 出发以每秒3个单位长度的速度沿A D C B A →→→→运动一周到点A 停止.当点P 不与矩形ABCD 的顶点重合时,过点P 作直线PQ BC ⊥,与矩形的边的另一交点为Q .若点P 的运动时间为t ,当810t <<时,CQ 长度的范围是.PC=-∴12421由勾股定理得t=时,点当10三、解答题17.解方程:x 2+4x ﹣12=0.【答案】x 1=﹣6,x 2=2【分析】利用因式分解法解一元二次方程即可.【详解】解:原方程变形为:(x +6)(x ,﹣2)=0,∴x +6=0或x ﹣2=0,∴x 1=﹣6,x 2=2.【点睛】本题考查解一元二次方程,熟练掌握一元二次方程的解法并能灵活运用是解答的关键.18.已知:如图,在Rt ABC △中,90ACB ∠=︒,过点C 作CD AB ⊥,垂足为D .在射线CD 上截取CE CA =,过点E 作EF CE ⊥,交CB 的延长线于点F .求证:BC FE =.【答案】见详解【分析】本题考查全等三角形的判定.根据题意,先得出E ACB ∠=∠,再用两角夹边判定即可.【详解】证明: CD AB⊥90A ACD ∴∠+∠=︒90ACB ∠=︒90ACD ECF ∴∠+∠=︒A ECF∴∠=∠ EF CE⊥90E ∴∠=︒E ACB∴∠=∠在ACB △和CEF △中A ECF CE CAE ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩(AS A)ACB CEF ∴ ≌BC FE ∴=.19.如图,在平面直角坐标系xOy 中,点()2,0A -, AB 所在圆的圆心为O ,60AOB ∠=︒,将 AB向右平移5个单位,得到 CD (点A 平移后的对应点为C ).(1)点B 的坐标是___________, AB 所在圆的圆心坐标是___________.(2)在图中画出 CD,求 CD 的长.2OA OB ∴==1cos60212OE OB ∴=⋅︒=⨯=,BE由平移的性质知60CGD ∠=︒且GC OA =∴ CD 的长为602223603ππ⨯⨯=.20.给出6个整式:2x +,2x -,21x +,2,21x x +-,211--x x .(1)从上面的6个整式中选择2个合适的整式,组成一个分式;(2)从上面的6个整式中选择2个合适的整式进行乘法运算,使运算结果为一个不含有一次项的多项式,请你列出算式,并写出运算过程.21.甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.22.某车间甲、乙两台机器共生产9200个零件,两台机器同时加工一段时间后,甲机器出现故障,维修一段时间后仍按原来的效率加工,已知甲机器每天加工150个零件,如图是表示未生产零件的个数y(个)与乙机器工作时间x(天)之间的函数图象.(1)乙机器每天加工__________个零件,甲机器维修了__________天;(2)求甲机器出现故障以后,未生产零件的个数y(个)乙机器工作时间x(天)之间的函数关系式.【答案】(1)250;8(2)()()25077001018400104001826x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩【分析】本题主要考查了一次函数的实际应用:(1)设乙机器每天加工a 个零件,甲机器每天加工150个零件,根据前10天是两个机器一起工作,结合数量关系列方程求解即可;再由AB 段是乙单独工作,求出乙单独工作的时间即可求出甲维修的时间;(2)根据函数图像函数关系式为()0y kx b k =+≠,当1018x <≤时,图像过点()10,5200,()18,3200;当1826x <≤时,图像过点()18,3200,()26,0,运用待定系数法即可求解.【详解】(1)解:设乙机器每天加工a 个零件,由题意得,()1015092005200a +=-,解得,250a =,根据题意,从点A 到点B 是乙单独完成的量,∴520032002000-=(个),∴20002508÷=(天),∴甲维修了8天,故答案为:250;8.(2)解:设未生产零件的个数y (个)与乙机器工作时间x (天)之间的函数关系式为()0y kx b k =+≠,由(1)可知,甲维修了8天,则点B 的坐标为()18,3200,∴当1018x <≤时,图像过点()10,5200,()18,3200,∴105200183200k b k b +=⎧⎨+=⎩,解得2507700k b =-⎧⎨=⎩,∴2507700y x =-+;③当1826x <≤时,图像过点()18,3200,()26,0,∴183200260k b k b +=⎧⎨+=⎩,解得40010400k b =-⎧⎨=⎩,∴40010400y x =-+;综上所述,未生产零件的个数y (个)与乙机器工作时间x (天)之间的函数关系式为()()25077001018400104001826x x y x x ⎧-+<≤⎪=⎨-+<≤⎪⎩.23.【问题探究】(1)如图①,在四边形ABCD 中,90A B ∠=∠=︒,在AB 边上作点E 为一点,连接CE ,DE ,使得CE DE ⊥(画出一个点E 即可,要求用尺规作图,保留作图痕迹,不要求写作图的证明);(2)如图②,在四边形ABCD 中,AD BC ∥,BC CD =,60C ∠=︒,点E 为CD 上一点,连接AE ,BE ,60ABE ∠=︒,试判断AD 与CE 之间的数量关系,并说明理由;【问题解决】(3)如图③,四边形ABCD 是赵叔叔家的果园平面示意图,点E 为果园的一个出入口(点E 在边CD 上),AE ,BE 为果园内的两条运输通道(通道宽度忽略不计),经测量,AD BC ∥,AB AE =,45C ABE ∠=∠=︒,150AD =米,赵叔叔计划在BCE 区域内种植某种果树,并沿CE 修建一条安全栅栏,为提前做好修建安全栅栏的预算,请你帮赵叔叔计算出CE 的长度.理由:由作法得:OC OD OE ==,∴,ODE OED OCE OEC ∠=∠∠=∠,∴ODE OCE OED OEC DEC ∠+∠=∠+∠=∠,∵180ODE OCE DEC ∠+∠+∠=︒,∴90DEC ∠=︒,∴DE CE ⊥;(2)AD CE =,理由如下:如图,连接BD ,∵BC CD =,60C ∠=︒,∴BCD △是等边三角形,∴BC BD =,60CBD ∠=︒,∵60ABE ∠=︒,∴60ABE CBD ∠=∠=︒,∴ABD CBE ∠=∠,∵AD BC ∥,∴60ADB CBD C ∠=∠=︒=∠,在ABD △和EBC 中,∵ABD CBE ∠=∠,BC BD =,ADB C ∠=∠,∴()ASA ABD EBC ≌,∵AD BC ∥,45C ∠=︒,∴45ADF C ∠=∠=︒,∴ADF △是等腰直角三角形,∴150AF AD ==米,∵AB AE =,∴45AEB ABE ∠=∠=︒,24.已知直线():0l y kx b k =+>经过点()1,2P -.(1)用含有k 的式子表示b ;(2)若直线l 与x ,y 轴分别交于A ,B 两点,AOB 面积为S ,求S 的取值范围;(3)过点P 的抛物线()2y x k n =-+与y 轴交点为E ,记抛物线的顶点为C ,该抛物线是否存在点F 使四边形BPEF 为平行四边形?若存在,求此时顶点C 的坐标;若不存在,请说明理由.【答案】(1)2b k =+25.如图,在四边形ABCD 中,点N ,M 分别在边BC ,CD 上.连接AM ,AN ,MN ,45MAN ∠=︒.(1)【实践探究】如图①,四边形ABCD 是正方形.(ⅰ)若6CN =,10MN =,求CMN ∠的余弦值;(ⅱ)若1an 3t BAN =∠,求证:M 是CD 的中点;(2)【拓展】如图②,四边形ABCD 是直角梯形,AD BC ∥,90C ∠=︒,12CD =,16AD =,12CN =,求DM 的长.∵四边形ABCD是正方形,AB CD AD BAD,∴==∠=∠由旋转的性质得:ABE≌BE DM ABE D,90∴=∠=∠=∵90C ∠=︒,12CD =,16AD =,CN ∴16,12====AD CE AE CD ,∴4==-=EP EN CE CN ,∴16=+==AP AE EP AD ,∴四边形APGD 是正方形,。
2024-2025学年第一学期第一次月考模拟卷(一)八年级·数学测试范围:11.1—12.2 测试时间:120分钟满分:120分一.选择题(共10小题)1.下面四个图形中,线段BD 是ABC V 的高的是( )A .B .C .D .2.人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .两点之间,线段最短B .垂线段最短C .两直线平行,内错角相等D .三角形具有稳定性3.一个多边形的内角和是它的外角和的4倍.这个多边形是( )A .六边形B .九边形C .八边形D .十边形4.在ABC V 中,1122A B C Ð=Ð=Ð,则ABC V 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形5.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°6.一副含30°角和45°角的直角三角板如图摆放,则1Ð的度数为( )A .60°B .65°C .75°D .70°7.如图,ABC DCB △≌△,若7AC =,5BE =,则DE 的长为( )A .2B .3C .4D .58.如图,点E 、H 、G 、N 共线,∠E =∠N ,EF =NM ,添加一个条件,不能判断△EFG ≌△NMH 的是( )A .EH =NGB .∠F =∠MC .FG =MHD .FG HM ∥9.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD 的度数为( )A .20°B .35°C .40°D .45°10.如图,在ABC V 中,D 是AB 上一点,DF 交AC 于点E ,AE EC =,=DE EF ,则下列结论中:①ADE EFC Ð=Ð;②180ADE ECF FEC Ð+Ð+Ð=°;③+180B BCF ÐÐ=°;④ABC DBCF S S =V 四边形,正确的结论有( )A .4个B .3个C .2个D .1个二.填空题(共6小题)11.已知三角形的三边长分别是8、10、x ,则x 的取值范围是 .12.如图,已知AD 、AE 分别是△ABC 的中线、高,且AB =5cm ,AC =3cm ,则△ABD 与△ADC 的周长之差为 .13.在△ABC 中,∠A =∠B +∠C ,则∠A = .14.如图,A B C D B F Ð+Ð+Ð+Ð+Ð+Ð的度数为 .15.如图,BP 、CP 分别是ABC V 的内角、外角平分线,若40P Ð=°,则A Ð= °.16.如图,90ACB Ð=°,AC BC =,AD CE ^,BE CE ^,垂足分别是点D 、E ,3AD =,1BE =,则DE 的长是 .三.解答题(共9小题)17.如图,ABC DBE ≌△△,请写出对应角,对应边.①B Ð的对应角为( )②C Ð的对应角为( )③BAC Ð的对应角为( )④AB 的对应边为( )⑤AC 的对应边为( )⑥BC 的对应边为( )18.如图,ABC V 中,B C Ð=Ð,FD BC ^,DE AB ^,152A FD Ð=°,求EDF Ð.19.已知ABC V 的三边长是a b c ,,.(1)若68a b ==,,且三角形的周长是小于22的偶数,求c 的值;(2)化简a b c c a b +---+.20.如图,ABC DEF ≌△△,其中点A 、E 、B 、D 在一条直线上.(1)若,58AD FE F ^Ð=°,求A Ð的大小;(2)若9cm,5cm AD BE ==,求AE 的长.21.如图,A 、D 、E 三点在同一条直线上,且ABD CAE △△≌.(1)若6DB =,4CE =,求DE ;(2)若BD CE ∥,求BAC Ð.22.在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.23.ABC V 中,32AB AC =::,1BC AC =+,若ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:,求边AB ,AC 的长.24.小丽与爸爸妈妈在公园里荡秋千,如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m 高的B 处接住她后用力一推,爸爸在C 处接住她,若妈妈与爸爸到OA 的水平距离BF CG 、分别为1.8m 和2.2m ,90BOC Ð=°.(1)CGO V 与OFB △全等吗?请说明理由.(2)爸爸是在距离地面多高的地方接住小丽的?25.如图,ABC V 中,P 为AB 上一点,Q 为BC 延长线上一点,且PA CQ =,过点P 作PM AC ^于点M ,过点Q 作QN AC ^交AC 的延长线于点N ,且PM QN =,连PQ 交AC 边于D .求证:(1)APM CQN ≌△△;(2)12DM AC =.【分析】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BD 是ABC V 的高.【详解】解:由图可得,线段BD 是ABC V 的高的图是D 选项.故选:D2.D【分析】根据三角形具有稳定性,进行判断即可.【详解】解:人字梯中间一般会设计一“拉杆”,这样做的道理是:三角形具有稳定性;故选D .【点睛】本题考查三角形的稳定性.熟练掌握三角形具有稳定性,是解题的关键.3.D【分析】本题考查了多边形的内角与外角和,解题的关键是熟练的掌握多边形的内角与外角和定理与运算.根据外角和是360°求出内角和,代入公式计算即可.【详解】解:Q 多边形外角和是360°,设多边形边数为n ,故多边形的内角和为3604(2)180n °´=-´°,解得10n =,故选D .4.A【分析】设A x Ð=,则2B C x Ð=Ð= ,再根据三角形内角和定理求出x 的值即可.【详解】在ABC V 中,1122A B C Ð=Ð=Ð 设A x Ð=,则2B C x Ð=Ð=,180A B C Ð+Ð+Ð=°Q ,即22180x x x ++=°°,解得36x =°,223672B C x \Ð=Ð==´°=° ,ABC \V 是锐角三角形.故选:A .【点睛】本题考查的是三角形内角和定理,根据题意列出关于x 的方程是解答此题的关5.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .6.C【分析】本题主要考查了三角形外角的性质.根据三角形外角的性质,可得43304575Ð+Ð=°+°=°即可.【详解】解:如图,根据题意得:430Ð=°,3245Ð=Ð=°,∴43304575Ð+Ð=°+°=°.故选:C7.A【分析】根据全等三角形的对应边相等推知7BD AC ==,然后根据线段的和差即可得到结论.【详解】解:ABC DCB QV V ≌,7BD AC \==,5BE =Q ,2DE BD BE \=-=,故选:A .【点睛】本题考查了全等三角形的性质,仔细观察图形,根据已知条件找准对应边是解决本题的关键.8.C【分析】根据全等三角形的判定定理,即可一一判定.【详解】解:在△EFG 与△NMH 中,已知,∠E =∠N ,EF =NM ,A .由EH =NG 可得EG =NH ,所以添加条件EH =NG ,根据SAS 可证△EFG ≌△NMH ,故本选项不符合题意;B .添加条件∠F =∠M ,根据ASA 可证△EFG ≌△NMH ,故本选项不符合题意;C .添加条件FG =MH ,不能证明△EFG ≌△NMH ,故本选项符合题意;D .由FG HM ∥可得∠EGF =∠NHM ,所以添加条件FG HM ∥,根据AAS 可证△EFG ≌△NMH ,故本选项不符合题意;故选:C .【点睛】本题考查了全等三角形的判定定理,熟练掌握和运用全等三角形的判定定理是解决本题的关键.9.B【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE 内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B .【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.10.A【分析】根据条件证明ADE CFE V V ≌,从而得证AD CF ∥,最后根据全等三角形的性质和平行的性质即可求解.【详解】ADE V 和CFE △中,DE EF AED CEF AE EC =ìïÐ=Ðíï=î,()SAS ADE CFE \V V ≌,A ACF \Ð=Ð,ADE EFC Ð=Ð,,ADE CFE S S =△△,①正确,AD CF \∥,ADE CFE BDCE BDCE S S S S +=+四边形四边形V V ,180B BCF \Ð+Ð=°,③正确,ABC DBCF S S =四边形V ,④正确,180EFC ECF FEC Ð+Ð+Ð=°,180ADE ECF FEC \Ð+Ð+Ð=°,②正确综上所述,正确的共有4个,故选A .【点睛】本题考查了全等三角形的判定及性质的运用,三角形的面积公式的运用,等式的性质的运用,三角形的内角和定理的运用,平行线的判定及性质的运用,解答时证明三角形全等是关键.11.2<x <18【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边可得答案.【详解】解:根据三角形的三边关系可得:10−8<x <10+8,即2<x <18,故答案为:2<x <18.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.12.2【分析】△ABD 与△ACD 的周长的差=AB-AC ,据此答题即可.【详解】解:△ABD 的周长=AB+AD+BD ,△ACD 的周长=AC+AD+CD ,∵AD 是BC 的中线,∴BD=CD ,∵AB=5cm ,AC=3cm ,∴△ABD 的周长-△ACD 的周长=AB+AD+BD-AC-AD-CD=AB-AC=2(cm ),故答案为:2.【点睛】考查了三角形的中线概念和性质,掌握三角形的中线的概念是解题的关键.13.90°【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,故答案为:90°.14.360°##360度【分析】本题考查角的计算.由D C CBE DEB Ð+Ð=Ð+Ð,推出A B C D AEC BFD B C BFE CEF Ð+Ð+Ð+Ð+Ð+Ð=Ð+Ð+Ð+Ð,即可得到答案.【详解】解:连接EF ,D A AEF DFE Ð+Ð=Ð+ÐQ ,A B C D AEC BFD\Ð+Ð+Ð+Ð+Ð+Ð360B C BFE CEF =Ð+Ð+Ð+Ð=°.故答案为:360°.15.80【分析】本题主要考查角平分线的定义和三角形外角的性质,熟练利用角平分线的定义和三角形外角的性质是解题的关键.首先根据平分线的概念得到2ABC PBC Ð=Ð,2ACD PCD Ð=Ð.然后利用三角形外角的性质得到40PCD PBC Ð-Ð=°,进而得到80ACD ABC Ð-Ð=°,即可求解.【详解】∵BP 、CP 分别是ABC V 的内角、外角平分线,∴2ABC PBC Ð=Ð,2ACD PCDÐ=Ð∵40P Ð=°∴40PCD PBC Ð-Ð=°∴2280PCD PBC Ð-Ð=°∴80ACD ABC Ð-Ð=°∴80A Ð=°.故答案为:80.16.2【分析】本题考查了全等三角形的判定及性质,熟练掌握性质定理是解题的关键.根据条件可以得出90E ADC Ð=Ð=°,利用AAS 可以得出CEB ADC V V ≌,再根据全等三角形的性质得出BE DC =,CE AD =,最后根据线段的和差即可得出答案.【详解】解:∵BE CE ^,AD CE ^,∴90E ADC Ð=Ð=°,∴90EBC BCE Ð+Ð=°.∵90BCE ACD Ð+Ð=°,∴EBC DCA Ð=Ð.在CEB V 和ADC △中,E ADC EBC DCA BC AC Ð=ÐìïÐ=Ðíï=î,∴()AAS CEB ADC V V ≌,∴1BE DC ==,3CE AD ==.∴312DE EC CD =-=-=,故答案为:2.17.见解析【分析】根据全等三角形的性质可直接得出答案.【详解】①B Ð的对应角为B Ð②C Ð的对应角为E Ð,③BAC Ð的对应角为BDE Ð④AB 的对应边为BD ,⑤AC 的对应边为DE ⑥BC 的对应边为BE .【点睛】本题考查了全等三角形的性质,找准对应边、对应角是解题的关键.18.62°【分析】本题考查了直角三角形内角的性质,熟练掌握直角三角形两锐角互余是本题的关键.根据平角的定义,求得28DFC Ð=°,由于B C Ð=Ð,FD BC ^,DE AB ^,根据直角三角形的性质求得28EDB DFC Ð=Ð=°,即可求得EDF Ð.【详解】解:152AFD Ð=°Q ,28DFC \Ð=°,B C \Ð=Ð,FD BC ^,DE AB ^,28EDB DFC \Ð=Ð=°,180180902862EDF EDB FDC \Ð=°-Ð-Ð=°-°-°=°.19.(1)4c =或6(2)222a b c+-【分析】本题考查了三角形三边关系、化简绝对值,熟练掌握三角形三边关系是解此题的关键.(1)由三角形三边关系结合三角形的周长是小于22的偶数,得出28c <<,即可得出答案;(2)由三角形三边关系得a b c +>,再利用绝对值的性质化简即可.【详解】(1)解:Q ABC V 的三边长是a b c ,,,68a b ==,,8686c \-<<+,即214c <<,Q 三角形的周长是小于22的偶数,28c \<<,\4c =或6;(2)解:由三角形三边关系得:a b c +>,0a b c \+->,()0c a b c a b --=-+<,a b c c a b\+-+--()a b c c a b =+----a b c c a b=+--++222a b c =+-.20.(1)32°(2)2cm【分析】此题考查了全等三角形的性质、直角三角形的性质等知识,熟练掌握全等三角形的性质是解题的关键.(1)先根据垂直以及直角三角形两锐角互余求出9032D F Ð=°-Ð=°,再利用全等三角形对应角相等即可得到A Ð的大小;(2)利用全等三角形的性质得到AB DE =,则AB BE DE BE -=-,即可得到()()12cm 2AE BD AD BE ==-=.【详解】(1)解:∵,FE AD ^∴90DEF Ð=°,∵58F Ð=°,∴9032D F Ð=°-Ð=°,∵ABC DEF≌△△∴32A D Ð=Ð=°(2)∵ABC DEF ≌△△,∴AB DE=∴AB BE DE BE -=-,∴()()()11952cm 22AE BD AD BE ==-=-=21.(1)2DE =(2)90BAC Ð=°【分析】本题考查了全等三角形的性质,平行线的性质,(1)根据ABD CAE △△≌,6BD =,4CE =得6BD AE ==,4AD CE ==,即可得;(2)根据BD CE ∥得BDE CEA Ð=Ð,根据ABD CAE △△≌得ADB CEA Ð=Ð,ABD CAE Ð=Ð,则ADB BDE Ð=Ð,根据180ADB BDE +Ð=°得90ADB Ð=°,可得90ABD BAD Ð+Ð=°,即可得;掌握全等三角形的性质,平行线的性质是解题的关键.【详解】(1)解:∵ABD CAE △△≌,6BD =,4CE =,∴6BD AE ==,4AD CE ==,2DE AE AD \=-=;(2)解:∵BD CE ∥,BDE CEA \Ð=Ð,∵ABD CAE △△≌,ADB CEA \Ð=Ð,ABD CAE Ð=Ð,ADB BDE \Ð=Ð,∵180ADB BDE +Ð=°,90ADB \Ð=°,90ABD BAD \Ð+Ð=°,90BAC BAD CAE BAD ABD \Ð=Ð+Ð=Ð+Ð=°.22.15°【分析】根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,然后根据直角三角形两锐角互余求出∠ACD ,最后根据角平分线的定义求出∠ACE 即可.【详解】∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x ,∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得:x =30°,∴∠A =30°,∠ACB =90°,∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =90°-30°=60°,∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.【点睛】本题考查了三角形的内角和定理,直角三角形两锐角互余,角平分线的定义,熟记概念并准确识图是解题的关键.23.6AB =,4AC =或2111AB =,1411AC =【分析】此题主要考查了三角形的中线,解题的关键是掌握三角形中线的定义,并注意分类讨论.首先设3AB x =,2AC x =,则21BC x =+,根据ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:可得①()()87AB AD BC CD ++=::;②()()87BC CD AB AD ++=::,分两种情况进行计算即可.【详解】解:如图:利用32AB AC =::,设3AB x =,2AC x =,∵1BC AC =+,∴21BC x =+,∵ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:,则①当()()87AB AD BC CD ++=::时,由题意得:()83322115x x x x x +=+++´,解得:2x =,则6AB =,4AC =;②当()()87BC CD AB AD ++=::时,由题意得:()73322115x x x x x +=+++´,解得:711x =,则2111AB =,1411AC =,答:6AB =,4AC =或2111AB =,1411AC =.24.(1)CGO OFB ≌△△,理由见解析(2)爸爸接住小丽的地方距地面的高度为1.6m【分析】(1)由直角三角形的性质得出BOF OCG Ð=Ð,根据AAS 可证明CGO OFB ≌△△;(2)由全等三角形的性质得出,OF CG OG BF ==,求出FG 的长则可得出答案.【详解】(1)CGO OFB ≌△△.理由如下;∵90BOC Ð=°,∴90COG BOF Ð+Ð=°∵CG OA ^,∴90COG OCG Ð+Ð=°,∴BOF OCG Ð=Ð.又∵BF OA ^,∴90BFO OGC Ð=Ð=°.∵OC OB =,∴()AAS CGO OFB ≌△△.(2)∵CGO OFB ≌△△,∴,OF CG OG BF ==,∴ 2.2 1.80.4m FG OF OG CG BF =-=-=-=,∴爸爸接住小丽的地方距地面的高度为1.20.4 1.6m +=.【点睛】本题考查了全等三角形的判定与性质,直角三角形两锐角互余,证明CGO OFB ≌△△是解题的关键.25.(1)证明见解析(2)证明见解析【分析】本题考查了三角形全等的判定与性质.熟练掌握三角形全等的判定与性质是解题的关键.(1)由“HL ”可证Rt Rt APM CQN V V ≌;(2)先由(1)可知AM CN =,证PDM QDN V V ≌,从而由三角形全等的性质可得DM DN =,然后由线段的和差即可得证.【详解】(1)证明:∵PM AC ^,QN AC ^,∴在APM △与CQN △中,PA CQ PM QN=ìí=î,()Rt Rt HL APM CQN \V V ≌;(2)证明:由(1)知APM CQN ≌△△,AM CN \=,∵PM AC ^,QN AC ^,90PMD QND \Ð=Ð=°,在PDM △与QDN △中,90PMD QND PDM QDN PM QN Ð=Ð=°ìïÐ=Ðíï=î,()AAS PDM QDN \V V ≌,DM DN \=,2AC AM DM CD CN CD DM DN DM DM \=++=++=+=,12DM AC \=.。
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.2.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个解析:B【解析】【详解】 解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3,所以②正确; ∵x=﹣2b a=1,即b=﹣2a ,而x=﹣1时,y=0,即a ﹣b+c=0,∴a+2a+c=0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误; ∵抛物线的对称轴为直线x=1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.3.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a﹣b+c <0;③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A.1 B.2 C.3 D.4解析:B【解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.4.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>1解析:B【解析】【分析】根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【点睛】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.5.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚解析:A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用6.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)解析:C 【解析】【分析】根据黄金分割点的定义,知BC为较长线段;则BC=51-AB,代入数据即可得出BC的值.【详解】解:由于C为线段AB=2的黄金分割点,且AC<BC,BC为较长线段;则BC=2×51-=5-1.故答案为:5-1.【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的352-倍,较长的线段=原线段的51-倍.7.如图所示,点E是正方形ABCD内一点,把△BEC绕点C旋转至△DFC位置,则∠EFC的度数是( )A.90°B.30°C.45°D.60°解析:C【解析】【分析】根据正方形的每一个角都是直角可得∠BCD=90°,再根据旋转的性质求出∠ECF=∠BCD=90°,CE=CF,然后求出△CEF 是等腰直角三角形,然后根据等腰直角三角形的性质解答.【详解】∵四边形ABCD 是正方形,∴∠BCD=90°,∵△BEC 绕点C 旋转至△DFC 的位置,∴∠ECF=∠BCD=90°,CE=CF ,∴△CEF 是等腰直角三角形,∴∠EFC=45°.故选:C.【点睛】本题目是一道考查旋转的性质问题——每对对应点到旋转中心的连线的夹角都等于旋转角度,每对对应边相等,故CEF ∆ 为等腰直角三角形.8.如图,函数y =kx +b(k≠0)与y =m x (m≠0)的图象交于点A(2,3),B(-6,-1),则不等式kx +b >m x 的解集为( )A .602x x <-<<或B .602x x -<或C .2x >D .6x <- 解析:B【解析】【分析】根据函数的图象和交点坐标即可求得结果.【详解】解:不等式kx+b >m x的解集为:-6<x <0或x >2, 故选B .【点睛】 此题考查反比例函数与一次函数的交点问题,解题关键是注意掌握数形结合思想的应用.9.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )。
【2020精品中考数学提分卷】广州白云区初三年级一模数学试卷+答案2020年广东省广州市白云区中考数学一模试卷一、单选题1. ( 2分 )|?6| 的值是()A. ?6B. 6C. 16D. ?162. ( 2分 ) 下面四幅图是在同一天同一地点不同时刻太阳照射同一根旗杆的影像图,其中表示太阳刚升起时的影像图是()A.B.C.D.3. ( 2分 ) 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为()A. 5.3×103 B. 5.3×104 C. 5.3×107 D.5.3×108 4. ( 2分 ) 下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.5. ( 2分) 如图,△ABC内有一点D,且DA=DB=DC,若∠DAB= 20°,∠DAC=30°,则∠BDC的大小是()A. 100°B. 80°C. 70°D. 50°6. ( 2分) 正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A. √3B. 2C. 2√2D. 2√37. ( 2分) 如图,P是反比例函数图象上第二象限内一点,若矩形PEOF的面积为3,则反比例函数的解析式是()A. y=?3xB. y=?x3C. y=x3D. y=3x8. ( 2分) 某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A. x(x+1)=2550B. x(x?1)=2550C. 2x(x+1)=2550D. x(x?1)=2550×29. ( 2分) 若1x >2,1x>-3,则x的取值范围()A. ?13<x<1< bdsfid="126" p=""></x<1<>2B. ?13<x1</x2C. x3或x>12D. 以上答案都不对10. ( 2分) 如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG 重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A. B.C. D.二、填空题11. ( 1分) 分解因式(xy?1)2?(x+y?2xy)(2?x?y)=________.12. ( 2分) 如图,在矩形ABCD中,M为CD的中点,连接AM、BM,分别取AM、BM的中点P、Q,以P、Q为顶点作第二个矩形PSRQ,使S、R在AB上.在矩形PSRQ中,重复以上的步骤继续画图….若AM⊥MB,矩形ABCD的周长为30.则:(1)DC=________;(2)第n个矩形的边长分别是________.13. ( 1分) 不等式组{x?1<0x+2≥0的解集是________14. ( 1分) 把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=8cm,则圆形螺母的外直径是________.15. ( 1分) 如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是________.16. ( 1分) 如图,点A,B分别在一次函数y=x,y=8x的图象上,其横坐标分别a,b(a>0,b>0).设直线AB的解析式为y=kx+m,若ba是整数时,k也是整数,满足条件的k值共有________个.三、解答题17. ( 5分) 计算:|?13|+(π?2017)0?2sin30°+3?1.18. ( 5分) 先化简,再求值:先化简x2?2x+1x?1÷(x?1x+1﹣x+1),然后从﹣2<x<√5的范围内选取一个合适的整数作为x的值代入求值.).19. ( 10分) 如图,一条公路的转弯处是一段圆弧(AB所在圆的圆心O;(要求保留作图痕迹,不写作法)(1)用直尺和圆规作出AB的中点C到弦AB的距离为20m,AB=80m,求AB?所在圆的半径.(2)若AB20. ( 7分) 中小学生每天在校体育活动时间不低于1小时” .为此,我区就“你每天在校体育活动时间是多少”的问题随机调查了区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5? B组:0.5?≤t<1? C组:1?≤t<1.5? D组:t≥1.5?请根据上述信息解答下列问题:(1)C组的人数是________.(2)本次调查数据的中位数落在________组内;(3)若我区有5400名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?21. ( 15分) 随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x (元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工厂每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?22. ( 10分) 如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP 的距离为30海里(参考数据:sin32°≈0.53,sin55°≈0.82).(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.23. ( 15分 ) 如图, A(4,0),B(1,3) ,以OA 、OB 为边作平行四边形OACB ,反比例函数 y =kx 的图象经过点C .(1)求k 的值;(2)根据图象,直接写出 y <3 时自变量x 的取值范围;(3)将平行四边形OACB 向上平移几个单位长度,使点B 落在反比例函数的图象上.24. ( 10分 ) 如图 1,⊙O 的直径 AB =12,P 是弦BC 上一动点( 与点 B ,C 不重合 ),∠ABC =30° ,过点P 作PD ⊥OP 交⊙O 于点D .(1)如图2,当 PD//AB 时,求PD 的长;(2)如图3,当 DC=AC ? 时,延长AB 至点E ,使 BE =12AB ,连接DE .①求证:DE 是⊙O 的切线;②求PC 的长.25. ( 12分 ) 如图,在平面直角坐标系中,O 为坐标原点,已知直线 y =?43x +8 与x轴、y轴分别交于A、B两点.直线OD⊥直线AB于点D.现有一点P从点D出发,沿线段DO向点O运动,另一点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到O时,两点都停止.设运动时间为t秒.(1)点A的坐标为________ ;线段OD的长为________ .(2)设?OPQ的面积为S,求S与t之间的函数关系(不要求写出取值范围),并确定t为何值时S的值最大?(3)是否存在某一时刻t,使得?OPQ为等腰三角形?若存在,写出所有满足条件的t的值;若不存在,则说明理由.答案解析部分一、单选题1.【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:|?6|=6,故答案为:B.【分析】本题考查绝对值的意义,根据负数的绝对值等于它的相反数,从而可得| ? 6 | = 6.2.【答案】C【考点】平行投影【解析】【解答】解:太阳东升西落,在不同的时刻,同一物体的影子的方向和大小不同,太阳从东方刚升起时,影子应在西方.故答案为:C.【分析】太阳从东方升起,故物体影子应在西方,所以太阳刚升起时,照射一根旗杆的影像图,应是影子在西方.3.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:5300万=5300×103万美元=5.3×107美元.故答案为:C.【分析】本题考查的用科学记数法表示绝对值大于1的数,科学记数法是指将一个数字表示成a×10n的形式,其中1≤|a|≤10,n是整数,这种记数方法叫科学记数法.n值的确定是个易错点,属于常考题型.4.【答案】D【考点】轴对称图形,中心对称及中心对称图形【解析】【解答】解:A.不是轴对称图形,是中心对称图形,不合题意;B.不是轴对称图形,不是中心对称图形,不合题意;C.是轴对称图形,不是中心对称图形,不合题意;D.是轴对称图形,也是中心对称图形,符合题意.故答案为:D.【分析】把一个图形沿着一条直线折叠,直线两旁的部分能完全重合的图形就是轴对称图形;把一个图形绕着某一点旋转180°后能与自身重合的图形就是中心对称图形,根据定义即可一一作出判断。
广东省广州市白云区中考数学一模试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是()A.B.2 C.﹣0.5 D.﹣22.(3分)下列各种图形中,可以比较大小的是()A.两条射线B.两条直线C.直线与射线D.两条线段3.(3分)下列代数式中,是4次单项式的为()A.4abc B.﹣2πx2y C.xyz2D.x4+y4+z44.(3分)已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为()A.7,8 B.7,6 C.6,7 D.7,45.(3分)用直接开平方法解下列一元二次方程,其中无解的方程为()A.x2﹣1=0 B.x2=0 C.x2+4=0 D.﹣x2+3=06.(3分)平面内三条直线a、b、c,若a⊥b,b⊥c,则直线a、c的位置关系是()A.垂直B.平行C.相交D.以上都不对7.(3分)某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是()A.91分B.92分C.93分D.94分8.(3分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对9.(3分)在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m>0 B.m<0 C.m>D.m<10.(3分)如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为()A.B.C.tanαD.1二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=°.12.(3分)△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是三角形.13.(3分)若a3•a m=a9,则m=.14.(3分)已知,如图,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB=.15.(3分)化简:=.16.(3分)如图,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP 时(P与A、B与P分别为对应顶点),∠APB=°.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.18.(9分)AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.19.(10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x,再从剩下的三张中随机取出一张,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+4图象上的概率.20.(10分)如图,一条直线分别交x轴、y轴于A、B两点,交反比例函数y=(m≠0)位于第二象限的一支于C点,OA=OB=2.(1)m=;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m的值,直接写出分解因式a2+ma+7的结果.21.(12分)如图,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点.(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连结EF,EF与BC是什么位置关系?为什么?(3)若四边形BDFE的面积为9,求△ABD的面积.22.(12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.23.(12分)如图,⊙O的半径OA⊥OC,点D在上,且=2,OA=4.(1)∠COD=°;(2)求弦AD的长;(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由.(解答上面各题时,请按题意,自行补足图形)24.(14分)二次函数y=x2+px+q的顶点M是直线y=﹣和直线y=x+m的交点.(1)若直线y=x+m过点D(0,﹣3),求M点的坐标及二次函数y=x2+px+q的解析式;(2)试证明无论m取任何值,二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)在(1)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x的右交点为A,试在直线y=﹣上求异于M的点P,使P在△CMA的外接圆上.25.(14分)已知,如图,△ABC的三条边BC=a,CA=b,AB=c,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u,DB=v,DC=w.(1)若∠CBD=18°,则∠BCD=°;(2)将△ACD绕点A顺时针方向旋转90°到△AC'D',画出△AC'D',若∠CAD=20°,求∠CAD'度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a、b、c,且正三角形的边长为u+v+w,并给予证明.广东省广州市白云区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是()A.B.2 C.﹣0.5 D.﹣2【解答】解:﹣的相反数是,故选:A.2.(3分)下列各种图形中,可以比较大小的是()A.两条射线B.两条直线C.直线与射线D.两条线段【解答】解:A、射线没有长度,无法比较,故此选项错误;B、直线没有长度,无法比较,故此选项错误;C、直线与射线没有长度,无法比较,故此选项错误;D、两条线段可以比较大小.故选:D.3.(3分)下列代数式中,是4次单项式的为()A.4abc B.﹣2πx2y C.xyz2D.x4+y4+z4【解答】解:xyz2是4次单项式,故选C.4.(3分)已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为()A.7,8 B.7,6 C.6,7 D.7,4【解答】解:这组数据按照从小到大的顺序排列为:2、4、5、6、7、7、8,则众数为:7,中位数为:6.故选:B.5.(3分)用直接开平方法解下列一元二次方程,其中无解的方程为()A.x2﹣1=0 B.x2=0 C.x2+4=0 D.﹣x2+3=0【解答】解:A、方程x2﹣1=0的解为x=±1;B、方程x2=0的解为x=0;C、由方程x2+4=0可得x2=﹣4,方程无解;D、方程﹣x2+3=0的解为x=±,故选:C.6.(3分)平面内三条直线a、b、c,若a⊥b,b⊥c,则直线a、c的位置关系是()A.垂直B.平行C.相交D.以上都不对【解答】解:∵a⊥b,b⊥c,∴a∥b,故选B.7.(3分)某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是()A.91分B.92分C.93分D.94分【解答】解:物理成绩是:93×3﹣97﹣89=93(分).故选:C.8.(3分)如图所示,直线AB⊥CD于点O,直线EF经过点O,若∠1=26°,则∠2的度数是()A.26°B.64°C.54°D.以上答案都不对【解答】解:∵∠1=26°,∠DOF与∠1是对顶角,∴∠DOF=∠1=26°,又∵∠DOF与∠2互余,∴∠2=90°﹣∠DOF=90°﹣26°=64°.故选B.9.(3分)在反比例函数y=的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是()A.m>0 B.m<0 C.m>D.m<【解答】解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选D.10.(3分)如图,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为()A.B.C.tanαD.1【解答】解:如图所示:过A作AE⊥BC,AF⊥CD于F,垂足为E,F,∴∠AEB=∠AFD=90°,∵AD∥C B,AB∥CD,∴四边形ABCD是平行四边形,∵纸条宽度都为1,∴AE=AF=1,∵平行四边形的面积=BC•AE=CD•AF,∴BC=CD,∴四边形ABCD是菱形.∴BC=AB,∵=sinα,∴BC=AB==,∴重叠部分(图中阴影部分)的面积=BC×AE=×1=.故选:A.二、填空题(本大题共6小题,每小题3分,满分18分)11.(3分)如图,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED=80°.【解答】解:在△ABD与△EBD中,,∴△ABD≌△EBD,∴∠BED=∠A=80°.故答案为80.12.(3分)△ABC中,∠A、∠B都是锐角,且sinA=cosB=,则△ABC是直角三角形.【解答】解:由△ABC中,∠A、∠B都是锐角,且sinA=cosB=,得∠A+∠B=90°,故答案为:直角.13.(3分)若a3•a m=a9,则m=6.【解答】解:由题意可知:3+m=9,∴m=6,故答案为:614.(3分)已知,如图,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB=8.【解答】解:∵如图,△ABC中,∠A+∠B=90°,∴∠ACB=90°.∵AD=DB,∴CD是该直角三角形斜边AB上的中线,∴AB=2CD=8.故答案是:8.15.(3分)化简:=x+y+2.【解答】解:原式==,=x+y+2.故答案为:x+y+2.16.(3分)如图,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP 时(P与A、B与P分别为对应顶点),∠APB=135°.【解答】解:∵△PDB∽△ACP,∴∠A=∠BPD,∵CD是等腰直角△PCD的底边,∴∠PCD=45°,∠CPD=90°,由三角形的外角的性质得∠A+∠APC=∠PCD=45°,∴∠APB=∠APC+∠PCD+∠BPD=∠APC+∠PCD+∠A=45°+90°=135°.故答案为:135.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤)17.(9分)解方程组:.【解答】解:①﹣②,得(x+2y)﹣(x﹣4y)=﹣5﹣7,即6y=﹣12,解得y=﹣2,把y=﹣2代入②,可得:x﹣4×(﹣2)=7,得x=﹣1,∴原方程组的解为.18.(9分)AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.【解答】证明:∵AC是菱形ABCD的对角线,∴∠FAC=∠EAC,在△ACE和△ACF中,,∴△ACE≌△ACF(SAS).19.(10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x,再从剩下的三张中随机取出一张,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+4图象上的概率.【解答】解:(1)树状图如下:点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+4图象上的点有2个,即(1,3),(3,1),=.∴点P(x,y)在函数y=﹣x+4图象上的概率为:P(点在图象上)=20.(10分)如图,一条直线分别交x轴、y轴于A、B两点,交反比例函数y=(m≠0)位于第二象限的一支于C点,OA=OB=2.(1)m=﹣8;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m的值,直接写出分解因式a2+ma+7的结果.【解答】解:(1)m=﹣2×4=﹣8;(2)∵OA=OB=2,∴A、B点的坐标分别为A(2,0)、B(0,2),设直线所对应的一次函数的解析为y=kx+b,分别把A、B的坐标代入其中,得,解得.∴一次函数的解析为y=﹣x+2;(3)由(1)m=﹣8,则a2+ma+7=a2﹣8m+7=(a﹣1)(a﹣7).故答案为:﹣8.21.(12分)如图,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点.(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连结EF,EF与BC是什么位置关系?为什么?(3)若四边形BDFE的面积为9,求△ABD的面积.【解答】解:(1)如图,射线CF即为所求;(2)EF∥BC.∵∠CAD=∠CDA,∴AC=DC,即△CAD为等腰三角形;又CF是顶角∠ACD的平分线,∴CF是底边AD的中线,即F为AD的中点,∵E是AB的中点,∴EF为△ABD的中位线,∴EF∥BD,从而EF∥BC;(3)由(2)知EF∥BC,∴△AEF∽△ABD,∴,又∵AE=AB ,∴得=,把S 四边形BDFE =9代入其中,解得S △AEF =3,∴S △ABD =S △AEF +S 四边形BDFE =3+9=12,即△ABD 的面积为12.22.(12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.【解答】解:设轮船的日速为x 千米/日,由题意,得×3=,解此分式方程,得x=392,经检验,x=392是原分式方程的解,2x ﹣49=735.答:列车的速度为735千米/日;轮船的速度为392千米/日.23.(12分)如图,⊙O 的半径OA ⊥OC ,点D 在上,且=2,OA=4.(1)∠COD= 30 °;(2)求弦AD 的长;(3)P 是半径OC 上一动点,连结AP 、PD ,请求出AP +PD 的最小值,并说明理由.(解答上面各题时,请按题意,自行补足图形)【解答】解:(1)∵OA ⊥OC ,∴∠AOC=90°,∵=2,∴∠AOD=2∠COD,∴∠COD=∠AOC=30°,故答案为:30;(2)连结OD、AD,如图1所示:由(1)知∠AOD=2∠COD=2×30°=60°,∵OA=OD,∴△AOD为等边三角形,∴AD=OA=4;(3)过点D作DE⊥OC,交⊙O于点E,连结AE,交OC于点P,则此时,AP+PD的值最小,延长AO交⊙O于点B,连结BE,如图2所示:∵根据圆的对称性,点E是点D关于OC的对称点,OC是DE的垂直平分线,即PD=PE,∴AP+PD最小值=AP+PE=AE,∵∠AED=∠AOD=30°,又∵OA⊥OC,DE⊥OC,∴OA∥DE,∴∠OAE=∠AED=30°,∵AB为直径,∴△ABE为直角三角形,由=cos∠BAE,AE=AB•cos30°=2×4×=,即AP+PD=,24.(14分)二次函数y=x2+px+q的顶点M是直线y=﹣和直线y=x+m的交点.(1)若直线y=x+m过点D(0,﹣3),求M点的坐标及二次函数y=x2+px+q的解析式;(2)试证明无论m取任何值,二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)在(1)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x的右交点为A,试在直线y=﹣上求异于M的点P,使P在△CMA的外接圆上.【解答】解:(1)把D(0,﹣3)坐标代入直线y=x+m中,得m=﹣3,从而得直线y=x﹣3,由M为直线y=﹣与直线y=x﹣3的交点,得,解得,,∴得M点坐标为M(2,﹣1),∵M为二次函数y=x2+px+q的顶点,∴其对称轴为x=2,由对称轴公式:x=﹣,得﹣=2,∴p=﹣4;由=﹣1,=﹣1,解得,q=3.∴二次函数y=x2+px+q的解析式为:y=x2﹣4x+3;(2)∵M是直线y=﹣和y=x+m的交点,∴,解得,,∴M点坐标为M(﹣,),∴﹣=﹣、=,解得,p=,q=+,由,得x2+(p﹣1)x+q﹣m=0,△=(p﹣1)2﹣4(q﹣m)=(﹣1)2﹣4(+﹣m)=1>0,∴二次函数y=x2+px+q的图象与直线y=x+m总有两个不同的交点;(3)由(1)知,二次函数的解析式为:y=x2﹣4x+3,当x=0时,y=3.∴点C的坐标为C(0,3),令y=0,即x2﹣4x+3=0,解得x1=1,x2=3,∴点A的坐标为A(3,0),由勾股定理,得AC=3.∵M点的坐标为M(2,﹣1),过M点作x轴的垂线,垂足的坐标应为(2,0),由勾股定理得,AM=,过M点作y轴的垂线,垂足的坐标应为(0,﹣1),由勾股定理,得CM===2.∵AC2+AM2=20=CM2,∴△CMA是直角三角形,CM为斜边,∠CAM=90°.直线y=﹣与△CMA的外接圆的一个交点为M,另一个交点为P,则∠CPM=90°.即△CPM为Rt△,设P点的横坐标为x,则P(x,﹣).过点P作x轴垂线,过点M作y轴垂线,两条垂线交于点E,则E(x,﹣1).过P作PF⊥y轴于点F,则F(0,﹣).在Rt△PEM中,PM2=PE2+EM2=(﹣+1)2+(2﹣x)2=﹣5x+5.在Rt△PCF中,PC2=PF2+CF2=x2+(3+)2=+3x+9.在Rt△PCM中,PC2+PM2=CM2,得+3x+9+﹣5x+5=20,化简整理得5x2﹣4x﹣12=0,解得x1=2,x2=﹣.当x=2时,y=﹣1,即为M点的横、纵坐标.∴P点的横坐标为﹣,纵坐标为,∴P(﹣,).25.(14分)已知,如图,△ABC的三条边BC=a,CA=b,AB=c,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u,DB=v,DC=w.(1)若∠CBD=18°,则∠BCD=42°;(2)将△ACD绕点A顺时针方向旋转90°到△AC'D',画出△AC'D',若∠CAD=20°,求∠CAD'度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a、b、c,且正三角形的边长为u+v+w,并给予证明.【解答】解:(1)在△BCD中,∠BDC=120°,∠CBD=18°,根据三角形的内角和得,∠BCD=180°﹣∠BDC﹣∠CBD=42°,故答案为42,(2)画图如图1所示,由旋转知∠DAD'=90°,∵∠CAD=20°,∴∠CAD'=∠DAD'﹣∠CAD=90°﹣20°=70°;(3)画图如图2,将△BDC绕点B按逆时针方向旋转60°,到△BEF的位置.连结DE,CF,由旋转可知,△BDE和△BCF均为等边三角形,∴DE=v,CF=a.∵∠ADB=120°,∠BDE=60°,即∠ADE=180°,则A、D、E三点共线(即该三点在同一条直线上).同理,∵∠BEF=∠BDC=120°,∠BED=60°,即∠DEF=180°,则D、E、F三点共线,∴A、D、E、F四点均在一条直线上.∵EF=DC=w,∴线段AF=u+v+w.以线段AF为边在点B一侧作等边△AFG,则△AFG即为符合条件的等边三角形,其中的点B即为点M.正三角形的边长为u+v+w已证,BA=c,BF=BC=a,下面再证BG=b.∵∠CFB=∠AFG=60°,即∠1+∠EFB=∠2+∠EFB=60°,∴∠1=∠2.在△AFC和△GFB中,∵FA=FG,∠1=∠2,FC=FB,∴△AFC≌△GFB(SAS),∴AC=GB,即BG=CA=b.从而点B(M)到等边△AFG三个顶点的距离分别为a、b、c,且其边长为u+v+w.。
2017年白云区初中毕业班综合测试数 学 试 题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟. 注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-12的相反数是(*) (A)12(B)2 (C)-0.5 (D)-2 2.下列各种图形中,可以比较大小的是(*)(A)两条射线 (B)两条直线 (C)直线与射线 (D)两条线段 3.下列代数式中,是4次单项式的为(*)(A)4abc (B)-22x y π (C)2xyz (D)444x y z ++4.已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为(*) (A)7,8 (B)7,6 (C)6,7 (D)7,45.用直接开平方法解下列一元二次方程,其中无解的方程为(*)(A)2x -1=0 (B)2x =0 (C)2x +4=0 (D)-2x +3=0 6.平面内三条直线a 、b 、c ,若a ⊥b ,b ⊥c ,则直线a 、c 的位置关系是(*) (A)垂直 (B)平行 (C)相交 (D)以上都不对7.某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是(*)(A)91分 (B)92分 (C)93分 (D)94分8.如图1,直线AB⊥CD,垂足为点O,直线EF经过点O,若∠1=26°,则∠2的度数是(*)(A)26° (B)64°(C)54° (D)以上答案都不对 A B C DE FO 12 图19.在反比例函数y =13mx-的图象上有两点A(1x ,1y ),B(2x ,2y ),当1x <0<2x 时,有1y <2y ,则m 的取值范围是(*) (A)m >0 (B)m <0 (C)m >13 (D)m <1310.如图2,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为(*)(A)1sin α (B)1cos α(C)tan α (D)1第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.如图3,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED= * °. 12.△ABC中,∠A、∠B都是锐角,且sin A=cos B=12,则△ABC是* 三角形. 13.若3ma a ⋅=9a ,则m = * .14.已知,如图4,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB= * .15.化简:22242x y xy x y ++-+-= * .16.如图5,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP时(P与A、B与P分别为对应顶点),∠APB= * °.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:2547x y x y +=-⎧⎨-=⎩18.(本小题满分9分)α ABCD 图2↓ ↑1AB C D E 图3 A B CD 图4 C B D PA 图5如图6,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF.求证:△ACE≌△ACF.19.(本小题满分10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x,再从剩下的三张中随机取出一张,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=-x+4图象上的概率.20.(本小题满分10分)如图7,一条直线分别交x轴、y轴于A、B两点,交反比例函数y=mx(m≠0)位于第二象限的一支于C点,OA=OB=2.(1)m=*;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m的值,直接写出分解因式2a+ma+7的结果.21.(本小题满分12分)如图8,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点.(1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连结EF,EF与BC是什么位置关系?为什么?(3)若四边形BDFE的面积为9,求△ABD的面积.22.(本小题满分12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.23.(本小题满分12分)如图9,⊙O的半径OA⊥OC,点D在»AC上,且»AD=2»CD,OA=4.AB C DEF图6xyO图7ABC-24AB CD图8·E(1)∠COD= * °; (2)求弦AD的长; (3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由. (解答上面各题时,请按题意,自行补足图形)24.(本小题满分14分) 二次函数y =2x +px +q 的顶点M是直线y =-12x 和直线y =x +m 的交点. (1)若直线y =x +m 过点D(0,-3),求M点的坐标及二次函数y =2x +px +q 的解析式;(2)试证明无论m 取任何值,二次函数y =2x +px +q 的图象与直线y =x +m 总有两个不同的交点;(3)在(1)的条件下,若二次函数y =2x +px +q 的图象与y 轴交于点C,与x 的右交点为A,试在直线y =-12x 上求异于M的点P,使P在△CMA的外接圆上.25.(本小题满分14分)已知,如图10,△ABC的三条边BC=a ,CA=b ,AB=c ,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u ,DB=v ,DC=w . (1)若∠CBD=18°,则∠BCD= * °;(2)将△ACD绕点A顺时针方向旋转90°到△AC D '',画出△AC D '',若∠CAD=20°,求∠CAD '度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a 、b 、c ,且正三角形的边长为u +v +w ,并给予证明.图9 备用图ABCDuv wabc图10参考答案及评分建议(2017初三模拟考)题号12345678910答案ADCBCBCBDA题号111213141516答案80直角68x+y+2135三、解答题17.(本小题满分9分)解法一(加减消元法):2 547 x yx y⎧+=-⎨-=⎩①②①-②,得(x+2y)-(x-4y)=-5-7,…………………………3分即6y=-12,…………………………………………………………………4分解得y=-2,……………………………………………………………………5分把y=-2代入②,………………………………………………………………6分x-4×(-2)=7,…………………………………………………………7分得x=-1,………………………………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[若用②-①、①×2+②等,均参照给分]解法二(代入消元法):2 547 x yx y⎧+=-⎨-=⎩①②由①得,x=-2y-5③,……………………………………………3分把③式代入②式,…………………………………………………………………4分得(-2y-5)-4y=7,……………………………………………………5分解得y=-2,……………………………………………………………………6分把y=-2代入③式,……………………………………………………………7分x=-2×(-2)-5=-1,………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[由②式变形代入,均参照给分]18.(本小题满分9分) 证法一:∵四边形ABCD为菱形,∴AB=AD,∠BAC=∠DAC,………………2分 又∵BE=DF,∴AB-BE=AD-DF,……………………………………4分 即AE=AF.…………………………………………………………………………5分 在△ACE和△ACF中,∵AE AF EAC FAC AC AC =⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………8分 ∴△ACE≌△ACF(SAS).……………………………………………………9分 证法二:∵四边形ABCD为菱形,∴BC=DC,∠B=∠D,…………………………1分 在△BCE和△DCF中,∵BE DF B D BC DC =⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………………2分 ∴△BCE≌△DCF(SAS),……………………………………………………3分 ∴CE=CF.…………………………………………………………………………4分 ∵AB=AD,BE=DF,AB-BE=AD-DF,…………………………5分 即AE=AF.…………………………………………………………………………6分 在△ACE和△ACF中,∵AE AF CE CF AC AC =⎧⎪=⎨⎪=⎩,…………………………………………………………………………8分 ∴△ACE≌△ACF(SSS).……………………………………………………9分19.(本小题满分10分) 解:(1) 树状图如下:点P所有可能的坐标有:(1,2),(1,3),(1,4), (2,1),(2,3),(2,4),(3,1),(3,2), (3,4),(4,1),(4,2),(4,3)共12种;……………………7分1 2 3 4 2 1 3 4 3 1 2 4 x y 4 1 2 3……………………………5分列表如下:(注:树形图或列表二者取其一)(2)∵共有12种等可能的结果,其中在函数y =-x +4图象上的点有2个(2种),………………………1分 即(1,3),(3,1),∴点P(x ,y )在函数y =-x +4图象上的概率为: P(点在图象上)=212=16.…………………………………………………3分20.(本小题满分10分) 解:(1)-8;…………………………………………………………………2分 (2)∵OA=OB=2,∴A、B点的坐标 分别为A(2,0)、B(0,2).……………………………………………2分 设直线所对应的一次函数的解析为y =kx +b ,……………………………3分 分别把A、B的坐标代入其中,得202k b b +=⎧⎨=⎩,……………………………………………………………………4分 解得12k b =-⎧⎨=⎩,…………………………………………………………………5分∴一次函数的解析为y =-x +2; (3)由(1)m =-8, 则2a +ma +7=2a -8m +7=(a -1)(a -7).……………………………………3分21.(本小题满分12分) 解:(1)尺规作图略;…………………………………………………………3分 (2)EF∥BC(即EF平行于BC).……………………………………1分 原因如下:如图1,∵∠CAD=∠CDA, ∴AC=DC(等角对等边),即△CAD为等腰三角形;…………………2分 又CF是顶角∠ACD的平分线,由“三线合一”定理,知CF是底边AD的中线,即F为AD的中点,……………………………3分……………………………7分结合E是AB的中点,得EF为△ABD的中位线,………………………4分 ∴EF∥BD,从而EF∥BC;……………………………………………5分 (3)由(2)知EF∥BC,∴△AEF∽△ABD,…………………1分 ∴2()AEF ABD S AES AB=V V ,……………………………………………………………2分 又∵AE=12AB,∴得14AEF AEF BDFE S S S =+V V , 把S四边形BDFE=9代入其中,解得S△AEF=3,………………………………………………………………………3分 ∴S△ABD=S△AEF+S四边形BDFE=3+9=12,……………………………4分 即△ABD的面积为12.22.(本小题满分12分)解:设轮船的日速为x 千米/日,…………………………………………………1分由题意,得11025249x -×3=1.611025x⨯,…………………………………………7分解此分式方程,得x =392,……………………………………………………9分 经检验,x =392是原分式方程的解,………………………………………10分 2x -49=735.……………………………………………………………11分答:列车的速度为735千米/日;轮船的速度为392千米/日.………12分23.(本小题满分12分) 解:(1)30;……………………………………………………………………1分 (2)连结OD、AD(如图2).∵OA⊥OC,∴∠AOC=90°.∵»AD =2»CD , 设»CD所对的圆心角∠COD=m ,………………………………………………1分 则∠AOD=2m ,…………………………………………………………………2分 由∠AOD+∠DOC=90°,得m +2m =90°,∴m =30°,2m =60°,…………………………3分 即∠AOD=60°,又∵OA=OD,∴△AOD为等边三角形,…………4分 ∴AD=OA=4;…………………………………………………………………5分 (3)过点D作DE⊥OC,交⊙O于点E,……………………………………1分 连结AE,交OC于点P(如图3),………………………………………………2分A B C D EF 图1则此时,AP+PD的值最小.∵根据圆的对称性,点E是点D关于OC的对称点,OC是DE的垂直平分线,即PD=PE.………………………………………3分∴AP+PD=AP+PE=AE,若在OC上另取一点F,连结AF、FD及EF,在△AFE中,AF+FE>AE,即AF+FE>AP+PD,∴可知AP+PD最小.…………………………………………………………4分∵∠AED=12∠AOD=30°,又∵OA⊥OC,DE⊥OC,∴OA∥DE,∴∠OAE=∠AED=30°.延长AO交⊙O于点B,连结BE,∵AB为直径,∴△ABE为直角三角形.由AEAB=cos∠BAE,……………………………5分得AE=AB·c os30°=2×4×32=43,……………………………6分即AP+PD=43[也可利用勾股定理求得AE]24.(本小题满分14分)解:(1)把D(0,-3)坐标代入直线y=x+m中,得m=-3,从而得直线y=x-3.……………………………………………1分由M为直线y=-12x与直线y=x-3的交点,得123y xy x⎧=-⎪⎨⎪=-⎩,………………………………………………………………………2分图2图3解得21x y =⎧⎨=-⎩,∴得M点坐标为M(2,-1).…………………………………3分∵M为二次函数y =2x +px +q 的顶点,∴其对称轴为x =2, 由对称轴公式:x =-2b a ,得-2p=2,∴p =-4; 由244ac b a -=-1,得24(4)4q --=-1,得q =3.∴二次函数y =2x +px +q 的解析式为:y =2x -4x +3;………………4分 [也可用顶点式求得解析式:由M(2,-1), 得y =2(2)x --1,展开得y =2x -4x +3](2)∵M是直线y =-12x 和y =x +m 的交点,得12y xy x m⎧=-⎪⎨⎪=+⎩,解得2313x m y m⎧=-⎪⎪⎨⎪=⎪⎩,∴得M点坐标为M(-23m ,13m ).…………………………1分从而有-2p =-23m 和244()34q m -=13m , 解得p =43m ;q =249m +13m .…………………………………………………3分由2y x m y x px q=+⎧⎨=++⎩,得2x +(p -1)x +q -m =0,……………………4分 该一元二次方程根的判别式⊿=(p -1)2-4(q -m ) =(43m -1)2-4(249m +13m -m )=1>0,…………………………5分 ∴二次函数y =2x +px +q 的图象与直线y =x +m 总有两个不同的交点; (3)解法①:由(1)知,二次函数的解析式为:y =2x -4x +3,当x =0时,y =3.∴点C的坐标为C(0,3).……………………………1分 令y =0,即2x -4x +3=0,解得1x =1,2x =3,∴点A的坐标为A(3,0).………………………………………………………2分 由勾股定理,得AC=32.∵M点的坐标为M(2,-1), 过M点作x 轴的垂线,垂足的坐标应为(2,0),由勾股定理, 得AM=2;过M点作y 轴的垂线,垂足的坐标应为(0,-1), 由勾股定理,得CM=2242 =20=25.∵AC2+AM2=20=CM2,∴△CMA是直角三角形,……………………3分 CM为斜边,∠CAM=90°.直线y =-12x 与△CMA的外接圆的一个交点为M,另一个交点为P, 则∠CPM=90°.即△CPM为Rt △.………………………………………4分设P点的横坐标为x ,则P(x ,-12x ).过点P作x 轴垂线, 过点M作y 轴垂线,两条垂线交于点E(如图4),则E(x ,-1).过P作PF⊥y 轴于点F,则F(0,-12x ). 在Rt △PEM中,PM2=PE2+EM2=(-12x +1)2+(2-x )2=254x -5x +5. 在Rt △PCF中,PC2=PF2+CF2=2x +(3+12x )2 =254x +3x +9.在Rt △PCM中,PC2+PM2=CM2, 得254x +3x +9+254x -5x +5=20, 化简整理得52x -4x -12=0,解得1x =2,2x =-65. 当x =2时,y =-1,即为M点的横、纵坐标.∴P 点的横坐标为-65,纵坐标为35. ∴P(-65,35).……………………………………………………………………5分xy F E M P C O A D图4解法②[运用现行高中基本知识(解析几何):线段中点公式及两点间距离公式]:设线段CM的中点(即△CMA内接圆的圆心)为H,则由线段中点公式,可求出H的坐标为H(1,1).∵点P在⊙H上,∴点P到圆心H的距离等于半径.设点P的坐标为:P(n ,-12n ),由两点间的距离公式,得PH的长度为:,即 221(1)(1)2n n -+--=5,化简,整理,得化简整理得52n -4n -12=0,解得1n =2,2n =-65.当n =2时,y =-1,即为M点的横、纵坐标. ∴P 点的横坐标为-65,纵坐标为35. ∴P(-65,35). [对该解法,可相应给分]25.(本小题满分14分)解:(1)42;……………………………………………………………………1分 (2)画图如下(如图5).………………………………………………………3分 ∵∠DAD '=90°,∠CAD=20°,∴∠CAD '=∠DAD '-∠CAD=90°-20°=70°;…………5分(3)画图如下:将△BDC绕点B按逆时针方向旋转60°…………………2分 到△BEF的位置(如图6).连结DE,CF,这样可知△BDE和△BCF均为等边三角形,从而DE=v ,CF=a .∵∠ADB=120°,∠BDE=60°,即∠ADE=180°,则A、D、E三点共线(即该三点在同一条直线上).……………………………3分 同理,∵∠BEF=∠BDC=120°,∠BED=60°,即∠DEF=180°,则D、E、F三点共线,∴A、D、E、F四点均在一条直线上.…………………………………………4分 A B C D u v w a b c 图5C 'D '∵EF=DC=w ,∴线段AF=u +v +w .以线段AF为边在点B一侧作等边△AFG(图6),……………………………5分 则△AFG即为符合条件的等边三角形,其中的点B即为点M.…………………6分 正三角形的边长为u +v +w 已证,BA=c ,BF=BC=a ,下面再证BG=b .∵∠CFB=∠AFG=60°,即∠1+∠EFB=∠2+∠EFB=60°,∴∠1=∠2.在△AFC和△GFB中,∵FA=FG,∠1=∠2,FC=FB,∴△AFC≌△GFB(SAS),∴AC=GB,即BG=CA=b .从而点B(M)到等边△AFG三个顶点的距离分别为a 、b 、c ,且其边长为u +v +w .………………………………………………………………8分 [注:把△ADB绕点A按逆时针方向旋转60°,把△CDA绕点C按逆时针方向旋转60°,把△ADC绕点A按顺时针方向旋转60°,把△BCD绕点C按顺时针方向旋转60°等均可证得,方法类似]AB C D u v w a b c E F G 图6 1 2。