34二维随机变量函数的分布
- 格式:ppt
- 大小:2.99 MB
- 文档页数:45
第三章多维随机变量及其分布第五节二维随机变量的函数分布复习:已知一维随机变量X 的概率特性——分布函数或概率密度(分布律)Y = g ( X )求随机变量Y的概率特性方法:将与Y有关的事件转化成X的事件如果g (x k )中有一些是相同的,则Y 取该值的概率为所有g (x i )所对应的P i 之和.一般,若X 是离散型r.v ,X 的概率函数为Xn n p p p x x x 2121~则Y=g (X )~n n p p p x g x g x g 2121)()()(一维离散型随机变量函数的分布一维连续型随机变量函数的分布X f x Y =g X 设为连续型随机变量,其概率密度为,则的概率密度的求解可通过求其分布函数得到.一般过程为:方法一:分布函数法Y 1.求出的分布函数.1-Y F y =P Y y =P g x y =P x g y1-g y -=f x dx.一、离散型分布的情形问题: 已知二维离散型随机变量(X,Y )的分布律, g (x,y )为已知的二元函数, 则Z =g (X,Y )也是离散型随机变量,求Z 的分布律.1kk k ij .Z =z =g x ,y2.k ki j kk k k i j g x ,y =z P Z =z =P X =x ,Y =y k =1,2,…设X ~B (n 1, p ), Y ~B (n 2, p ), 且独立,具有可加性的两个离散分布 设X ~ P ( 1), Y ~ P ( 2), 且独立,则X + Y ~ B ( n 1+n 2,p )则X + Y ~ P ( 1+ 2)二、连续型分布的情形问题:已知二维随机变量( X ,Y )的概率密度,g(x,y)为已知的二元函数,Z = g( X ,Y )求:Z 的概率密度函数.方法:1)从求Z 的分布函数出发,将Z 的分布函数转化为( X ,Y )的事件的概率(分布函数法). 2)代公式(公式法).•z•z += zx(通过分布函数)则),(zFZ2,()z F z时x 1y o解法二(公式法-------图形定限法)其他,02,10,3),(xz x x x x z x fdxx z x f z f Z ),()(由公式(1)其他,00,10,3),(xy x x y x f正态随机变量的情形1)若X ,Y 相互独立,),(~),,(~222211 N Y N X 则),(~222121 N Y X 2)若(X ,Y ));,;,(~222211 N 则)2,(~22212121 N Y X ni N X ii i ,,2,1),,(~2 若n X X X ,,,21 相互独立则),(~1211ni in i i n i i N X(3)M=max(X,Y) 及N=min(X,Y) 的分布设X,Y是两个相互独立的随机变量,它们的分布函数分别为FX (x)和FY(y),我们来求:M=max(X,Y)及N=min(X,Y)的分布函数.由于M=max(X,Y)不大于z等价于X和Y都不大于z,故有P(M≤z)=P(X≤z,Y≤z)又由于X和Y相互独立,于是得到M=max(X,Y)的分布函数为:即有F M (z )= F X (z )F Y (z )F M (z )=P (M ≤z )=P (X ≤z )P (Y ≤z )=P (X ≤z ,Y ≤z )类似地,可得N=min(X ,Y )的分布函数是:F N (z )=P (N ≤z )=1-P (N >z )=1-P (X >z ,Y >z )=1-P (X >z )P (Y >z )即有F N (z)= 1-[1-F X (z )][1-F Y (z )]推广:设X 1,…,X n 是n 个相互独立的随机变量,它们的分布函数分别为求M=max(X 1,…,X n )和N=min(X 1,…,X n )的分布函数,则:)(x F i X (i =0,1,…, n ),N=min(X 1,…,X n )的分布函数为:M=max(X 1,…,X n )的分布函数为:111()[()]N X F z F z …1[()]n X F z 1()()M X F z F z ()n X F z …特别,当X 1,…,X n 相互独立且具有相同分布函数F (x )时,有F M (z )=[F (z )] n , F N (z )=1-[1-F (z )] n 若X 1,…,X n 是连续型随机变量,在求得M=max(X 1,…,X n )和N=min(X 1,…,X n )的分布函数后,不难求得M 和N 的密度函数.例3设系统L 由相互独立的n 个元件组成,连接方式为:(1) 串联;(2) 并联;如果n 个元件的寿命分别为12,,,n X X X 12~(),,,,i X E i n 且求在以上2种组成方式下,系统L 的寿命X 的密度函数.解0,(),i xX e x f x其它100,(),i xX e x F x其它(1)},,,min{21n X X X X ni X X x F x F i 1))(1(1)(,00,)(x x en x f xn X,1,0,)(1x x e x F xX i (2)},,,max{21n X X X X ni X X x F x F i 1)()(,0,0,)1(x x e nx,00,)1()(1x x e en x f n x xXy=y=z•z•zx +y =zz -11x1•z•z1xyz2 21x= 1-z= 1-z。
3.3二维随机变量及其分布一、联合分布函数1、定义:设(X, Y)是二维随机变量,(x,y)∈R 2,则称F(x,y)=P{X<x,Y<y}为(X,Y)的分布函数,或X 与Y 的联合分布函数。
几何意义:分布函数F(00,y x )表示随机点(X,Y)落在区域{}00,),(y y x x y x <<-∞<<∞-中的概率。
如图阴影部分: 对于(x 1,y 1),(x 2,y 2)∈R 2,(x 1<x 2,y 1<y 2),则P{x 1≤X<x 2,y 1≤y<y 2}=F(x 2,y 2)-F(x 1,y 2)-F(x 2,y 1)+F(x 1,y 1)2、分布函数F(x, y)具有如下性质(p119):(1)归一性:对任意(x,y)∈R 2, 0≤F(x,y)≤1,(2)单调不减:对任意y ∈R,当x 1<x 2时,F(x 1,y)≤F(x 2,y);对任意x ∈R ,当y 1<y 2时,F(x,y 1)≤F(x,y 2)。
(3)左连续:对任意x ∈R,0y ∈R,1),(lim ),(==∞∞∞→∞→y x F F y x 0),(lim ),(==-∞-∞-∞→-∞→y x F F y x 0),(lim ),(==-∞-∞→y x F y F x 0),(lim ),(==-∞-∞→y x F x F y ).,(),(lim )0,(000y x F y x F y x F y y ==--→(4)矩形不等式:对于任意(x 1,y 1),(x 2,y 2)∈R 2,(x 1<x 2,y 1<y 2),F(x 2,y 2)-F(x 1,2)-F(x 2,y 1)+F(x 1,y 1)≥0.反之,任一满足上述四个性质的二元函数F(x, y)都可以作为某个二维随机变量(X,Y)的分布函数。
例1:已知二维随机变量(X,Y)的分布函数为:1)求常数A ,B ,C ;2)求P{0≤X<2,0≤Y<3}。