任意项级数绝对收敛与条件收敛
- 格式:ppt
- 大小:920.00 KB
- 文档页数:18
第四节条件收敛与绝对收敛对于任意项级数a n ,我们已经给出了其收敛的一些判n 1别方法,本节我们讨论任意项级数的其他性质 一条件收敛 与绝对收敛定义 对于级数 a n ,如果级数 I a n |是收敛的,n 1n 1a n 绝对收敛。
n 1如果|a n |发散,但a n 是收敛的,我们称级数n 1n 1敛。
(1)n 1.n 1 n收敛级数可以看成是有限和的推广,但无限和包含有极 限过程。
并不是有限和的所有性质都为无限和所保持。
大体 说来,绝对收敛的级数保持了有限和的大多数性质,条件收 敛的级数则在某些方面与有限和差异很大。
下面我们讨论条 件收敛与绝对收敛的性质。
定理绝对收敛级数必为收敛级数,反之则不然证明:设级数 a n 收敛,即|a n I 收敛,由Cauchy 收敛准则, n 1n 1对 0,存在N ,当n>N 时,对一切自然数 p,成立着丨 an 1 丨1 an 2 11 an p 1于是:我们称级数a n 条件收n 1条件收敛的级数是存在的,如1 a n 1 a n2 a np丨丨a n 1丨丨a n2丨丨a n p丨再由Cauchy收敛准则知a n收敛。
n 1由级数(1)可看出反之不成立。
n 1 n注:如果正项级数|a n |发散,不能推出级数a n发散。
n 1 n 1但如果使用Cauchy判别法或DAlembert判别法判定出|a n |n 1发散,则级数a n必发散,这是因为利用Cauchy判别法或n 1D'lembert判别法来判定一个正项级数| a n |为发散时,是n 1根据这个级数的一般项| a n|当n 时不趋于0,因此对级数a n而言,它的一般项也不趋于零,所以级数n 1例讨论级数(1)n1^ 1的敛散性,如收敛指明是条件n 1 n 1 s'n p收敛或绝对收敛。
解,当p 0时,由于W需总0,所以级数发散.当p 2时,因为n 2 1n 1 n plim ------- : ---- 1n 1/ .n p而1收敛,所以原级数绝对收敛。
级数的条件收敛和绝对收敛级数是数学中一种重要的数列求和形式,它在许多数学分支中都扮演着重要的角色。
在研究级数的性质时,我们常常关注两个重要的概念:条件收敛和绝对收敛。
我们来讨论条件收敛。
一个级数在条件收敛时,指的是当级数的各项按照某种次序相加时,其和存在但可能不收敛。
换句话说,条件收敛是指级数的各项次序的排列方式对级数的和有影响。
为了更好地理解条件收敛,我们来看一个例子:调和级数。
调和级数是指级数1 + 1/2 + 1/3 + 1/4 + ...,它的和是发散的。
然而,当我们改变级数的次序时,例如将正项和负项交替相加,即1 - 1/2 + 1/3 - 1/4 + ...,这个级数的和却是收敛的,而且和为ln2。
这就是条件收敛的一个例子。
接下来,我们来讨论绝对收敛。
一个级数在绝对收敛时,指的是当级数的各项按照任意次序相加时,其和都是收敛的。
换句话说,绝对收敛是指级数的各项次序的排列方式对级数的和没有影响。
为了更好地理解绝对收敛,我们再来看一个例子:幂级数。
幂级数是指形如Σan*x^n的级数,其中an是系数,x是变量。
对于幂级数,当其收敛半径大于0时,它是绝对收敛的。
也就是说,无论我们如何排列幂级数的各项次序,只要收敛半径大于0,级数的和都是收敛的。
这就是绝对收敛的一个例子。
条件收敛和绝对收敛的区别在于级数项次序的影响。
条件收敛的级数的和在不同的项次序下可能会收敛到不同的值,而绝对收敛的级数的和在任意项次序下都是收敛到同一个值。
那么,为什么条件收敛和绝对收敛如此重要呢?这是因为在实际应用中,我们常常需要对级数进行求和。
如果一个级数是绝对收敛的,我们可以放心地任意改变级数的项次序,而不用担心和的变化。
然而,如果一个级数只是条件收敛的,我们在改变项次序时就需要小心,因为和可能会发生变化。
绝对收敛还有一个重要的性质:绝对收敛的级数的部分和序列是一个柯西序列。
柯西序列是指序列的任意两个元素之间的差可以任意小。
第四节条件收敛与绝对收敛对于任意项级数J■ an ,我们已经给出了其收敛的一些判n =1别方法,本节我们讨论任意项级数的其他性质一条件收敛与绝对收敛。
定义10.5对于级数a n,如果级数'Ta n l是收敛的,我们称n =1n =1级数v a n绝对收敛。
n d如果-|a n |发散,但7 a n是收敛的,我们称级数7 a n条件收n =1 n =1n =1敛。
n 1条件收敛的级数是存在的,如、口n=1 n收敛级数可以看成是有限和的推广,但无限和包含有极限过程。
并不是有限和的所有性质都为无限和所保持。
大体说来,绝对收敛的级数保持了有限和的大多数性质,条件收敛的级数则在某些方面与有限和差异很大。
下面我们讨论条件收敛与绝对收敛的性质。
定理10.17绝对收敛级数必为收敛级数,反之则不然Q Q Q Q证明:设级数v a n收敛,即v |a n |收敛,由Cauchy收敛准n =1 n=1则,对_ ;0,存在N,当n>N时,对一切自然数p,成立着|a n 1 | |a n 2 I |a n p I —于是:|a ni a n.2 a n p 卩la nd L |a n 2 I Wn p 卜;Q Q再由Cauchy 收敛准则知a n 收敛。
n 丄n 1由级数-可看出反之不成立。
n=i n注:如果正项级数|a n |发散,不能推出级数】a n 发散。
n =1n=1但如果使用 Cauchy 判别法或 D 'Alembert 判别法判定出OQQ Q;'|a n |发散,则级数「a n 必发散,这是因为利用Cauchy 判 n =1n =1Q Q别法或D 'Alembert 判别法来判定一个正项级数、ja n |为发散 心时,是根据这个级数的一般项|a n |当n 》=时不趋于0,因此 Q QQ Q对级数J an 而言,它的一般项也不趋于零, 所以级数J an 发n =1n =1散。