复变函数6
- 格式:pdf
- 大小:151.65 KB
- 文档页数:9
习题六解答A 类1.求23z w =在z=i 处的伸缩率和旋转角,问23z w =将经过点z=i 且平行于实轴正向的曲线的切线方向映射成w 平面上哪一个方向?并作图。
解 由题()z z w 63'2='=,从而()()2i 6arg i 'arg π==w ,()6|i 6|i '==w ,当i =z 时,()332-==i w ,即i =z ,3-=w ,且旋转2π。
2.求映射z w i =下,下列图形映射成什么图形? (1)以i 1=z ,12-=z ,13=z 为顶点的三角形。
(2)闭圆域:1|1|≤-z 。
解(1)在z w i =下,i 1=z ,12-=z ,13=z ,被映成11-=w ,i 2-=w ,i 3=w ,即将三角形映成三角形。
(2)在z w i =下,01=z ,i 12+=z ,23=z ,被映成01=w ,i 12+-=w ,i 23=w ,由保圆性知11≤-z 被映成1i ≤-z 。
3.证明映射z z w 1+=把圆周)0(>=c z 映射成椭圆:θcos )1(c c u +=,θsin )1(c c v -=。
证 设)sin i (cos θθ+=r z ,v u w i +=,则)sin i (cos 1)sin i (cos 1θθθθ+++=+=r r z z w=θθθθθθθθsin )1i(cos )1()sin (cos sin i cos sin i cos 22r r r r r r r -++=+-++w=i zw=i z又cz =,即c r =,所以θθsin )1i(cos )1(c c c c w -++=从而θcos )1(c c u +=,θsin )1(c c v -=。
4.证明在映射ze w i =下,互相正交的直线族1Re c z =与2Im c z =依次映射成互相正交的直线族1tan c u v =与圆族2222c e v u -=+证设y x z i +=,v u w i +=,x c z ==1Re ,y c z ==2Im ,所以)sin i (cos i x x e e w yz +==-,即1cos 2c eu c -=,1sin 2c ev c-=,1tan tan c u x u v ==是一族直线,22222c y e e v u --==+是一族圆,显然,过原点的直线与以圆点为心的圆是正交的。
105第6章 保角映射6.1 分式线性映射导数的几何意义是保角映射的理论基础.6-1 映射2w z =在i z =-处的伸缩率k 与旋转角α是( ).(A )π1,2k α==(B )π2,2k α==- (C )π1,2k α==- (D )π2,2k α==解 i i π||2,Arg ()|.2z z k w f z α=-=-''====- 选(B ).平移变换加伸缩反射得相似图形,相似比即||w '.6-2 在映射1w z=下,将|1|1z -<映射为( ).(A )右半平面0u > (B )下半平面0v < (C )半平面12u > (D )12v <- 解1 221i i x y w u v z x y -===++ 2222,xyu v x y x y -==++ 而 2|1|1z -<,即222x y x +<,故 221.2x u x y=>+ 选(C ). 解2 1w z =是分式线性变换,具有保圆性.而|1|1z -=,将0z =变到,2w z =∞=变到1,1i 2w z ==+变到1i 2w +=,故1w z =将圆变为直线12u =,而圆心1z =变到112w =>,故1w z=将|1|1z -<变为半平面12u >. (C ). 6-3 映射1w z=将Im()1z >的区域映射为( ).(A )Im()1w < (B )Re()1w < (C )圆2211()22u v ++< (D )2211()22u v ++>解 由1w z =的保圆性,知1w z=将1y =映射为直线或圆,由z =∞映射为0,1i z =+,映射为1i,1i 2w z -==-+映为1i2--知,将Im()1z =映射为w 平面上的圆: 2211()22u v ++=图6-1而2i z =映射为11i 2i 2=-.故1w z=将Im()1z >映射为圆内. 选(C )1066-4 求将圆||2z <映射到右半平面,且(0)1,arg (0)π/2w w '==的分式线性映射.解 令ax b w z b +=+,则2()ab b w z b -'=+.由πarg (0)2w '=,可令 21(0)i ab b a w b b--'===,得1i a b =+,于是 (1i )b z bw z b++=+.由于圆||2z =应映射为虚轴,故又令(2)i w =得22i 2i i b b b ++=+,解得2(1i)2i 1+ib --== 于是 22i2iw z -+=+(这时圆上点2i z =-映射为∞点,故满足所求). 6-5 求把上半平面Im()0z >映射成单位圆||1w <的分式线性映射,且满足条件(1)()0,(1)1w i w =-=; (2)1(0)1,().2w w i ==解 (1)令z iw cz d-=+ 1i(1)1w c d---==-+,即1i c d --=-+ 令z =∞时,i w =-,得i c =,1d =-,于是得到一个满足要求的映射ii 1z w z -=- (2)由(0)1w =,可令az bw z b+=+ 更令()1w ∞=-,得1a =-,更由1(i)2w =得2(i )i b b -+=+故3i b =-,从而3i3iz w z --=- 要求||1z =时||1w =,故取212z w z λ-=-时,||1,λλ=也可写作i e θ只要定θ即可. 6-6 求将上半平面映射为单位圆||1w <的分式线性变换.解 设az b w cz d +=+,将I m ()0z >映射为||1w <,则它将bz a =-映为圆心0w =.而将b z a-=-映为∞,记,b b a aαα-=-=-,而有dc α-=,故变换为.a z w c z αα-=- 由于0z =变到||1w =上一点,即||1a c =,记i e acθ=, 则 i e z w z θαα-=-(其中Im()0α>). θ是待定实数.1076-7 求把上半平面Im()0z >映射成单位圆||1w <的分式线性映射,并满足条件:(1)(i)0;(1)1f f =-=; (2)(i)0,arg (i)0f f '==; (3)(1)1,(i)f f ==解 (1)设i i e i z w z θ-=+,于是i 1i e 11i θ--=-+即i πe i()2θθ= 所求映射为 i i+iz w z -=. (2)设映射为i ie +iz w z θ-= i 22i()e (+i)w z z θ'=故πi()21π(i)e ,22w θθ-'=-=所求映射为 ii iz w z -=+ (3)设i e z w z θαα-=- 由(1)1w =得i i e (1)1(i )(i )θθαααα-=--=-令x iy α=+,上两式相比得)(1)()(1)i αααα--=-- (1)取共轭(i )(1)()(1)i αααα--=-- 上两式两边相乘得225|(1)i ||(1)i |x y x y -+-=-++解得 2231x y y +=- (2) 将(1)式乘开,比较实部与虚部可得1)(1)1)x y -= (3)及221)()1)1)x y x y +=+ (4) 将(2)代入(4),消去22x y +后解得:2,3y x ==, 于是i 21i3e θ==5=12i)3=108 所求映射i )3w =.6-8 求将单位圆||1z <映射为单位圆||1w <的分式线性映射.解 设所求的分式线性变换把||1z <内的点α映射为0w =,那么,它将1α即与α关于||1z =的对称点映射为∞,故所求的映射为1/1z z w z z ααλλααα--==-+-+ 设1z =对应于||1w =上某点,则有11||||1αλαλαα-==-,故i e θλα= 即 i e (||1,1z w zθααθα-=<-是实数) 这时 i 21()e(1)w z z θααα-'=-i 1()e 1w θααα'=-故θ是z α=点变换时的旋转角 同样,将z 平面上||1z <映射为w 平面上||1w >的分式线性变换是 i e (||1,1z w zθααθα-=>-是实数) 6-9 求将右半平面Re()0z >映射为单位圆||1w <的分式线性映射.解1 设z bw z dλ+=+,它将z b =-映为0w =点,而将z d =-映为w =∞点.记a b =-,则Re()0α>,由对称性,()d α-=-.因此,z w z αλα-=+,且|(0)|||||1w αλλα-===,故i e θλ=得i e (Re()0,z w z θααθα-=>+是实数). 解2 由6-13题,先作旋转i z ζ=,将右半平面旋转为上半平面,于是将Im()0ζ>变为||1w <的映射是(见6-13题)i e (Im()0)w θζββζβ-=>- 故 i i i i e e i i z z w z z θθββββ-+==-+ 记 i βα=-,则i (i )ββα=-=而Re()0α>i e z w z θαα-=+与解1的结果同. 利用0w =与w =∞两点是关于两个同心圆皆对称的点而有保对称性.从而知12,z z 皆是实数,及对二圆都有对称性,从而解出1z 和2z . 6-10 求一分式线性映射,把由||9z >与|8|16z -<所确定的区域映射为w 平面上的同心圆环:||1w <与||w r > (01).r <<解 本题关键在设12()0,()w z w z ==∞,由于0、∞关于两个同心圆||1w =与||w r =皆对称;故1z 与2z 应同时与|3|9z -=及|8|16z -=皆对称.从而知12,z z 应在此二圆圆心的联线上,109即1z 与2z 皆是实数,且有221212(3)(3)9,(8)(8)16z z z z --=--=即 212123()99z z z z -+=- 2212128()168z z z z -+=- 得121224,0z z z z +=-=,取120,24z z ==-.则 24zw z λ=+ 由于0z =在|3|9z -<内部,故此映射将|3|9z -=映为||w r =,而将|8|16z -=映为||1w =即 i i 2816e ,e 24zz w z ϕθ=+=+ 取1224,0z z =-=,则24z w zλ+= 这时,由124z =-在|8|16z ->内,而0w =在||w r <内,故此映射将|8|16z -=映为||w r =而将|3|9z -=映为||1w =,即令i 39e z ϕ=+便应有i i 279e |||| 1.3+9e w ϕϕλ+==故i 11||,e 33θλλ==所求映射为i 24e 3z w zθ+=. 6.2 几个初等函数所构成的映射按要求一步一步变,注意每一步的要求.6-11 试将由||1z <及|1|1z -<所确定的区域保角地映射为上半平面. 解 如图6.2,我们采取如下步骤作映射.图6.2(1)作分式线性映射,使12映射于原点,而12映射为w =∞点.110 即1ζ=(2)令321ζζ=,则映射成不含2ζ的负实半轴的全平面,22π4π.ϕ≤<(3)令1/232ζζ=,则映射为下半平面.(4)令3w ζ=-,则映射为上半平面,故此映射为3/2w =-6-12 试将由Im()1,||2z z ><所确定的区域保角地映射为上半平面. 解 如图6.3,分以下步骤: (1)将弓形域映射为角形域1ζ=(2)321ζζ=映射为下半平面. (3)2w ζ=-,即为所求也就是3w =-图6.36-13 求把单位圆外部||1z >,且沿虚轴1y >有割痕的域映射为上半平面的一个保角映射.解 分以下步骤:(1)作分式线性映射,将单位圆外部映射为半平面,并使割痕转到实轴,即1i+iz z ζ-=(2)平方且反射,使割痕到22i (1,0),i z z ζ-⎛⎫-=- ⎪+⎝⎭(3)平移后开方得122(1)w ζ=+111即 1/22i 1i z w z ⎡⎤-⎛⎫=-⎢⎥⎪+⎝⎭⎢⎥⎣⎦为所求映射.6-14 将图6.4z 平面中阴影部分所示区域,即由Re()1,||1z z >->所确定区域映射为上半平面.解 分以下步骤:(1)作分式线性映射111z z ζ-=+,则所给域映射为10Re()1ζ<<; (2)旋转伸长,即令21πi ζζ=,得条形域20Im()πζ<<;(3)作指数映射i e w ϕ=即得上半平面.即映射为1i π1ez z w -+=图6.46-15 将如图6.5所示的z 平面区域,即由||2,|1|1z z <->所确定的区域,映射为上半平面.解 (1)作分式线性变换:12zz ζ=-,将|1|1z -=映射为1Re()0ζ=,而将||2z =映射为11Re()2ζ.由此,将已知域映射为带状域.(2)旋转伸缩:212πi ζζ=.映射为20Im()πζ<<(3)取指数函数的映射2e w ζ=便是本题所求,即2πi2ez z w -=.112图6.56-16 将沿虚轴有割痕从0z =至2i z =的上半平面,保角地映射为上半平面.解 (1)将上半平面映射为全平面后并平移,使割痕位于实轴的10ζ=至14ζ=处.214z ζ=+.(2)开方使割痕好似被展平在实轴的(2,2)-上:121w ζ=.即 21/2(4)w z =+.(见图6.7)图6.66-17 图6.7所示的z 平面上单位圆||1z <中有割痕:沿实轴从0z =至1z =的区域,试将其保角地映射为半平面.解(1)开方将圆映射为半圆,割痕仍在x 轴上:121z ζ=; (2)作分式线性映射,将半圆映射为1/4平面:12111ζζζ+=-+; (3)平方22w ζ=即2.w =113图6.76-18 将图6.8所示,由πRe()0,0Im()2z z ><<确定的z 平面上的区域,保角映射为上半平面.解 (1)将其旋转伸缩于第4象限:12z ζ=-(2)取指数函数:12e ζζ=将1ζ中的区域映射为半圆域:222||e 1,Arg 0x ζπζ-=<<< (3)作分式线性映射:23211ζζζ-=+ 将半圆映射为1/4平面.(4)令23w ζ=即为所求的映射,即22e 1e .e 1z z --⎛⎫-= ⎪+⎝⎭图6.86-19 求把实轴上有割痕:112x ≤<的单位圆||1z <映射为||1w <的一个映射.解 (1)令112112z z ζ-=-,使割痕在10Re()1ζ≤<上;114 (2)作2ζ= (3)再作23211ζζζ+=-,将半圆映射为3()ζ的I 象限部分; (4)作243ζζ=,便将此映射为上半平面; (5)最后将上半平面映为单位圆:(见图6.9)44i i w ζζ-=+经归纳223422224322i i [(1)/(1)]i i i [(1)/(1)]i w ζζζζζζζζ--+--===+++-+==图6.96-20 求把半带形域ππRe(),Im()022z z -<<>,映为上半平面Im()0w >的映射()w f z =,使π()1,(0)0.2f f ±=±=解 (1)作旋转与平移:1πi i 2z ζ=+,使之映为1ζ平面的半带形域:110Im()π,Re()0.ζζ<<<(2)作指数映射:12e ζζ=,将之映为2ζ平面上的半圆域:22||1,Im()0;ζζ<>(3)作分式线性映射:23211ζζζ+=-,将半圆域映为3ζ平面第1象限; (4)243ζζ=,将之映为4ζ的上半平面,只是未满足π()12f ±=±及(0)0f =的条件;(5)由上半平面映为上半平面,且∞映为1,0-点映为1及1-映为0.即得:4411w ζζ+=-(见图6.10)归纳222223222232211111121111wζζζζζζζζ⎛⎫++ ⎪-++⎝⎭===--⎛⎫+- ⎪-⎝⎭1111ππ(i i)i i22211e e e e e222ez zζζζζ-++-+++=-=-=-i ie esin2z zz-+==,为所求的映射.图6.10115。
第七章保形变换前几章主要是用分析的方法,也就是用微分、积分和级数等,来讨论解析函数的性质和应用。
内容主要涉及所谓柯西理论;这一章主要是用几何方法来揭示解析函数的特征和应用。
保形变换现审定名为“共形映射”或“共性映照”。
它在数学本身以及在流体力学、弹性力学、电学等学科的某些实际问题中,都是一种使问题化繁为简的主要方法。
第一节解析变换的特性一.保域性1.定理7.1(保域定理)设在区域内解析且不恒为常数,则的象也是一个区域。
证先证的每一个点都是内点。
,使,则为的一个零点,由解析函数的零点孤立性知,,使,且在上无异于的零点。
令,则。
下证。
,考察,当时,,由Rouché定理,即在内有解,从而。
再证内任两点,可用全含于内的折线连接起来。
由于是区域,在内有折线,,连接,其中。
函数把折线映射成内连接的逐段光滑曲线。
由于为内紧集,根据有限覆盖定理,可被内有限个开圆盘所覆盖,从而在内可作出连接的折线。
综合,知为区域。
2.推论7.2设在区域内单叶解析,则的象也是一个区域。
证因为在区域内单叶,故在内不恒为常数。
3.定理还可推广为:在扩充平面的区域内除可能有极点外处处解析,且不恒为常数,则的像为扩充平面上的区域。
4.单叶解析函数的性质定理6.11若在区域内单叶解析,则在内。
定理7.3(局部单叶性) 设在解析且,则在的某个邻域内单叶解析。
(证明类似于和)二.解析变换的保角性——导数的几何意义1.导数辐角的几何意义设为过的光滑曲线,,则且是在处的切线的辐角。
设,故也是光滑的,。
若内过还有一个光滑曲线。
设,则即处曲线与的夹角恰好等于处曲线与的夹角。
单叶解析函数作为映射时,曲线间夹角(即切线的夹角)的大小及方向保持不变,这一性质称为旋转角不变性。
称为变换在的旋转角,仅与有关,与过的曲线的选择无关。
象曲线在处的切线正向可由原象曲线在的切线正向旋转一个旋转角得到。
2.导数模的几何意义由于,故象点间的无穷小距离与原象点间无穷小距离之比的极限是,称为变换在的伸缩率。