复变函数第六章留数理论及其应用知识点总结
- 格式:docx
- 大小:27.24 KB
- 文档页数:4
留数定理公式总结留数定理是复变函数论中的一个重要定理,在数学分析和工程技术等领域都有着广泛的应用。
咱们先来瞅瞅留数定理的公式到底是啥样的。
留数定理表述为:设函数$f(z)$在区域$D$内除有限个孤立奇点$z_1,z_2,\cdots,z_n$外处处解析,$C$是$D$内包围诸奇点的一条正向简单闭曲线,那$f(z)$沿$C$的积分就等于$2\pi i$乘以$f(z)$在$C$内各奇点的留数之和,即:$\oint_C f(z)dz = 2\pi i \sum_{k = 1}^{n}Res[f,z_k]$这里的$Res[f,z_k]$表示$f(z)$在奇点$z_k$处的留数。
那留数又咋算呢?对于孤立奇点$z_0$,如果它是可去奇点,那留数为$0$;如果是$m$阶极点,就有公式$Res[f,z_0] = \frac{1}{(m -1)!}\lim_{z \to z_0}\frac{d^{m - 1}}{dz^{m - 1}}[(z - z_0)^mf(z)]$。
咱们通过一个具体例子来感受一下留数定理的魅力。
比如说,计算积分$\int_{|z| = 2} \frac{e^z}{z(z - 1)}dz$。
首先得找出被积函数的奇点,很明显,$z = 0$和$z = 1$是奇点。
对于$z = 0$,它是一阶极点,$Res[f,0] = \lim_{z \to 0} z\frac{e^z}{z(z - 1)} = -1$;对于$z = 1$,也是一阶极点,$Res[f,1] = \lim_{z \to 1} (z - 1)\frac{e^z}{z(z - 1)} = e$。
然后根据留数定理,原积分就等于$2\pi i (-1 + e)$。
留数定理在解决一些复杂的积分问题时特别有用。
比如说,计算一些实函数在无穷区间上的积分,通过巧妙地构造复变函数和积分路径,然后利用留数定理就能轻松搞定。
我记得有一次给学生们讲留数定理的应用,有个学生就特别迷糊,怎么都搞不明白。
复变函数与留数定理复变函数是指自变量和函数值都是复数的函数。
复变函数具有许多独特的性质和定理,其中留数定理是复分析中的重要内容之一。
本文将介绍复变函数的基本概念和留数定理,并探讨其应用及相关性质。
一、复变函数的基本概念1. 复数与复平面复数由实部和虚部构成,可以表示为z=a+bi,其中a和b分别为实数部分和虚数部分,i为虚数单位。
复平面是以实部和虚部为坐标轴的平面,可将复数表示为一个点在平面上的位置。
2. 复变函数的定义复变函数f(z)是将复平面中的每个点z映射到另一个复数w的规则。
它可以表示为w=f(z),其中z和w都是复数。
3. 解析函数解析函数是指在某个区域内可导的复变函数。
解析函数满足柯西-黎曼方程,即偏导数存在且连续。
4. 复变函数的性质与实变函数类似,复变函数也具有加法、乘法、除法和复合等性质。
此外,复变函数还具有解析性和保持拓扑的性质。
二、留数定理的基本概念1. 留数的定义留数是指复变函数在孤立奇点处的积分残余。
对于具有孤立奇点的复变函数,可以通过计算留数来求解相关积分。
2. 留数定理(1)留数定理的形式留数定理是指对于具有简单闭合围道的复变函数f(z),其在围道内部的留数之和等于围道上的积分值。
数学上可表示为∮ f(z)dz = 2πi * (Sum(Res(f,zk))),其中∮表示围道上的积分,Res表示留数。
(2)留数定理的应用留数定理在求解复分析中的积分具有重要作用。
它可以简化积分计算的过程,特别适用于含有极点和奇点的函数。
三、留数定理的应用案例1. 计算围道积分通过留数定理,我们可以将一些复杂的积分问题转化为计算围道内的留数。
根据留数定理,可以将围道上的积分转化为计算留数的和,从而简化计算过程。
2. 求解实数积分通过将实数积分转化为复数积分,并利用留数定理的性质,我们可以求解一些难以计算的实数积分。
这种方法被称为留数法,为求解实变函数积分提供了一种有效的途径。
3. 应用于物理问题留数定理在物理学中也有广泛的应用。
复变函数与留数定理复变函数在数学中有着重要的地位,它是实变函数的推广和扩展。
复变函数的研究依赖于留数定理,这是复分析中的重要概念。
本文将介绍复变函数以及留数定理的基本概念和应用。
一、复变函数的定义与性质复变函数是定义在复数域上的函数,其定义域和值域都是复数集合。
复变函数可以表示为f(z)=u(x,y)+iv(x,y),其中z=x+iy,u和v是实变函数。
复变函数和实变函数的性质有相似之处,如连续性、可微性和可导性等。
但复变函数的导数是一个复数,具有方向和模的概念。
二、留数定理的基本概念留数是复变函数在孤立奇点处的特殊性质。
留数定理是复变函数理论中的核心内容之一。
对于函数f(z),若z=a是它的孤立奇点,可以通过留数计算沿闭合曲线的积分。
留数定理包括留数定理、柯西公式和狄利克雷问题等。
1. 留数定理留数定理是针对有限孤立奇点的情况。
当f(z)在区域D内有孤立奇点a1,a2,...,an时,针对闭合曲线C内的函数f(z),可以通过求解a1,a2,...,an处的留数来计算C上的积分。
这个定理在复积分计算、曲线积分和求和等问题中有广泛的应用。
2. 柯西公式柯西公式是留数定理的一个重要推论。
柯西公式表明,如果函数f(z)在区域D内解析(即可导),则它在D内的任何闭合曲线C上的积分为零。
这个结论为复变函数的求解和计算提供了方便。
3. 狄利克雷问题狄利克雷问题是留数定理与边值问题相结合的应用,它在电磁学和热传导等领域中起着重要作用。
狄利克雷问题可以通过留数定理求解,将定义在一条封闭曲线上的边值问题转化为计算特定点上的积分问题。
三、复变函数与实变函数的关系复变函数理论是实变函数理论的扩展和推广,两者之间有着密切的联系。
复分析的基本定理和方法可以归结为实分析的特殊情况,同时复分析也为实分析提供了新的解题思路和工具。
1. 复变函数的导数与实变函数的导数复变函数的导数是一个复数,可以表示为f'(z)=u_x+iv_x,其中u_x和v_x是u和v相对于x的偏导数。
第六章留数理论及其应用§1.留数1.(定理6.1 柯西留数定理):∫f(z)dz=2πi∑Res(f(z),a k)nk=1C2.(定理6.2):设a为f(z)的m阶极点,f(z)=φ(z) (z−a)n,其中φ(z)在点a解析,φ(a)≠0,则Res(f(z),a)=φ(n−1)(a) (n−1)!3.(推论6.3):设a为f(z)的一阶极点,φ(z)=(z−a)f(z),则Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点φ(z)=(z−a)2f(z)则Res(f(z),a)=φ′(a)5.本质奇点处的留数:可以利用洛朗展式6.无穷远点的留数:Res(f(z),∞)=12πi∫f(z)dzΓ−=−c−1即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1z这一项系数的反号7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。
8.计算留数的另一公式:Res (f (z ),∞)=−Res (f (1t )1t 2,0)§2.用留数定理计算实积分一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ注:注意偶函数二.∫P(x)Q(x)dx +∞−∞型积分1.(引理6.1 大弧引理):S R 上lim R→+∞zf (z )=λ则lim R→+∞∫f(z)dz S R=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)为互质多项式,且符合条件:(1)n-m ≥2;(2)Q(z)没有实零点于是有∫f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0+∞−∞注:lim R→R+∞∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且lim R→+∞g (z )=0在ΓR 上一致成立。
留数的求法及应用总结留数是一种在复变函数理论中用于计算复数函数在奇点处的残留的方法。
留数的计算方法有多种,例如通过直接计算留数公式、Laurent级数展开、辅助函数法、计算围道积分等。
留数的应用非常广泛,包括在计算复积分、求解微分方程、计算极限、求解物理问题等方面都有重要的应用。
首先,我们来看留数的求法。
在复变函数中,函数在奇点点处的留数可以通过以下方法求解:1. 直接计算留数公式:对于简单的函数,可以直接使用留数公式计算。
对于一阶奇点,留数可通过函数在该点的极限值计算:Res[f(z), z=a] = lim(z->a) [(z-a) * f(z)]。
对于高阶奇点,留数可以通过多次取导数再计算极限来求解。
2. Laurent级数展开:对于复变函数,在奇点附近可以进行Laurent级数展开。
然后通过观察Laurent级数的形式,可以读出相应奇点的留数。
3. 辅助函数法:对于一些复杂的函数,可以通过引入辅助函数来计算留数。
通过构造辅助函数,可以使得计算留数的过程变得更加简单。
4. 计算围道积分:复平面上的围道积分可以通过计算围道上的奇点处的留数之和来求解。
通过将围道逐步缩小,将围道上的奇点都计算在内,然后将结果相加即可得到围道积分值。
接下来,我们来看留数的应用。
1. 计算复积分:复积分可以通过计算围道上的奇点处的留数之和来进行计算。
通过围道积分的方法,可以将复积分转化为留数的求和问题,从而简化计算过程。
2. 求解微分方程:在微分方程的求解过程中,往往需要对复函数积分。
通过留数的方法,可以将复积分转化为留数的计算,从而简化问题的求解过程。
3. 计算极限:对于一些复杂的极限问题,可以通过计算极限点处的留数来进行求解。
通过将极限问题转化为留数问题,可以简化问题的求解过程。
4. 物理问题求解:在物理学中,通过留数的方法可以求解一些边界值问题、传热问题、电磁问题等。
通过将物理问题转化为留数问题,可以利用留数的性质来求解物理问题。
第六章 留数理论及应用第一节 留数1、留数定理:设函数f (z )在点0z 解析。
作圆r z z C =-|:|0,使f (z )在以它为边界的闭圆盘上解析,那么根据柯西定理,积分⎰Cdz z f )(等于零。
设函数f (z )在区域R z z <-<||00内解析。
选取r ,使0<r<R ,并且作圆r z z C =-|:|0,那么如果f (z )在0z 也解析,则上面的积分也等于零;如果0z 是f (z )的孤立奇点,则上述积分就不一定等于零;这时,我们把积分⎰C dz z f i)(21π 定义为f (z )在孤立奇点0z 的留数,记作),(Res 0z f ,这里积分是沿着C 按逆时针方向取的。
注解1、我们定义的留数),(Res 0z f 与圆C 的半径r 无关:事实上,在R z z <-<||00内,f (z )有洛朗展式:∑+∞-∞=-=n n nz z z f )()(0α,而且这一展式在C 上一致收敛。
逐项积分,我们有,2)()(10-+∞-∞==-=∑⎰⎰απαi dz z z dz z f n Cnn C因此,10),(Res -=αz f 。
注解2、即f (z )在孤立奇点0z 的留数等于其洛朗级数展式中1z z -的系数。
注解3、如果0z 是f (z )的可去奇点,那么.0),(Res 0=z f定理1.1(留数定理)设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭曲线C 。
设f (z )在D 内除去有孤立奇点n z z z ,...,,21外,在每一点都解析,并且它在C 上每一点都解析,那么我们有:),,(Res 2)(1k nk Cz f i dz z f ∑⎰==π这里沿C 的积分按关于区域D 的正向取。
证明:以D 内每一个孤立奇点k z 为心,作圆k γ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。
复变函数留数定理复变函数留数定理(Residue Theorem)是复分析中的重要概念,用于计算对应于奇异点(singular point)的留数(residue)。
留数定理提供了计算复变函数沿闭曲线的积分的一种有效方法,它与复分析中其他重要的定理和方法相辅相成,对于解决实际问题具有重要意义。
一、留数的定义设函数f(z)在点z=a附近解析且具有洛朗展开式f(z)=∑(n=-∞)^∞ a(n)(z-a)^n其中a(n)是复数,令C为以a为圆心的半径为R的圆周,且其方向与实轴正方向一致。
如果函数f(z)在圆盘界上的点(除去a点)上解析,则称a点是函数f(z)的奇异点。
奇异点主要有三种形式:可去奇点、极点和本性奇点。
对于函数f(z)一个奇异点a,定义留数Res[f(z), a]为Res[f(z), a] = a(-1)即留数等于洛朗展开式的一次项系数a(-1)。
二、留数的求解方法1. 求可去奇点的留数当a点是函数f(z)的可去奇点时,即a点是f(z)的解析点,那么留数等于0。
2. 求一阶极点的留数当a点是函数f(z)的一阶极点时,即a点是f(z)的奇异点且它的最低零次是-1次,要求a(-1)≠0。
此时留数可以通过以下方法求解:Res[f(z), a] = lim(z→a) (z-a)f(z)3. 求高阶极点的留数当a点是函数f(z)的高阶极点时,即a点是f(z)的奇异点且它的最低零次大于等于-1次。
此时留数可以通过以下公式计算:Res[f(z), a] = a(-1) = 1/(n-1)! * d^(n-1)/dz^(n-1) [(z-a)^n * f(z)]其中,n为a点的零次。
三、留数定理的表述留数定理的基本表述为:设函数f(z)在闭合曲线C的内部除有限个奇异点外是全纯的,则有积分公式成立:∮[C] f(z)dz = 2πi * ∑ Res[f(z), a]其中,[C]代表C内部的积分,∑代表对所有奇异点求和。
留数定理及其应用
留数定理是复变函数理论中的重要定理,用于计算函数在奇点处的留数。
具体来说,如果函数f(z)在区域D内解析,除了有
限个孤立奇点外,则对于D内的任意简单闭曲线C,有如下
留数定理:
∮Cf(z)dz = 2πi * sum(Res(f, z_k))
其中,∮C表示沿C的积分,Res(f, z_k)是函数f(z)在奇点z_k
处的留数。
留数定理的应用主要包括以下几个方面:
1. 计算积分:通过计算函数在奇点处的留数,可以用留数定理来计算复变函数沿闭合曲线的积分。
这样可以简化积分计算,尤其对于实数不易计算的积分,留数定理非常有用。
2. 计算极限:通过留数定理,可以计算复变函数在某个奇点处的极限。
如果函数的极限存在,那么它等于该点处的留数。
3. 解析延拓:通过计算函数在奇点处的留数,可以确定函数在奇点处的性质,如极点的类型(一级极点、二级极点等)以及解析延拓的可能性。
4. 解析函数恢复:留数定理可以用于还原函数原本的性质,即通过计算函数在奇点处的留数,可以还原函数在奇点前的数值。
总之,留数定理是复变函数理论中的重要工具,广泛应用于多个数学和工程领域,如积分计算、边界值问题、电路分析等。
它简化了复变函数的计算和研究,为解决实际问题提供了有效的方法。
复变函数中的留数定理
复变函数是指既定义在复数域上又取复数值的函数。
复变函数具有许多特殊的性质和定理,其中留数定理是其中一个重要的定理。
本文将介绍复变函数中的留数定理以及其应用。
一、留数的定义和计算方法
在复变函数中,留数(residue)是指当函数在某个点存在奇点时,即函数在该点不解析的情况下,奇点点内仍然具有一定的数值。
留数的计算方法可以通过洛朗级数展开或者柯西积分公式来实现。
对于一个圆心在奇点上的积分路径,留数的计算公式可以表示为:Res[f;z_0] = (1 / (2πi)) ∮ f(z)dz
二、留数定理的表述
留数定理是指当一个函数在一个环形区域上解析且没有奇点时,该函数的积分沿该闭合曲线的环形轮廓,等于沿环形区域内部孤立奇点的留数之和。
数学表述如下:
∮ f(z)dz = 2πi ∑Res[f;z_i]
三、留数定理的应用
1. 计算积分:留数定理是计算复变函数的积分的重要工具。
通过计算函数在奇点处的留数,可以将积分转化为留数之和的形式,从而简化计算过程。
2. 求解无穷级数:通过留数定理,可以将一个函数展开为洛朗级数,从而求解一些复杂的无穷级数。
3. 解析函数的奇点:留数定理可以帮助我们分析函数在复平面上的
奇点,并研究奇点的类型和性质。
总结:
复变函数中的留数定理是一个重要的工具,可以在计算积分、求解
无穷级数和分析奇点等方面发挥关键作用。
留数定理的应用不仅仅局
限于数学领域,而且在物理学、工程学和经济学等学科中也具有重要
的意义。
通过掌握留数定理的原理和计算方法,我们可以更好地理解
和应用复变函数的知识。
留数及其应用摘 要数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用.关键词 留数定理;留数计算;应用引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法.一. 预备知识 孤立奇点1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点则)(z f 在R z z <-<00某去心邻域解析,但在点a 不解析,则称a 为f 的孤立奇点.例如sin zz,1z e 以0=z 为孤立奇点.以0=z 为奇点,但不是孤立奇点,是支点.11sin z以0=z 为奇点(又由1sin0=z ,得1(1, 2...,)π==±±z k k 故0=z 不是孤立奇点)2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域,有1()()(),∞∞-===+-∑∑-nnnnn n f z c z a c z a 称()n=1∞-∑-nnc z a 为()f z 在点a 的主要部分,称()∞=-∑nnn z a c 为()f z 在点a 的正则部分,当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为(1)11(0)()()------+++≠---m mm m m c c c c z a z a z a称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点.二. 留数的概念及留数定理 1. 留数的定义设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R <⋅<解析,则积分()()1:,02f z dz z a R i ρρπΓΓ⋅=<<⎰为()f z 在点a 的留数,记为:()Re z as f z =.2. 留数定理介绍留数定理之前,我们先来介绍复周线的柯西积分定理:设D 是由复周线012C C C C --=+++…n C -所围成的有界连通区域,函数()f z 在D 解析,在_D D C =+上连续,则()0Cf z dz =⎰.定理1[]1(留数定理) 设()f z 在周线或复周线C 所围的区域D ,除12,,a a …,n a 外解析,在闭域_D D C =+上除12,,a a …,n a 外连续,则( “大围”积分)()()12Re knz a k Cf z dz i s f z π===∑⎰. (1)证明 以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ⋅=(1,2,k =…,n )使这些圆周及部均含于D ,并且彼此相互隔离,应用复周线的柯西定理得()()1knk Cf z dz f z dz =Γ=∑⎰⎰,由留数的定义,有()()2Re kkz a f z dz i s f z π=Γ=⎰.特别地,由定义得 ()2Re kkz a f z dz i s π=Γ=⎰,代入(1)式得()()12Re kn z a k Cf z dz i s f z π===∑⎰.定理2 设a 为()f z 的n 阶极点,()()()nz f z z a ϕ=-,其中()z ϕ在点a 解析,()0a ϕ≠,则()()()()11!n z aa Res f z n ϕ-==-.这里符号()()0a ϕ代表()a ϕ,且有()()()()11lim n n z aa z ϕϕ--→=. 推论3设a 为()f z 的一阶极点,()()()z z a f z ϕ=-, 则 ()()z aRes f z a ϕ==.推论4设a 为()f z 的二阶极点,()()()2z z a f z ϕ=-,则 ()()'z aRes f z a ϕ==.3. 留数的引理引理1 设()f z 沿圆弧:i R S z Re θ= (12θθθ≤≤,R 充分大)上连续,且()lim R zf z λ→+∞=于R S 上一致成立(即与12θθθ≤≤中的θ无关),则()()21limRS R f z dz i θθλ→+∞=-⎰.引理2(若尔当引理) 设函数()g z 沿半圆周:i R z Re θΓ= (0θπ≤≤,R 充分大)上连续,且()lim 0R g z →+∞=在R Γ上一致成立,则()()lim00Rimz R g z e dz m Γ→+∞=>⎰.引理3 (1)设a 为()f z 的n 阶零点,则a 必为函数()()'f z f z 的一阶极点,并且()()'z af z Res n f z =⎡⎤=⎢⎥⎣⎦; (2)设b 为()f z 的m 阶极点,则b 必为函数()()'f z f z 的一阶极点,并且 ()()'z bf z Res m f z =⎡⎤=-⎢⎥⎣⎦.三. 留数的计算1. 函数在极点的留数法则1:如果0z 为)(z f 的简单极点,则)()(lim ]),([Re 000z f z z z z f s z z -=-法则2:设)()()(z Q z P z f =,其中)(,)(z Q z P 在0z 处解析,如果0)(≠z P ,0z 为)(z Q 的一阶零点,则0z 为)(z f 的一阶极点,且)()(]),([Re 0z Q z P z z f s '=. 法则3:如果0z 为)(z f 的m 阶极点,则)]()[(lim !11]),([Re 01100z f z z dzd m z z f s m m m z z --=---)(.2. 函数在无穷远点的留数定理 1 如果)(z f 在扩充复平面上只有有限个孤立奇点(包括无穷远点在) 为∞,,,21n z z z ,则)(z f 在各点的留数总和为零.关于在无穷远点的留数计算,我们有以下的规则.法则 4: 211Re [,]Re [(),0]s f z s f z z∞=-⋅().例 1 求函数2()1ize f z z =+在奇点处的留数.解()f z 有两个一阶极点z i =±,于是根据(6.5)得2()Re (,)()22i P i e is f i Q i i e ===-'2()Re (,)()22i P i e is f i e Q i i ---==='-- 例 2 求函数3cos ()zf z z =在奇点处的留数. 解 ()f z 有一个三阶极点0z =,故由(6.7)得33001cos 11Re (,0)lim()lim(cos )222z z z s f z z z →→''=⋅=-=-四. 留数定理在定积分中的应用利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分.1. 形如()20cos ,sin f x x dx π⎰型的积分这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。
复变函数中的留数定理及其推导复变函数中的留数定理是一种非常重要的数学工具,它可以帮助我们求解一些非常复杂的积分问题。
在本文中,我们将深入探讨留数定理的本质及其具体推导方法。
一、留数定理的基本概念留数定理是由法国数学家留数(Cauchy)于19世纪初发现的。
它是一种重要的数学工具用于计算复平面上的奇异积分。
在这里,我们先来了解一下什么是“奇异点”。
奇异点是指函数在该点没有定义或不连续的点,如可以取无穷大的点、极点和孤立奇点等。
我们以一个简单的例子来说明:$I=\int_{C}\frac{1}{z-1}dz$其中,C为包围点z=1的任意一条简单闭合曲线。
当C逆时针绕点z=1一周时,积分的值趋近于无穷大,而当C顺时针绕点z=1一周时,积分的值趋近于负无穷大。
由此可见,积分$I$的值与曲线C的方向有关,这意味着函数$\frac{1}{z-1}$在点z=1处存在奇异性。
点z=1称为函数$\frac{1}{z-1}$的极点。
对于复系数函数$f(z)$,其在点z0处的留数(Residue)可表示为:$Res[f(z),z0]=\frac{1}{2\pi i}\int_{C}\frac{f(z)}{z-z0}dz$其中,C为包围点z0的任意一条简单闭合曲线,而留数的定义正是以上积分的结果。
二、留数定理的述现在我们来到了本文的重点:留数定理。
若$\Omega$是以平面上一条简单闭曲线为界的区域,则对于任意在$\Omega$上除点z1,z2,... ,zk外解析的函数$f(z)$,有:$\int_{C}f(z)dz=2\pi i\sum_{k=1}^{n}Res[f(z),zk]$其中,C是一条位于$\Omega$内的任意简单闭曲线,zk是$\Omega$内的孤立奇点(即除极点、可去奇点外的奇异点)。
这就是留数定理的本质。
简单来说,留数定理告诉我们:如果一个复变函数在某些点处存在奇异性,则通过沿着包围这些点的任意简单闭曲线进行积分,积分结果正比于这些奇点处的留数之和。
第六章留数理论及其应用
§1.留数
1.(定理6.1 柯西留数定理):
∫f(z)dz=2πi∑Res(f(z),a k)
n
k=1
C
2.(定理6.2):设a为f(z)的m阶极点,
f(z)=
φ(z) (z−a)n
,
其中φ(z)在点a解析,φ(a)≠0,则
Res(f(z),a)=φ(n−1)(a) (n−1)!
3.(推论6.3):设a为f(z)的一阶极点,
φ(z)=(z−a)f(z),则
Res(f(z),a)=φ(a) 4.(推论6.4):设a为f(z)的二阶极点
φ(z)=(z−a)2f(z)则
Res(f(z),a)=φ′(a)
5.本质奇点处的留数:可以利用洛朗展式
6.无穷远点的留数:
Res(f(z),∞)=
1
2πi
∫f(z)dz
Γ−
=−c−1
即,Res(f(z),∞)等于f(z)在点∞的洛朗展式中1
z
这一项系数的反号
7.(定理6.6)如果函数f(z)在扩充z平面上只有有限个孤立奇点(包括无穷远点在内),设为a1,a2,…,a n,∞,则f(z)在各点的留数总和为零。
注:虽然f(z)在有限可去奇点a处,必有Res(f(z),∞)=0,但是,如果点∞为f(z)的可去奇点(或解析点),则Res(f(z),∞)可以不为零。
8.计算留数的另一公式:
Res (f (z ),∞)=−Res (f (1t )1t 2,0)
§2.用留数定理计算实积分
一.∫R (cosθ,sinθ)dθ2π0型积分 → 引入z =e iθ
注:注意偶函数
二.∫P(x)Q(x)dx +∞−∞型积分
1.(引理6.1 大弧引理):S R 上
lim R→+∞zf (z )=λ
则
lim R→+∞∫f(z)dz S R
=i(θ2−θ1)λ 2.(定理6.7)设f (z )=P (z )Q (z )为有理分式,其中
P (z )=c 0z m +c 1z m−1+⋯+c m (c 0≠0)
Q (z )=b 0z n +b 1z n−1+⋯+b n (b 0≠0)
为互质多项式,且符合条件:
(1)n-m ≥2;
(2)Q(z)没有实零点
于是有
∫
f (x )dx =2πi ∑Res(f (z ),a k )Ima k >0
+∞
−∞
注:lim R→R+∞
∫f(x)dx +R −R 可记为P.V.∫f(x)dx +∞−∞ 三. ∫P(x)Q(x)e imx dx +∞−∞
型积分 3.(引理6.2 若尔当引理):设函数g(z)沿半圆周ΓR :z =Re iθ(0≤θ≤π,R 充分大)上连续,且
lim R→+∞g (z )=0
在ΓR 上一致成立。
则
lim R→+∞
∫g(z)e imz dz ΓR =0 4.(定理6.8):设g (z )=P (z )Q (z ),其中P(z)及Q(z)为互质多项式,且符合条件:
(1)Q 的次数比P 高;
(2)Q 无实数解;
(3)m>0
则有
∫
g(x)e imx dx =2πi ∑Res(g(z)e imz ,a k )Ima k >0
+∞
−∞
特别的,上式可拆分成:
∫P (x )Q (x )+∞−∞cosmxdx 及∫P (x )Q (x )+∞−∞sinmxdx
四.计算积分路径上有奇点的积分
5.(引理
6.3 小弧引理):S r :z −a =re iθ
lim r→0
(z −a)f(z)=λ 于S r 上一致成立,则有
lim r→0
∫f(z)dz S r =i(θ2−θ1)λ
五.杂例
六.应用多值函数的积分
§3.辐角原理及其应用
即为:求解析函数零点个数
1.对数留数:
12πi ∫f ′(z)f(z)
C dz 2.(引理6.4):(1)设a 为f(z)的n 阶零点,则a 必为函数f ′(z)f(z)的一阶极点,并且
Res [f ′(z )f (z )
,a]=n; (2)设b 为f(z)的m 阶极点,则b 必为函数f ′(z)f(z)的一阶极点,并且
Res [f ′(z )f (z )
,b]=−m 3.(定理6.9 对数留数定理):设C 是一条周线,f(z)满足条件:
(1)f(z)在C 的内部是亚纯的;
(2)f(z)在C 上解析且不为零。
则有
1 2πi ∫
f′(z)
f(z)
C
dz=N(f,C)−P(f,C)=C内零点个数−极点个数=
ΔC argf(z)
2π
注1:当条件更改为:(1)f在Int(C)+C上解析;(2)C上有f≠0,有P(f,C)=0,即
1 2πi ∫
f′(z)
f(z)
C
dz=N(f,C)=
ΔC argf(z)
2π
注2:条件可减弱为:f(z)连续到边界C,且沿C有f(z)≠0 4.(辅角原理):
N(f,C)−P(f,C)=ΔC argf(z)
2π
5.(定理
6.10 鲁歇(Rouche)定理):设C是一条周线,函数f(z)及φ(z)满足条件:(1)它们在C的内部均解析,且连续到C;
(2)在C上,|f(z)|>| φ(z)|
则函数f(z)与f(z)+ φ(z)在C内部有同样多(几阶算几个)的零点,即
N(f+φ,C)=N(f,C)
6.(定理6.11):若函数f(z)在区域D内但也解析,则在D内f’(z)≠0.。