6第6章电介质和电介质中的高斯定理
- 格式:ppt
- 大小:1.16 MB
- 文档页数:19
高斯定理是电磁学中的基本定理之一,它描述了电场的分布与电场通量之间的关系。
在电介质中应用高斯定理时,可以使用以下公式:
∮S E · dA = 1/ε₀ ∫V ρ dV
其中,
∮S E · dA 表示闭合曲面S上电场E与面元dA的点积的总和,也称为电场通量。
1/ε₀ 是真空中的电介质常数,ε₀ ≈ 8.85 × 10⁻¹² C²/(N·m²)。
∫V ρ dV 表示电介质内电荷密度ρ与体积元dV的乘积的积分,表示电荷分布的总量。
这个公式可以用于计算闭合曲面内的电场通量,其中电介质内的电荷分布由体积积分来表示。
根据高斯定理,如果闭合曲面内没有电荷分布(即电介质内无净电荷),那么电场通量为零;如果闭合曲面内有电荷分布,电场通量将与闭合曲面内的净电荷量成正比。
第六章 静电场中的导体与电介质 6 -1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( )(A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势。
由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A )。
6 -2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷。
若将导体N 的左端接地(如图所示),则( )(A ) N 上的负电荷入地 (B )N 上的正电荷入地(C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关。
因而正确答案为(A )。
6 -3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图。
设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E(D )R εq V d εq E 020π4,π4==分析与解 达到静电平衡时导体内处处各点电场强度为零。
点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势。
因而正确答案为(A )。
6 -4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和。
下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关。
第6章 静电场中的导体与电介质一、基本要求1.掌握导体静电平衡的条件和静电平衡条件下导体的性质,并能利用静电平衡条件解决有关问题。
2.理解电容的定义,掌握典型电容器电容的计算方法。
3.了解电介质极化的微观机制,理解电介质对静电场的影响。
掌握介质中静电场的基本规律,掌握应用介质中的高斯定理求解介质中静电场的电位移矢量和电场强度的计算方法。
4.理解静电场能量的概念,能计算一些对称情况下的电场能量。
二、知识框架三、知识要点 1.重点 (2)电介质中的高斯定理及其应用。
1C ++n C ++d 0L =⎰E l 保守场Sd q ⋅=∑⎰⎰D S 静电场能量密度:1四、基本概念及规律1.导体的静电平衡条件及其性质(1)导体的静电平衡条件 导体内部电场强度处处为零,即 0=内E (2)导体处于静电平衡时的性质 ① 导体是等势体,导体表面是等势面。
② 导体表面的场强处处与导体表面垂直,导体表面附近的场强大小与该处导体表面的面密度σ成正比,即0 E e nσε=表面 ③ 电荷只分布在导体外表面。
(3)静电屏蔽 在静电平衡条件下,空腔导体内部电场不受外部电场的影响,接地空腔导体内部与外部电场互不影响,这种现象称为静电屏蔽。
2.电容C(1)孤立导体的电容 Vq C =电容的物理意义:使导体每升高单位电势所需的电量。
(2)电容器的电容 BA V V qC -=(3)电容器两极板间充满电介质后的电容 0C C r ε= 其中C 0是两极板间为真空时的电容,r ε是电介质的相对介电常数。
(4)几种常见电容器的电容① 平行板电容器 dSC r εε0=② 同心球形电容器 AB BA rR R R R C -=επε04 (R B >R A )③ 同轴圆柱形电容器 AB rR R lC ln 20επε= (R B >R A ) (5)电容器的串并联① 电容器串联后的总电容3211111C C C C ++=+…+nC 1② 电容器并联后的总电容 C = C 1+ C 2 + C 3+ … + C n 3.电介质中的静电场(1)电极化强度 电介质中任一点的电极化强度等于单位体积中所有分子的电偶极矩的矢量和,即 iV∆∑P P =① 对于各向同性的电介质 00(1)r e εεχε-=P =E E 其中1-=r e εχ称为电介质的极化率。