24.2 点和圆、直线和圆的位置关系(第3课时)PPT课件
- 格式:ppt
- 大小:949.00 KB
- 文档页数:17
24.2点、直线、圆和圆的位置关系(第3课时)一、学习目标:1. 了解切线长的概念。
2. 理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用。
二、学习重点、难点:1. 重点:切线长定理及其运用。
2. 难点:切线长定理的导出及其证明和运用切线长定理解决一些实际问题。
三、学习过程:(一)温故知新1.已知△ABC,作三个内角平分线,说说它具有什么性质?2.直线和圆有什么位置关系?切线的判定定理和性质定理,它们如何?(口述)(二)自主学习自学教材P96---P98,思考下列问题:1.按探究要求,请同学们动手操作,你发现哪些等量关系?2.什么叫切线长?默写切线长定理,并加以证明。
3.依据“温故知新”第1题作的三角形的三条角平分线,思考一下交点到三边的距离相等吗?请以交点为圆心,以这一距离为半径作圆,你发现什么?4.什么叫三角形的内切圆、三角形的内心?(三)合作探究例1:如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.BA CE DOFE DOABCF 例2:如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB=9cm ,BC=14cm,CA=13cm,求AF 、BD 、CE 的长。
(四)巩固练习3.如图,已知⊙O 是△ABC 的内切圆,切点为D 、E 、F ,如果AE=1,CD=2,BF=3,且△ABC 的面积为6.求内切圆的半径r .(五)达标训练1.从圆外一点向半径为9的圆作切线,已知切线长为18,•从这点到圆的最短距离为( ).A .93B .9(3-1)C .9(5-1)D .92.如图1,PA 、PB 分别切圆O 于A 、B 两点,C 为劣弧AB 上一点,∠APB= 30°,则∠ACB=( ). A .60° B .75° C .105° D .120°BAC POB AC DPOBACBA CE D OF(1) (2) (3)(4) BAP O3.如图2,PA 、PB 分别切圆O 于A 、B ,并与圆O 的切线,分别相交于C 、D ,•已知PA=7cm ,则△PCD 的周长等于_________.4.如图3,边长为a 的正三角形的内切圆半径是_________.5.如图4,圆O 内切Rt △ABC ,切点分别是D 、E 、F ,则四边形OECF 是_______.6、如图所示,PA 、PB 是⊙O 的两条切线,A 、B 为切点,求证∠ABO=12∠APB.(六)拓展创新1.圆外一点P ,PA 、PB 分别切⊙O 于A 、B ,C 为优弧AB 上一点,若∠ACB=a ,则∠APB=( )A .180°-aB .90°-aC .90°+aD .180°-2a2.如图所示,EB 、EC 是⊙O 的两条切线,B 、C 是切点,A 、D 是⊙O 上两点,• 如果∠E=46°,∠DCF=32°,求∠A 的度数.OPACBBA CED OF。
第24章
24.2.2直线与圆(3)三角形的外接圆和内切圆
三角形的外接圆和内切圆
1、能回忆起三角形的外接圆及外心,内切圆及内心。
2、会画出已知三角形的外接圆和内切圆。
3、运用有关知识解决有关问题。
重点:
外接圆及内切圆的画法;外心和内心。
难点:
知识的综合运用。
一、三角形的外接圆与内切圆的画法:
1、什么是三角形的外接圆与内切圆?
2、如何画出一个三角形的外接圆与内切圆?
1、①经过三角形各顶点的圆叫三角形的外接圆。
②与三角形各边都相切的圆叫三角形的内切圆。
画圆的关键:
1、确定圆心
2、确定半径
三角形的外接圆的圆心是各边垂直平分线的交点;其半径是交点到顶点的距离。
三角形的内切圆的圆心是各内角平分线的交点;其半径是交点到一边的距离。
三角形的外接圆:
A
O
B C。