屈服弯矩、极限弯矩 以理想弹塑性材料的矩形截面纯弯曲梁为例:
M
M
随着M的增大,梁截面应力的变化为:
b
s
s
h b
s
h
y0 y0
s
s
a)
b)
s c)
b
s
s
s
h
y0 y0
s
s
a)
b)
s c)
图a)弹性阶段,最外纤维处应力达到屈服极限σs ,弯矩M
为:
MS
bh2 6
s
→屈服弯矩
图b)弹塑性阶段,y0部分为弹性区,称为弹性核。
图c)塑性流动阶段,y0→0。相应的弯矩M为:
Mu
bh
s
→极限弯矩
是截面所能承受的最大弯矩。
极限弯矩的计算
Mu
bh
s
设塑性流动阶段截面上受压区和受拉区的面积分别为A1
和A2,并且此时受压区和受拉区的应力均为常量,又因为
梁是没有轴力的,所以:
sA1sA20
A1A2A/2
可见,塑性流动阶段的中性轴应等分截面面积。
【例17.1 】 图示为矩形截面简支梁在跨中承受集中荷载,试 求极限荷载。
FP
FPu
已知Mu
解:
FPul
Mu
FPu
Mu l
可破坏荷载: 对于任一单向破坏机构,用平衡条件求得的荷载值,称
为可破坏荷载,常用FP+ 表示。
基本定理:
(1)唯一性定理:极限荷载FPu值是唯一确定的。
(2)极小定理:极限荷载是可破坏荷载中的极小者。
由此,极限弯矩的计算方法: M u s(SS)
S、S分别为面 A、 积 A对等面积轴的静矩