则极限弯矩为
由
bh2 Mu s s 4
bh2 ss Mu 42 1.5 M s bh ss 6
可见,考虑了材料塑性,
矩形截面梁对应的弯矩极限值可以增大 50%。
几种常用截面的 Mu/Ms 比值见下表。
表 1 几种常用截面的 Mu/Ms 比值
截面形状
M u / Ms
1.15-1.17
1.27
πd 3 Ts Wp s s 16
s
(a)
若继续增大扭矩,则随着切应变增大,此直径上 各点处的切应力将从周围向中心逐渐增大到 s 。
s
(b)
当截面上各点处的切应力均达到 s , 整个截面进 入完全塑性状态。这时不需要再增大外力偶矩,圆杆 将继续扭转变形,即扭杆达到极限状态。对应的极限 扭矩为:
q (a) A
l
解:先按弹性分
B
4l 9
8 ql 2 81
l 3
C b (b) ql 2 18
h
析的方法作出梁
的弯矩图 (图c) 得出最大弯矩为
8ql2 M max 81
(c)
当梁达到极限状态时,其最大弯矩等于极限弯矩, 梁上的荷载达到极限值。 即
8qu l 2 bh2 Mu s sWs s s 81 4
塑性变形的特征:
(1)变形的不可恢复性是塑性的基本特征。
(2)应力超过弹性范围后,应力应变呈非线性关系, 叠加原理
s
s1
不再适用。
(3)塑性变形与加载历程有关,应 力与应变之间不再是单值关系。 (4)通常所指的塑性变形,忽 略了时间因素的影响(常温、 低应变率)。
ss
O
e p ee
e
s 's