第四弹塑性变形验算剖析
- 格式:ppt
- 大小:557.50 KB
- 文档页数:5
运动与变形物质坐标与位移场PP *X =x (t 0)x (t )u VS V *S *初始构形X = X e x = u (X ,u i = 位移场准静态变形一、固体的运动与变形描述u (X x 1x 3P (x 1, x 2, x 3)x v (x )V S 当前构形 物质坐标与位移场一、固体的运动与变形描述流体力学中通常对于初始构形不感兴趣,例如流过南京长江大桥下的水可连续介质力学中要研究各种场,在物质坐标与位移场一、固体的运动与变形描述在固体力学领域主要采用变形状态的各个场都表示为物质坐标的函数。
强度分析关心的是局部变形,即一点邻域内的变形: 一点邻域内的变形一、固体的运动与变形描述Q d 一点邻域内的变形一、固体的运动与变形描述1Px 3P *X x u V S V *S *初始构形当前构形(变形后)Q d xu + d u Q *d X 数学上已有的公式一点邻域内的变形一、固体的运动与变形描述1Px x3P*XxuVSV*S*初始构形Qd Xd xu+ d uQ*()2**Q P(d s=(*d s一点邻域内的变形一、固体的运动与变形描述jkE=一点邻域内的变形一、固体的运动与变形描述(21j u =jk E (*d s (*d s E PQ 一点邻域内的变形一、固体的运动与变形描述=PQ E 一点邻域内的变形一、固体的运动与变形描述cos 一点邻域内的变形一、固体的运动与变形描述X 2dX (2)=e 2一点邻域内的变形一、固体的运动与变形描述剪切角是直角的变化量,角度减小为正,角度增加为负。
X 2d X (2)=e 2包含:元线段伸长ij ε 一点邻域内的变形一、固体的运动与变形描述几何方程11ε22ε33ε 一点邻域内的变形一、固体的运动与变形描述共计εε= 应变张量是二阶对称张量二、应变张量应变张量是二阶对称张量3个主不变量二、应变张量ε最大剪应变 应变张量是二阶对称张量二、应变张量二、应变张量应变张量是二阶对称张量加式分解二、应变张量应变张量的其它特性和图形表示由正八面体剪应变可导出永远为正值与塑性变形功有关二、应变张量应变张量的其它特性和图形表示应变莫尔圆(二维)三维应变莫尔圆(略)主应变空间与等倾面ε,1 应变张量的其它特性和图形表示二、应变张量一点应变状态在主应变空间内用一个点表示(或一个矢量表示)等倾面 应变张量的其它特性和图形表示二、应变张量2由e I 、e II 和e III所确定应变状态在等倾面上用的P 表示等倾面 应变张量的其它特性和图形表示二、应变张量2ε 转动张量与转动矢量二、应变张量转动矢量 转动张量与转动矢量二、应变张量转动张量与转动矢量X 1X 3二、应变张量几何方程线性化的条件E ,<<j i u 二、应变张量εi u A 由应变场对应于单值连续位移场导出应变协调方程三、应变协调方程由位移单值连续性出发由应变场对应于单值连续位移场导出应变协调方程三、应变协调方程位移单值连续性 由应变场对应于单值连续位移场导出应变协调方程三、应变协调方程转动矢量单值连续本身又要求利用(+∫e ε 由应变场对应于单值连续位移场导出应变协调方程三、应变协调方程由整体符号形式推导指标符号公式的说明由应变场对应于单值连续位移场导出应变协调方程三、应变协调方程将指标符号代入可得⇒=nm mn L L三、应变协调方程由应变场对应于单值连续位移场导出应变协调方程将指标符号代入可得ε2,2323ε,1233ε,11ε,3122三、应变协调方程由应变场对应于单值连续位移场导出应变协调方程当应变用几何方程代入后,应变协调方程成恒等式,称为St. Venant恒等式三、应变协调方程由应变场对应于单值连续位移场导出应变协调方程求导次序无关性Bianchi 三、应变协调方程复连通域于单值连续的位移场。
弹塑性反应谱的分析第35卷第4期2011年8月南京理工大学JournalofNanjingUniversityofScienceandTechnologyV0l_35No.4Aug.2011弹塑性反应谱的分析丁建国,陈伟(1.南京理工大学理学院,江苏南京210094;2.东南大学土木工程学院,江苏南京210090)摘要:为了分析结构在地震作用下的弹塑性反应,该文探讨了弹塑性反应谱.该文推导了弹塑性反应谱的基本方程,计算了等延性强度需求谱;描述了通过强度折减系数,延性系数及结构周期之间的关系建立弹塑性反应谱的方法;参照弹性反应谱理论分别得到了四种弹塑性反应谱.计算结果表明:当延性系数较小且土质较硬时,该文计算的弹塑性反应谱与范立础的弹塑性反应谱近似相等;当延性系数较大且土质柔软时,该文计算的弹塑性反应谱相对安全.关键词:强度折减系数;延性系数;弹塑性反应谱中图分类号:TU311.3文章编号:1005—9830(2011)04—0573—06 AnalysisofElasto-plasticResponseSpectraDINGJianguo,CHENWei(1.SchoolofSciences,NUST,Nanjing210094,China;2.CollegeofCivilEngineering,SoutheastUniversity,Nanjing210090,China) Abstract:Inordertoanalysetheelasto—plasticresponseofstructureunderthes eismicaction,this paperstudiesanelasto—plasticresponsespectrum.Thebasicequationofanela sto—plasticresponse spectrumisestablishedandtheconstant—ductilitystrengthdemandspectraare calculated.Themethodsofelasto-plasticspectraestablishedbyrelationshipamongthestrength reducingcoefficients andtheductilitycoefficientsaswellasthestructuralperiodsaredescribed.Four kindsofelasto- plasticresponsespectraarededucedfromreferringtotheelasticresponsespectr um.Thecalculation resultshowsthattheelasto—plasticresponsespectraproposedherearesimilart oFanLichu’Selasto—plasticresponsespectraundertheconditionofhardsoilandsmallductilitycoefficient,andthe elasto—plasticresponsespectraproposedherearerelativelysafeunderthecon ditionofsoftsoilandlargeductilitycoefficient.Keywords:strengthreducingcoefficients;ductilitycoefficients;elasto—plast icresponsespectra地震是人类所面临最严重的自然灾害之一.特别是从20世纪下半叶以来所发生的几次大地震使人们认识到,在强烈地震作用下建筑结构将产生屈服或部分屈服,从而发生弹塑性反应.依据《中华人民共和国抗震设计规范》规定J,抗震设防目标要求按照”三水准,二阶段”来进行,而抗震设防的第二阶段需要校核结构的弹塑性变形.结构在罕遇地震作用下的弹塑性变形计算是一个非常复杂的问题,目前在规范中所提出的计算方法主要包括静力弹塑性分析方法及弹塑性时程分析方法等.但是,如果要精确应用静力弹塑性分析方法,就需要采用通过由弹塑性反应谱得到的地震反应需求收稿日期:2010—06—04修回日期:2010-11-12作者简介:丁建国(1962~),男,副教授,主要研究方向:工程结构抗震与防灾,E-mail:*****************.cn.574南京理工大学第35卷第4期曲线来决定结构目标位移2J,因此,弹塑性反应谱的研究将具有极其重要的现实意义.近年来,国内外许多学者进行了有关弹塑性反应谱的研究.Miranda_3通过研究地震持续时间在0~3s内,且分别来自岩石地基,冲积土地基和软土地基的124条地震加速度记录曲线,得到了建立在单自由度体系基础上弹塑性需求谱,其研究结果表明:弹塑性需求谱主要依赖于场地条件,频谱特性和持续时间.Vidic’4等人用两种不同的方法获得了弹塑性强度需求谱:一种是通过减少相关因素降低弹性谱;另一种是通过对弹塑性结构在遭受地震作用时获得的反应谱进行统计分析,而直接得到弹塑性反应谱.范立础通过统计平均法和回归分析,给出了平均强度折减系数的函数表达式.其他相关文献[6-9]也介绍了地震力调整系数和相关的弹塑性反应谱.本文将试图根据结构抗震理论推导弹塑性反应谱的基本方程,并输入约200条地震波加速度时程曲线对单自由度体系进行弹塑性时程分析,以平均计算结果获得等延性强度需求谱及弹塑性反应谱,并与根据Vidic,Berrilld及范立础等人提出的R--g—T 关系所得到的弹塑性反应谱进行分析和比较.1基本方程在地震作用下,单自由度体系的运动微分方程如下.(£)+(),)=一眦()(1)式中:m为系统的质量;C为阻尼系数;(t),x(t)和x(t)分别为位移,速度和加速度i厂(,t)为系统恢复力;互(t)为地震作用加速度.为了计算方便,参照弹性系统恢复力公式,弹塑性系统恢复力可表示成式(2)的形式,.厂(,£)=()()(2)将式(2)代入式(1),因此得到()+2o(t)+[k(x)/k0]02(t)=-x(t)(3)式中:设:ko/m,=c/(2mw0),ko为滞回曲线系统的线弹性刚度.设屈服时位移为,则屈服力为(,)=kyX,是当=时系统的割线刚度.根据弹性反应谱理论(,t)=m3l,其中是动力系数.如果定义”(t):(t),R=厂(,)(,t),/.Z=maxI(t)I=JI/x(被称为强度折减系数,被称为延性系数),则式(3)将变为式(4).)+2)+一Rkr.2(4)根据弹性反应谱理论卢(5)式中:Ot为地震影响系数.因为系统周期和频率的关系为=2~r/w.,那么将式(5)代人式(4)中,则式(4)可以改写成式(6)的形式:u(t))睾)=睾Rky..c)(6)式(6)是等强度延性需求谱及等延性强度需求谱的基本方程.2等延性强度需求谱根据式(6),如果是一个常数,则等延性强度需求谱可以通过迭代计算得到.由于可能对应多个R的值,因此,等延性强度需求谱应选用尺的最小值.在本文中,假设抗震设防烈度为7度,利用如图1所示的退化三线型滞回模型,通过计算得出等延性强度需求谱.j,)图1退化三线型系统的恢复力模型在图1中,分别选择O/0=1,1=0.85,2=0.15,O/3=0.89.并且选择=0.30S,0.40S,0.55s和0.75S分别作为I,Ⅱ,Ⅲ和Ⅳ类场地的特征周期.选用包括EL.centro波,Taft波和天津波等近200条地震波.地震波选用原则,主要依据场地类别及特性进行选择.其中对于I类场地选用了57条地震波;Ⅱ类场地选用了55条地震波;111类场地选用了52条地震波;IV类场地选用了28条地震波.所有地震记录曲线的最大加速度峰值取0.22g. 这些地震记录的平均计算结果如图2所示.总第179期丁建国陈伟弹塑性反应谱的分析575 T/s(a)I类场地T/s(c)ll类场地T/s(b)1I类场地T/s(d)IV类场地图2等延性强度需求谱可改写为式(8).3由一j『1关系建立弹塑性反应谱的原理根据强度折减系数的定义,R={L,=se,.p7,式中:5:是弹性反应谱,5:是弹塑性反应谱.设弹性反应谱的地震影响系数为ot,弹塑性反应谱的地震影响系数为ol,根据S:=otg,则式(7)T/s(a)Berrill的弹塑性反应谱o/=:/g=a/R(8)因此,弹塑性反应谱的地震影响系数Ot可通过弹性反应谱的地震影响系数Ol和R一关系代人式(8)得到.本文分别利用Berrill,Vidic和卓卫东,范立础提出的R-/z—T的关系及本文所得到的等强度延性需求谱(图2),计算出了在I类场地(硬土)上四种弹塑性反应谱的地震影响系数,如图3所示.T/s(b)Vidic的弹塑性反应谱T/sT/s(c)范立础的弹塑性反应谱(d)本文计算出的弹塑性反应谱图3I类场地条件下Berrill,Vidic,范立础及本文计算出的弹塑性反应谱576南京理工大学第35卷第4期在图3中,当等于1时,该曲线则变为弹性反应谱,当=2,3,4,5时,曲线则为弹塑性反应谱.从图3可以发现,弹塑性反应谱中的地震作用明显小于弹性反应谱中的地震作用,这对抗震工程具有重要意义.4四种弹塑性反应谱的效果分析和对比由于没有足够且完整的较长时问软土地震加速度记录,且范立础的R一关系只包含了三种场地类别,同时考虑到等延性强度需求谱(图2 (d))有可能不具有良好的统计特性.因此,本文在对四种弹塑性反应谱进行比较和分析时,分别T/s(a)=2.0考虑了I,Ⅱ和Ⅲ类场地.在上述四种弹塑性反应谱中,Berrill的R一丁关系是建立在位移相同的原则上;Vidic的R一关系则建立在位移和能量相等的两个原则之上,并考虑到土壤条件和滞回模型等因素的影响;范立础的R一关系以及本文提出的等延性强度需求谱(图2)则建立在对单自由度体系的大量弹塑性时程分析的基础上.因此,通过对上述四种弹塑性反应谱分析和比较发现:(1)一般而言,通过Ben’ill的R一关系得到的弹塑性反应谱将相对偏于安全;(2)本文通过等延性强度需求谱计算出的弹塑性反应谱,因为选择了的最小值,在某些情况下也是比较安全的.为了对这四种弹塑性反应谱作进一步比较,更详尽曲线如图4~6所示.T/s(b)g=3.0T/sT/s(c)=4.0(d)5.0图4在I类场地条件下四种弹塑性反应谱参见图4~6,可以发现,一般而言,Berrill的弹塑性反应谱>Vidic的弹塑性反应谱>范立础的弹塑性反应谱.在硬土条件下(图4~5),当>0.1s时,四种弹塑性反应谱近似相同;当T<0.1s,本文计算出的弹塑性反应谱则是相对安全的,但比Berrill的弹塑性反应谱略低,Vidic的弹塑性反应谱接近于范立础的弹塑性反应谱.在软土条件下(图6),当结构周期为中长周期时,则本文计算出的弹塑性反应谱大于其他三种弹塑性反应谱,并且越大,则差值越大;当结构周期为长周期时,四种弹塑性反应谱几乎是相同的.当等于2时(图4(a),图5(a)及图6(a)),一般来说,Berrill的弹塑性反应谱大于Vidic的弹塑性反应谱,而Vidic的弹塑性反应谱大于范立础的弹塑性反应谱,同时也略大于本文计算出的弹塑性反应谱.当T<0.2s时,Vidic的弹塑性反应谱以及范立础的弹塑性反应谱与本文得到的弹塑性反应谱几乎是相同的.当结构周期是中长周期时,本文计算的弹塑性反应谱值比范立础的弹塑性反应谱值大.当等于5时(图4(d),图5(d)及图6(d)),本文计算出的弹塑性反应谱是相对安全,并接近Berrill的弹塑性反应谱,范立础的弹塑性反应谱和Vidic的弹塑性反应谱则非常相近.总第179期丁建国陈伟弹塑性反应谱的分析577 5结论T/s(a)=2.0T/s(b)=3.0T/sT/s(c)=40(d)5.0图5在Ⅱ类场地条件下四种弹塑性反应谱T/s(a)=2.0T/s(c)=4.0T/s(b)=3.0图6在Ⅲ类场地条件下四种弹塑性反应谱(1)本文建立了弹塑性反应谱的基本方程,并根据大量地震加速度记录计算得到了等延性强度需求谱;(2)当延性系数较小且土质较硬,本文计算的弹塑性反应谱与范立础的弹塑性反应谱几乎近T/s(d)=5.0似相同;而Vidic的弹塑性反应谱比前两者大; Berrill的弹塑性反应谱相对安全.当值较大且土质柔软时,本文计算的弹塑性反应谱则相对安全一些;而在大多数情况下,弹塑性反应谱有以下关系:本文计算出的弹塑性反应谱>Vidic的弹塑性反应谱>范立础的弹塑性反应谱.但Vidic的弹塑性反应谱与范立础的弹塑性反应谱的差别不大;(3)范立础的R一关系是建立对单自由578南京理工大学第35卷第4期度系统大量的弹塑性时程分析的基础上,但这种关系不能充分考虑阻尼比,滞回模型等影响因素,而Vidic的一关系较简单但可以清楚地反映这些因素的影响,Vidic的弹塑性反应谱比较接近范立础的弹塑性反应谱.参考文献:[2][3][4]GB50011_-20o1.中华人民共和国抗震设计规范[s].北京:中国建筑工业出版社,2001. AppliedTechnologyCouncil.A TC一40.V o1.1.Seismic evaluationandretrofitofconcretebuildings[S].1996. MirandaE.Evaluationofsite—dependentinelasticseismic designspectra[J].JoumalofStruetEngngASCE,1993, 117(8):1319-1338.VidicT,FajfarP,FischingerM.Consistentinelastic designspectra:Strengthanddisplacement[J].[5][6][7][8][9] EarthquakeEngineeringandStructuralDynamics,1994, 24(5):507—521.卓卫东,范立础.结构抗震设计中的强度折减系数研究[J].地震工程与工程振动,2001,21(1):84—88. BerrillJB,PriestleyMJ,ChapmaanHE.Design earthquakeloadingandductilitydemand[A].Bulletin oftheNewZealandNationalSocietyforEarthquake Engineering[C].Wellington,NewZealand~New ZealandSocietyforEarthquakeEngineeringInc,1980, 13(3):232—241.丁建国.弹塑性反应谱及其在抗震设计中应用[J]. 南京理工大学,2007,31(6):780—783. ElghadamsiFE,MohrazB.Inelasticearthquakespectra [J].EarthquakeEngineeringandStructuralDynamics, 1987.15:91一lo4.MirandaE,JorgeRG.Influenceofstiffnessdegradation onstrengthdemandsofstmcturesbuiltonsoftsoilsites [J].EngineeringStructures,2002,24:1271-1281.。
第二部分弹塑性问题的有限元法第四章弹塑性体的本构理论第五章弹塑性体的有限元法第四章弹塑性体的本构理论4-1塑性力学的基本内容和地位塑性力学是有三大部分组成的:1) 塑性本构理论,研究弹塑性体的应力和应变之间的关系;2) 极限分析,研究刚塑性体的应力变形场,包括滑移线理论和上下限法;3) 安定分析,研究弹塑性体在低周交变载荷作用下结构的安定性问题。
塑性力学虽然是建立在实验和假设基础之上的,但其理论本身是优美的,甚至能够以公理化的方法来建立整个塑性力学体系。
塑性力学是最简单的材料非线性学科,有很多其它更复杂的学科,如损伤力学、粘塑性力学等,都是借用塑性本构理论体系而发展起来的。
4-2关于材料性质和变形特性的假定材料性质的假定1)材料是连续介质,即材料内部无细观缺陷;2)非粘性的,即在本构关系中,没有时间效应;3)材料具有无限韧性,即具有无限变形的可能,不会出现断裂。
常常根据材料在单向应力状态下的σ-ε曲线,将弹塑性材料作以下分类:硬化弹塑性材料理想弹塑性材料弹塑性本构理论研究的是前三种类型的材料,但要注意对于应变软化材料,经典弹塑性理论尚存在不少问题。
变形行为假定 1)应力空间中存在一初始屈服面,当应力点位于屈服面以内时,应力和应变增量的是线性的;只有当应力点达到屈服面时,材料才可能开始出现屈服,即开始产生塑性变形。
因此初始屈服面界定了首次屈服的应力组合,可表示为()00=σf(1)2) 随着塑性变形的产生和积累,屈服面可能在应力空间中发生变化而产生后继屈服面,也称作加载面。
对于硬化材料加载面随着塑性变形的积累将不断扩张,对于理想弹塑性材料加载面就是初始屈服面,它始终保持不变,对于软化材料随着塑性变形的积累加载面将不断收缩。
因此加载面实际上界定了曾经发生过屈服的物质点的弹性范围,当该点的应力位于加载面之内变化时,不会产生新的塑性变形,应力增量与应变增量的关系是线性的。
只有当应力点再次达到该加载面时,才可能产生新的塑性变形。